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ABSTRACT
We study the problem of enumeration of all k-sized subsets of
temporal events that mutually overlap at some point in a query
time window. This problem arises in many application domains, e.g.,
in social networks, life sciences, smart cities, telecommunications,
and others. We propose a start time index (STI) approach that
overcomes the efficiency bottlenecks of current methods which are
based on 2-way join algorithms to enumerate temporal k-cliques.
Additionally, we investigate how precomputed checkpoints can be
used to further improve the efficiency of STI. Our experimental
results demonstrate that STI outperforms the state of the art by a
wide margin and that our checkpointing strategies are effective.
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1 INTRODUCTION
The problem.We study the temporal k-clique enumeration prob-
lem: given (1) a collection of data objects where each object has
an associated time window; (2) a query time window; and, (3) a
non-negative integer k , enumerate all k-sized subsets of objects
which are concurrent in the query time window (i.e., all mutually
overlapping at some time point in the query window). This problem
arises in a wide range of applications. Some illustrative examples
follow.
• In case of disease eruption and its transmission in a commu-
nity, find all groups of k people whose infectious periods all
pairwise overlap in a given timeframe.
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• For a deeper understanding of scientific collaborations in a
bibliographic database, find all groups of k people who have
tightly collaborated with each other at the same time, in a
given time period.
• For calling a meeting, given the availability of one or more
timeslots per committee member, determine possible meet-
ing schedules in a given time period, based on the need to
reach a quorum of k available members.
• A typical lion pride consists of 8 to 9 adults whereas a large
pride consists of 30 to 40 adults.1 Most social animal groups
likewise have well-defined bounds onmembership size. In an
ecological animal database, identify large lion prides visiting
a particular location in a given time window (i.e., k = 30
adult lions which temporally co-occur at the location).
• For analytics on a temporal graph (i.e., a graph where each
edge in the graph has an associated time window), iden-
tify k-sized subgraphs which temporally co-occur in a given
time window, where k is the target subgraph size. For exam-
ple, towards targeted recommendations in a social network,
identify small groups of people (k < 5) who are all mutually
socially connected in a given time window.

Viewing time windows as intervals, the k-clique problem also arises
as a basic challenge in the context of spatial and uncertain data
management, e.g., [9].

To our knowledge, the general temporal clique problem has not
been identified and studied before. The special case when k = 2
has been well-studied in the literature as the interval join prob-
lem [5, 11, 18]. Although current competitive methods for interval
joins can be easily adapted to clique enumeration, they still suffer
from scalability issues such as unnecessary scanning of records
(highlighted in Section 3 below) when applied to large data sets
occurring in practice.

Our contributions. In our work, we directly address the scalability
issues found in the state of the art. In particular:

• Based upon a careful analysis of the weaknesses of state
of the art methods, we propose a novel method, the start
time index (STI) algorithm, to process clique enumeration
efficiently (Sections 2-4).
• Wedevelop checkpointmechanisms to further improve query
processing in STI (Section 5). We discuss four checkpointing
strategies and highlight their benefits. In addition to STI,
these strategies are of independent interest and could also be
applied in combination with other state of the art methods.

1https://cbs.umn.edu/research/labs/lionresearch/social-behavior
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Figure 1: An example of time intervals. Temporal relation
Rex and query [5, 8].

• We present the results of an in-depth experimental study
which demonstrates the significant improvements in scal-
ability and performance introduced by our new methods
(Section 6).

Our methods give rise to several interesting avenues for further
research in temporal data analytics. We conclude the paper with a
summary of our findings in Section 7.

2 PRELIMINARIES
In this section, we introduce basic concepts and definitions.

Temporal data. A time window is an ordered pair of non-negative
integers [i, j] such that i ≤ j . We refer to i and j as time-stamps. We
say time window [i, j] contains time window [k, l] if k ≥ i and l ≤ j ,
which we denote by [k, l] ⊑ [i, j]. We say [i, j] and [k, l] overlap if
i ≤ l and k ≤ j , i.e., there is a time windoww contained in both [i, j]
and [k, l]. The length of windoww = [i, j] is the value |w | = j − i

We consider finite sets R equipped with an injective function
rid : R → N, where N is the set of non-negative integers. We
assume that for each element r ∈ R an associated time window [r , r ]
is given. We will refer to such collections R as temporal relations or
just relations. We will refer to the elements of temporal relations as
records, and refer to the time windows associated with records as
intervals. We say record r is active at timestamp t if [t , t] ⊑ [r , r ].

The domain of relation R is the shortest length time window
D = [R,R] such that, for every r ∈ R, it holds that [r , r ] ⊑ [R,R].

Temporal cliques. Let S be a relation andw be a time window. If
there exists a time window t ⊑ w such that for every s ∈ S it is the
case that t ⊑ [s, s], then we say the elements of S form a temporal
|S |-clique inw , where |S | is the number of elements of S .

As a simple running example, consider temporal relation Rex =
{r1 : [0, 2], r2 : [4, 6], r3 : [5, 10], r4 : [7, 9], r5 : [8, 10], r6 : [4, 4]}
and time windoww = [5, 8], visualized in Figure 1. There is exaclty
one temporal 3-clique inw , namely, {r3, r4, r5}.

Problem statement. We study the problem of “temporal k-clique
enumeration”, defined as follows. Let R be a temporal relation, k be

a positive integer, and q = [qstart ,qstop] be a time window (i.e., a
query). Enumerate all S ⊆ R where S is a temporal k-clique in q.

Concurrent sets and Living history windows. Given a tempo-
ral relation R and a timestamp t , we call the largest temporal clique
S ⊆ R in [t , t] the Concurrent Set at t , denotedCS(t). In other words,
CS(t) consists of all records that are active at timestamp t . The size
of CS(t) is denoted by CSS(t).

We study methods for clique enumeration based on constructing
CS(qstart) and then maintaining the set as we scan forward in time
to qstop. We call the time window scanned during constructing
CS(qstart) the Concurrent Set Construction Window. Note that this
window is algorithm-dependent. For example, in the most naive
method, the construction window is [R,qstart], which could be
unnecessarily costly in practice.

Given a temporal relation R and a timestamp t , the earliest con-
current of t is the timestamp eC(t) corresponding to the earliest
start time of those records that are still active at t , i.e.,

eC(t) =

{
undefined if CS(t) = ∅
minr ∈CS (t ) r otherwise

Note that eC(t) only makes sense when CS(t) , ∅. We call the
window [eC(t), t] the Living History Window of t , denoted LHW (t).

Continuing our running example (Figure 1), we have eC(8) = 5
and LHW (8) = [5, 8], because r3 is still active at t = 8.

Methods for constructingCS(qstart) at a minimummust process
those records with start times which occur in LHW (qstart). We
consider query processing in two adjacent windows as shown in
Figure 2: (1) a living history window and (2) a query window. The
former one is used to construct CS(qstart) while the latter one is
used to enumerate cliques. With the introduction of living history,
the concurrent set construction window is significantly shortened
compared to the naive method.

t ime
eC(qstar t ) qstar t qstop

query windowLiving History Window

Figure 2: Query Processing via linear scan

3 RELATEDWORK
Temporal joins. Research on interval join processing can be classi-
fied [12] in index-based, partition-based, and plane-sweep methods.
Index-based methods construct and maintain specialized data struc-
tures in order to speed up query processing. A bi-temporal index
that could be used to compute interval joins on two temporal di-
mensions (i.e. both system and application time) is proposed in
[14]. An algorithm based on a two-layer flat index (Overlap Inter-
val Inverted, O2i) is presented in [16]. Indexed segment tree forest
(ISTF), in which the temporal nesting relationships are represented
by a binary tree and joins are enumerated by searching related
trees is proposed in [17]. Partition-based methods cluster intervals
into smaller buckets based on their similarity, and join-processing
is done for certain pairs of buckets to reduce the unproductive
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evaluations. Dignos et al. [10] proposed a self-adjusting algorithm
named OIP divides intervals into k equal-sized consecutive gran-
ules and a method to a best k is also proposed, which could lead to
a minimal compromise of query cost and unproductive join ratio
when timeline is divided into the same number of granules. Cafagna
et al. [7] proposed DIP to divide temporal relation into partitions
containing non-overlapped tuples, which also reduces number of
the unproductive join operations in evaluation.

Currently, the best performing solutions for interval joins are
based on plane-sweep methods [5]. Piatov et al. [18] proposed
two memory plane sweep-based interval join algorithms EBI and
LEBI based on endpoint index, which outperform OIP and prior
plan-sweep methods. Bouros et al. [5] proposed two optimized
algorithms based on forward scan named gFS and bgFS. We next
discuss in detail these two general approaches, which are the state
of the art methods.

Endpoint-based Index EBI [18] is an internal-memory-based plane-
sweep algorithm for processing an interval join between relations
R and S . In EBI, each record r with associated time window [r , r ]
is represented as a pair of endpoint events, where each event rep-
resented by tuple (ti, ty, rid(r )). Here, ti is the timestamp of an
endpoint and is either r or r , ty is the endpoint type and should be
either start or stop, and rid(r ) is the index of the record r . Given a
pair of temporal relations R and S , their endpoint index EIR and EIS
is then constructed. The events are sorted by their ti in ascending
order. As for join-processing, EIR and EIS are scanned concurrently
from the beginning and each event is accessed forwardly. During
the scan for each index, a dedicated structure named active list
is maintained to store the concurrent set of relation in real time,
denoted as AR and AS . The active list is updated depending on the
type of scanned endpoint. And for each scanned start endpoint,
EBI matches it with all the records in opposite active list to produce
joins.

EBI can also be used for k-clique enumeration through a straight-
forwardmodification.We extend each event tuple into the following
format: (ti, ty, rid(r ), eC(ti)). The new fourth position records the
earliest concurrent of ti . It could be updated in the end of index
initialization through a full scan. Such an extension aims at a fast
location on the living history window of queries. Based on this,
a query [qstart ,qstop] could be processed through a linear scan:
firstly, EBI determined LHW (qstart) according to extended tuples
in the index. Next, starting from the beginning of the LHW (qstart),
an active list Active is maintained in the same way as in origi-
nal EBI. Enumeration is not carried out until the scanning cursor
moves into the query window. In other words, the time an tuple
with higher ti than qstart is encountered. To begin with, EBI firstly
enumerates all the k-sized subsets of Active to output all cliques in
which all intervals start before qstart . Then every time a start event
(r , start , rid(r )) is scanned, a batch of joins could be produced by
matching the event with all (k − 1)-sized subsets of Active . The
linear scan is stopped when the cursor moves out of the query
window. In this way, all k-cliques are produced.

Forward Scan Algorithm Compared to EBI, forward scan (FS) [6]
directly performs a linear scan on relations without using dedicated
structures (i.e., active list). Relations R and S in forward scan algo-
rithm are sorted by the start time of records. Two linear scans are

carried out on from the beginning of relation and stop each time at
a new record. For each scanned record in a relation, FS matches it
with all overlapping records in the opposite relation. In this way, all
pairs of interval joins are produced. gFS and bgFS [5] are improved
versions of FS. In gFS, similar consecutive intervals are grouped and
matched with overlapping intervals in opposite relation instead
of comparing pairs of intervals one by one. In bgFS, the domain
of relations are segmented into equal-sized dedicated buckets and
intervals are put in corresponding buckets based on their start time.
With the bucket index, the comparisons for join-matching need
merely be made between interval groups in one relation and buck-
ets in another. The two extensions reduce the cost of comparison
and scanning in original FS.

gFS and bgFS can also be adapted directly to enumerate k-cliques.
Firstly, each record should be extended with earliest concurrent
and maintained just like in EBI. Secondly, the condition of grouping
should be modified as follows. Given the relation R and for any two
time instances t1 and t2 with t1 < t2, if no interval from R ends in
[t1, t2], then all intervals from R that start in [t1, t2] can be grouped
together to reduce comparisons. In other words, we can group all
intervals which have succeeding endpoints of the same type (either
start or end).

Inefficiencies of current plane-sweep methods. EBI is ineffi-
cient in several aspects. For index-scanning, though the living his-
tory window is used, the scanning range is still much larger than
the given query window. In the worst case, the scan could start
from the leftmost event tuple, just like the time when the nota-
tion of living history window is not proposed. Besides, decoupling
endpoints could lead the scanning cost to be much larger than the
number of events that actually involve enumeration: (1) For records
starting and also stopping in the scanning range, the scanning cost
doubles. (2) For records starting before scanning range but stopping
in, their stop event tuples are still to be scanned though they do
not involve the enumeration.

For active-list maintenance, either an insertion or a deletion will
be performed for each encountered tuple during the scan. Some of
these performed before qstart are irrelevant to the results. In the
worst case, the number of operations performed on irrelevant tuples
can be significantly larger than that of events which contribute to
the final query results.

Finally, for index storage, as number of event tuples doubles the
number of records in relation, the storage cost increases signifi-
cantly.

Next we turn to gFS and bgFS, which introduce inefficiencies by
the production of duplicate index-scanning. Without decoupling
endpoints in gFS and bgFS, the living history window scanning cost
does not double. However, the worst case of living history window
still exists. Besides, many records tend to be scanned more than
twice because of the inconsistent references in grouping and enu-
meration. In other words, the scanning range in grouping depends
on the smallest stop time of grouped records while the scanning
range in enumeration depends on the largest stop time. There-
fore, in FS family of algorithms, the existence of long intervals can
potentially introduce significant redundant scanning cost.
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Temporal checkpoints. In [14, 15] checkpoints are implemented
as bit vectors to represent the status of relation at certain times.
However, currently there is no research on checkpointing strategies.
To the best of our knowledge, we are the first to carry out the
research on checkpoints for clique enumeration.

4 OUR METHOD: START TIME INDEXING
In this work, we propose Start Time Index (STI) with the aim to
provide more efficient temporal k-clique enumeration. Instead of
splitting a single interval into two event tuples, only the start-event
tuple in a form of [r , r , rid(r ), eC(r )] is used to represent each
record in an STI. Given a temporal relation R, an STI index SI is
constructed as follows. First, start-event tuples are inserted into a
B+tree sorted by their start time. Each tuple is initialized as [r , r ,
rid(r ), -1]. Then, after all intervals have been inserted, SI is scanned
and the last position in each start-event tuple is updated to eC(r ).

We provide the following API for performing a look-up in an
STI:

• дetEntry(t) (дetRecent(t)): given a timestamp t , retrieve the
first start-event tuple r with the smallest (largest) timestamp
among all index entries that satisfy t ≤ r (t > r ). Return the
first start-event tuple of an STI if no such tuple exists.
• startScan(r ): start a linear scan of start event tuples along
the index starting from r and return a cursor sc for fetching
each tuple.
• nextEntry(sc): retrieve the next start-event tuple of scan sc .
• stopScan(sc): stop the scan sc in an STI.

By using the B+tree structure, the complexity of дetEntry(t)
and дetRecent(t) isO(logN ) where N is the number of entries in a
B+tree. The complexity of the other methods is O(1).

Query processing. Using STI, the queries are processed as follows.
For each query in a workload, the algorithm involves two B+tree
look-ups and one linear scan. The look-ups aim to identify the
living history window for a linear scan. The first look-up calls
дetRecent(qstart) to retrieve the most recent tuple r before qstart
(r is marked as t0 in Figure 3). The second look-up uses eC(t0)
as the search key in order to locate the leftmost start-event tuple
in living history window. Note that we identified [eC(t0), qstart]
as living history window approximately rather than [eC(qstart),
qstart] as there might be no events starting at qstart . We call the
[eC(t0),qstart] an approximate living history window.

Just like in EBI, during the linear scan, STI approach maintains
the in-memory active list (Active) to record the concurrent set in
real time. The tuples in Active are sorted by their stop time in the
ascending order. We define the following operations to maintain
Active:

• insActive(Active, r ): insert the start-event tuple r intoActive ;
• delActive(Active, t): delete all start-event tuples r s.t. t > r
from Active;
• enumActive(Active,k): generate all temporal k-clique sub-
sets over the elements of Active;
• incEnumActive(Active, r ,k): first insert r into Active , then
generate all temporal k-cliques over the elements in Active
which contains an occurrence of r .

t ime
eC(qstar t ) qstar t qstop

query windowLiving History Window

t0eC(t0)

Living History Window of t0

Approximate Living History Window of qstar t

Scan Window of STI

Figure 3: Query Processing using STI, where t0 is the start
time of дetRecent(qstart)

The procedure of the STI algorithm is shown in Algorithm 1. A lin-
ear scan starts from the leftmost tuple in approximate living history
window of qstart and scans forward.Active is real-time maintained
by inserting newly scanned start-event tuple curr and deleting the
expired tuples. When the first start-event tuple in a query window
is scanned, all k-clique subsets in Active are returned. From then
on, every scanned start-event tuple curr would be matched with all
(k-1)-cliques inActive until either (1) the newly scanned curr starts
after the query window, or (2) the end of the relation is reached.
These two situations show that all involved start-event tuples have
been scanned and the algorithm should be halted. If there are no
start-event tuples in a query window, the algorithm directly enu-
merates all the k-clique subsets in Active as the result. This way,
all k-cliques in [qstart ,qstop] of relation R are enumerated.

Consider again our running example relation from Section 2
(Figure 1). The STI constructed for Rex is the list

SI = {(0, 2, r1, 0), (4, 4, r6, 4), (4, 6, r2, 4), (5, 10, r3, 4),
(7, 9, r4, 5), (8, 10, r5, 5)}.

To enumerate the 2-cliques in q = [5, 8], the algorithm firstly
determines [4, 5] to be the approximate living history window, by
retrieving eC(5) = 4 from (5, 10, r3, 4). Starting from the beginning
of the approximate living history window, the processing procedure
in shown in Table 1.

Complexity. Contrary to FS, duplicate scanning would not happen
in STI. Compared to EBI with decoupling endpoints, STI requires
space for storing entries and internal nodes in the B+Tree. The
scanning cost in STI is improved: (1) for records starting and also
stopping in the scanning range, the scanning cost is halved because
one record is represented by a single tuple rather than a pair; (2) for
records starting before the scanning range but not ending, no addi-
tional scanning cost is introduced because the start-event tuples
are sorted by start time, which makes it impossible for such records
to appear in the scanning range. Additionally, operations on irrele-
vant tuples in active-list maintenance are completely avoided since
their stop time are compared with qstart . Finally, extra scanning
cost introduced by the approximation of the living history window
is minor compared to the scanning benefits gained from the STI,
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Algorithm 1: STI temporal k-clique enumeration
Input: relation R (with STI index SI ), qstar t , qstop , k
Output: outstream of temporal k-cliques in [qstar t ,qstop] of R

1 star tT S ← eC(I .дetRecent (qstar t ))
2 Active ← ∅
3 curr ← SI .дetEntry(star tT S )
4 inRanдe ← f alse
5 sc ← SI .star tScan(curr )
6 r esult ← ∅
7 while curr , NU LL do
8 if curr < qstar t then
9 if curr >= qstar t then

10 insActive(Active, curr )

11 else if curr ≤ qstop then
12 if inRanдe = f alse then
13 delActive(Active, qstar t )
14 r esult ← r esult ∪ enumActive(Active, k )
15 inRanдe ← true

16 delActive(Active, curr )
17 r esult ← r esult ∪ incEnumActive(Active, curr, k )

18 else
19 if inRanдe = f alse then
20 delActive(Active, qstar t )
21 r esult ← r esult ∪ enumActive(Active, k )

22 break;
23 curr ← дetN ext (sc)

24 if inRanдe = f alse then
25 delActive(Active, qstar t )
26 r esult ← r esult ∪ enumActive(Active, k)

27 SI .stopScan(sc)

Table 1: STI Example

Tuple Active Operation
(4, 4, r6, 4) {r6 } Insert r6
(4, 6, r2, 4) {r2, r6 } Insert r2

(5, 10, r3, 4)
{r2, r3 }

Delete r6 ;
Insert r3 ;

Enumerate (r2, r3);

(7, 9, r4, 5)
{r3, r4 }

Delete r2 ;
Insert r4 ;

Enumerate (r3, r4);

(8, 10, r5, 5) {r3, r4, r5 }
Insert r5 ;

Enumerate (r3, r5), (r4, r5);

especially in datasets with extremely long intervals. However, we
should note that the case of the worst living history still exists. That
is, the living history window could still be very large in its absolute
temporal measurement.

Maintenance. Maintenance of STI under insertions and deletions
of records in R incurs the costs of B+tree maintenance and the cost
of updating earliest concurrent values of affected entries. When
a new tuple r ′ is inserted, eC(r ′) could be obtained by using the
information provided by its adjacent tuples. In addition, we traverse
each tuple r ∈ [r ′, r ′] and update eC(r ) to r ′ if eC(r ) > r ′. When an
existing tuple r ′ is deleted, we carry out a linear scan on tuples in
[r ′, r ′] with Active maintained and update eC(r ) to minr ∈Active r
if eC(r ) = r ′.

Summarizing, STI addresses all the inefficiencies of EBI and FS
except the long living history window problem. In next section, we
present our methods on how to solve this problem.

5 OPTIMIZED STI
In this section, we introduce Start Time Index with Checkpoints
(STI-CP), which is a variant of STI enhanced with checkpoints, aim-
ing to speed up the processing of long living history windows. A
single checkpoint is a dedicated structure composed of a timestamp
c and CS(c), which represents the concurrent set at timestamp c .2
Given a temporal relation R, necessary index structures in STI-
CP include: (1) a start time index SI and (2) a set of checkpoints
C = {c1, c2, . . . , ck }. Then, the linear scan in STI could start from
the timestamp of the latest checkpoint which timestamp is smaller
than qstart rather than from the beginning of living history win-
dow. In the best case, CS(qstart) could be directly obtained. The
major difference between STI-CP and STI are:
• In STI-CP, an additional data structure that stores the con-
current set for each checkpoint inC is maintained. After the
STI is constructed, a checkpointing procedure proceeds to
select some checkpoints in temporal domain and store them
in dedicated structure for further use.
• In STI-CP, LHW (t) starts frommax(eC(t), lateCP(t))
where lateCP(t) = maxc ∈C∧c≤t (c). We call such timestamp
a history pointer of time t , denoted HP(t). That is, LHW (t)
in STI-CP is [HP(t), t] rather than [eC(t), t] in STI.

The STI-CP algorithm is shown in Algorithm 2. The following
functions are provided in STI-CP in addition to those in STI:
• дetHistoryPt(t): Given a timestamp t , returns the history
pointer of t . It may be either eC(t) or a timestamp of a check-
point.
• isCP(t): Given a timestamp t , returns true if t ∈ C and false
otherwise.
• дetConcurSet(t): Given a time-stamp t , returnsCS(t) if t ∈ C
and ∅ otherwise.

Algorithm 2: STI-CP temporal clique enumeraion
Input: relation R (with STI-CP index I ), qstar t , qstop , k
Output: outstream of temporal k-cliques in [qstar t ,qstop] of R

1 star tT S ← дetHistoryPt (I .дetRecent (qstar t ))
2 Active ← дetConcurSet (star tT S )
3 . . . continue on with Algorithm 1 starting from line 3.

Continuing our running example from Section 4, if a checkpoint c
is set at t = 5, the scanning of living history window [4, 5] becomes
unnecessary, leading to a saving in scanning costs.

Maintenance. Checkpoints could also be used to accelerate the
maintenance of STI, as discussed in Section 4. As for the mainte-
nance of checkpoints themselves, an insertion of tuple r ′ would
lead to inserting r ′ into CS(c) for each c ∈ [r ′, r ′]. Similarly, a dele-
tion of tuple r ′ would lead to deleting it from the same group of
checkpoints.

The effectiveness of STI-CP depends on the selected checkpoints
(CPs). To improve the efficiency in STI-CP, we concentrate on the
problem of checkpointing, which could be formalized as follows:

Checkpointing Problem. Given a set Q ofm queries in a work-
load, a set T of n checkpoint candidates, and storage budget B,
2For brevity, c denotes a checkpoint at timestamp c
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a checkpointing problem G =< Q,T ,B > aims to obtain a solu-
tion C = {c1, c2, . . . , ck } such that

∑k
i=1CSS(ci ) ≤ B, k ≤ n, and

∀ci ∈ T .
One can easily show NP-completeness of the corresponding op-

timal checkpointing problem by producing a reduction to a 0-1
knapsack problem. In the rest of this section, we propose several
heuristics for checkpointing, which could obtain the effective solu-
tions at low cost.

The most basic heuristic method is based on random checkpoint-
ing. This method is easy to implement, but it does not make a good
use of the budget as random placement of CPs might do little to
improve query times. With the aim of obtaining more effective
checkpointing strategies, we consider data distribution and query
workload and propose four checkpointing strategies classified in
two broad categories: data-aware and workload-aware.

Note that the initialization of the CP index consists of two phases:
the CP selection and insertion phase. The complexity of the first
phase depends on the checkpointing strategy while that of the
second phase is strategy-independent.3 So, for each strategy, we
only analyze the complexity of its CP selection.

5.1 Data-aware strategies
Our first checkpointing strategy is called binary strategy since it
selects the CPs in a binary, breadth-first manner, until the storage
budget is consumed. In every round, pairs of records with the largest
distance in which no CP exists is retrieved, and the middle point of
the pairs in the duration is selected as the position to set a new CP.
In this way, the CP distribution becomes even and pairs of CPs that
are too close to each other (and, thus, potentially wasteful) could
be avoided.

We define two types of distances that could either be used in
a binary strategy: (1) event and (2) temporal distance. Event dis-
tance reflects the distance measured in the number of events, while
temporal distance reflects the distance measured in time. By consid-
ering temporal distance, we capture the burstiness [13] of temporal
data.

The complexity of both binary methods is O(k logk), where k is
the number of CPs. As the event and temporal distance are respec-
tively tuple and timestamp-based, we define following mapping
methods from timestamp to tuple:
• f irst(t) (last(t)): given a timestamp t , f irst(t) (last(t)) re-
turns the number of the first (last) start-event tuple r s.t. r = t .
If there is no tuple starting at t , дetEntry(t) is returned.

Binary strategies do not consider the impact of long intervals
in data. That is, extremely long intervals could influence a large
number of tuples in index. Specifically, given a start-event tuple
r and a long interval r ′, eC(r ) should be at least as small as r ′ if
r ′ overlaps r . Hence, to process such queries, algorithm needs to
start the scan from r ′ at least when no CP is present. Meanwhile,
we should also note that queries are more likely to overlap long
intervals when they are uniformly distributed.

3Given N index entries and k CPs, it takes O (N logN ) time to scan the STI index
while maintaining an active list and O (k logk ) time to collect CSs and then insert
them into the CP index bringing overall complexity to O (N logN + k logk ).

Based on this, we propose the long link half strategy, which gives
priority to long intervals to be assigned CPs in order to reduce their
impact. The outline of the long link half could be divided into two
phases. The first phase is to construct the link map of the STI.
Link map is a dedicated structure providing guidance for later CP
selection. The construction procedure consists of two steps: first,
we scan the STI to collect all influential intervals.

Influential Interval. Given an index SI and a start-event tuple r0,
if ∃r ∈ SI such that eC(r ) = r0, we call [r0, r0] an influential interval
in SI .

All collected influential intervals are sorted by f irst(r0) in as-
cending order. The collection in STI covers the whole domain.
Longer influential intervals tend to have more opportunities to
cover the uniformly distributed queries, which also tend to produce
longer living history window.

Next, the collection is refined and used to build up a map. Starting
from the first interval, each interval is continuously combined
with the following interval into a longer interval until they no
longer significantly overlap (according to some threshold u). Such
combination could help to avoid the potentially wasteful CPs in
later selection phase. In this way, we obtain the map that could
provide us an overview of the distribution of influential intervals
in STI.

Given the refined map, the second phase is to select CPs under
its guidance. In every round, the longest interval is taken out from
the map, and the start time of its middle event is selected as a place
to set CP. The CP segments the interval into two sub-intervals
and this round would be carried recursively until the budget B is
consumed. The selected CPs have a high tendency to segment long
intervals, which turns out to weaken the long interval impact.

The complexity of the construction of the map isO(N + L logL),
where N is the number of entries in index and L is the number of
link tuples in map. Considering influential intervals are collected
through a single scan, we could move the collecting step into the
initialization of the ST I index. So the additional linear scan is un-
necessary and the map construction complexity could be reduced
to O(L logL). The complexity of selection is O(k logL). Hence, the
total complexity of the long link half strategy is O((L + k) logL).

5.2 Workload-aware strategies
We model real-world query workloads as being composed of two
parts: first, a small proportion of uniformly distributed queries,
which represents the outlier behavior performed by some users.
Second, a large proportion of queries distributed around several
hotspots in the domain of a dataset. For example, considering a
scheduling of the free time slots in classrooms in a university cam-
pus, most queries would aggregate in January and July since it is
the time for final examinations. Using such queries, administration
staff could find the pairs (or larger subsets) of classrooms available
to simultaneously hold examinations. Considering a biological data-
base recording retention period of zebras in Serengeti National Park
in Africa, researchers might be interested in querying the pairs of
zebras staying simultaneously in one place. Most of such queries
would aggregate in the first half of each year as in the later half
zebras would move to Masai Mara for abundant grass and water.
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This example also implies that burstiness patterns in real world
could also be a factor in aggregation.

We propose a workload-aware strategy named query-set, which
consists of two phases: in the first phase, a batch CPs is selected
for clusters based on their importance. Secondly, if budget allows,
another batch is selected for the uniformly distributed queries in
order to improve the global efficiency.

The basic idea for the first phase is to identify the hotspots in
workload, clustering queries around each hotspot, and selecting
the CPs for each cluster. Many existing works could be used to
detect such clusters. Here, we choose the mean-ISI method [8] to
obtain the aggregated pattern. Note that there are situations where
some clusters could not receive a CP since budget B is limited, so
it is necessary to determine which clusters should have a priority.
For this reason, we introduce a metric named cluster importance,
denoted as CI , to assist in making this decision.

Cluster Importance. Given a query cluster Cl and the minimal
time window [Cl ,Cl] covering all qstart of queries in, its cluster
importance CI could be calculated as follows:

CI = |Cl | · (LH (Cl) + last(Cl) − f irst(Cl + 1))

where |Cl | refers to the number of queries in Cl .

The idea of CI is to approximate the living history window
scanning cost for the whole cluster. This estimation is efficient
when Cl is large. We put all the query clusters in a list and sort
them by their importance in descending order. Recursively, we
select the cluster with the highest priority from the remaining
clusters and set a checkpoint at Cl , until the budget is consumed.

After the batch of initial CPs for each cluster are selected, dura-
tion of clusters would be sorted by the number of records inside in
descending order. Ideas in event binary and long link half strategy
are recursively applied to the re-sorted list until either (1) B is con-
sumed or (2) the number of records in every remaining duration is
shorter than a pre-configured threshold x . That is, when (2) hap-
pens, it demonstrates most of queries in the cluster could benefit
from CPs so we need to stop selecting CPs for clustered queries
and turn to the next phase.

In the second phase, CPs are selected in the same way as in long
link half strategy, aiming at the improvement on the processing of
uniform queries and full use of the remaining budget.

The complexity of clustering is O(|Q | log |Q |). The further seg-
mentation of cluster durations takes O((m + n) logm), wherem is
the number of clusters in workload and n is the number of CPs
selected in this step. The second phase has the same complexity as
long link half strategy. So the total complexity of query-set strategy
is O(|Q | log |Q | + (m + n) logm + (k + L) logL).

6 EXPERIMENTS
In this section, we present our experimental investigation of STI
and STI-CP approaches. We aim to answer the following questions.
First, we would like to know if the STI approach can outperform the
othermethods on a number of diverse datasets and queryworkloads.
Second, given a storage budget, we investigate to what extent could
various checkpointing strategies improve the efficiency of the STI
family.

6.1 Setup
Environment. Our experiments were carried out on a server with

192GB RAM and 2 Intel(R) Xeon(R) CPU X5670 with 6 cores at
2.93GHz running a Linux operating system. We implemented the
in-memory versions of STI and STI-CP approaches in C++. We use
an in-memory version of BerkleyDB B+tree in which we set the
page size to 8KB and use a 12-byte search key to find 8-byte data
values.

Competitors. We use the k-clique enumeration versions of EBI,
gFS, and bgFS as the competitors to STI. The length of buckets in
bgFS is set to 1000 units of time. Since the processing of gFS and
bgFS requires records to be sorted by their start time, these two
algorithms are using the same B+tree as STI. That is, the differ-
ence between STI and the two forward-scan baselines is in their
processing of the query window.

Query Generation. We consider twomethods of query generation:
(1) a uniform method, which aims to simulate the workload that
has queries with their start times uniformly distributed in time, and
(2) a clustering method, which aims to simulate the workload that
has queries with their start times clustered in one or more hotspots
in time. This query generation model requires three parameters
to be specified: (1) the number of queries N in the workload, (2)
the proportion of the size of the query window in relation to the
entire time domain l ∈ [0, 1], which determines the window size
of generated queries4, and (3) the clustering proportion r ∈ [0, 1],
which represents a proportion of clustered queries in a workload.
Given r , we compute the number of queries that need to be clustered.
Denoting the collection hotspots as {t1, t2, ......, tn } where ti is
the timestamp of the ith hotspot, we assume that each hotspot
contains a predetermined number of queries which follow a normal
distribution with µ = ti and σ = 100.

The workload in our experiment is composed of above two cat-
egories of queries. For each workload, we generate 2000 queries
in total which are then split into a training set and a test set, 1000
queries each. The training set is used for workload-aware STI-CPs
to learn the clustering structures.

Types of experiments. We run two types of experiments: (1) we
process queries with various query window sizes (which are de-
termined by l in [0,10−3,10−2,10−1,1,10,20]%), to investigate the
performance of algorithms in dealing with both long and short
queries; and (2) we experiment with datasets of different sizes. The
largest dataset used in this experiment has 400 million records5 to
investigate the scalability of algorithms with respect to the dataset
size.

For each algorithm, we use threemetrics to evaluate its efficiency:
the average execution time6 for each query (i.e., its processing cost),
memory consumed by indexes (i.e., its storage cost), and index
construction time (i.e, its preparation cost). For processing cost, we
set the timeout to 105 seconds, after which we consider the instance
to be not competitive.

4We consider a special case when l = 0 to generate a workload of instant timestamp
queries such that query’s start time is the same as its stop time.
5After cleaning, the size of original file for the 400-million dataset is more than 10GB
6The time cost of enumeration is not included.
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Figure 4: Performance for basic algorithms with respect to
the query window size

For STI-CPs, we carry out two additional types of experiments
to investigate the efficiency of various checkpointing strategies:
(1) we set the budget B to [0.2, 0.4, 0.6, 0.8, 1]% of the dataset size
to investigate the effect of budget size on different checkpointing
strategies; (2) we set the clustering proportion r to [0.5, 0.8, 0.9, 0.95,
1] to investigate the effect of query hotspots on STI-CP evaluation.

Datasets. We consider four real-world datasets from telecom-
munication and transportation domains: Yellow, CAIDA, FHV, and
Bike. Yellow[4] records the trips on the yellow taxi in New York
City from 2010 to 2018 and each trip is labeled with an interval
to represent its duration. CAIDA[1] records the anonymized pas-
sive traffic traces from Center for Applied Internet Data Analysis
(CAIDA) in 2018. Each session is labeled with an interval to repre-
sent its duration. FHV[3] records the trips on free hired vehicles in
New York City in the second half of 2017. Bike[2] records the trips
on citi-bikes in New York City in from 2013 to 2018.

6.2 Results and Analysis
Investigation for STI. We first investigate the effectiveness of our

basic algorithm, the STI algorithm. Figure 4 reports the processing
cost of EBI, STI, gFS, and bgFS with respect to the size of the query
window. We note that STI outperforms all of its competitors in the
processing cost, especially when the size of query window increases
to 0.1%, 1%, 10%, 20% of the time domain. Compared to EBI, STI
has lower processing cost in both living history and query window.
Compared to gFS and bgFS, STI scales better with increasing size
of the query window.

Next, we investigate the scalability of algorithms with respect
to the size of the dataset. Figure 5 reports processing, storage and
preparation costs for the algorithms with respect to the size of the
dataset. The datasets for this experiment are obtained by selecting
subsets of predetermined sizes from full datasets. We fix the size
of the query window to 1% of the time domain and we set the
clustering proportion to 0.9. The result demonstrates that STI scales
better than its competitors with respect to the dataset size in all of

the measured metrics. This result demonstrates that given the same
budget (for index preparation and storage), STI will be significantly
more effective than other methods in query processing in both
small and large datasets.

Note that the processing cost of STI changes little as the size of
query window increases. This clearly demonstrates that the process-
ing cost within the query window is not the efficiency bottleneck
for STI approach. In other words, the scanning cost in the living
history window takes up the most time in STI’s processing. In the
rest of this section, we would present how various checkpoint-
ing (CP) strategies could reduce this cost and further improve the
effectiveness of the STI approach.

Investigation for STI-CP. Figure 6 reports the processing cost of
several checkpointing strategies (STI-CPs) with respect to the size
of the query window. We set the budget parameter B to 0.6% and
clustering proportion to 0.9. We note that the query-set strategy
outperforms all other strategies in processing short queries and its
advantage diminishes as the size of the query window increases.
This is expected because checkpointing strategies aim at reducing
the computation cost within the living history window.

In following experiments, we investigate the effectiveness of
STI-CPs with respect to the size of the dataset, given checkpoint
budget, and the distribution of queries in the workload. We use
instant queries in these experiments since this isolates the effect of
the size of the living history window on checkpointing strategies.

Figure 7 reports variation in query processing cost for STI-CPs
with respect to the size of the dataset. We note that the three data-
aware strategies perform close to each other but all outperform the
random strategy. The most important result is that for all STI-CPs,
the query-set strategy outperforms the data-aware strategies in
both small and large datasets.

We also record the time consumption on checkpoint-selecting
of various STI-CPs and the result demonstrates that the query-set
strategy needs more time to select the checkpoints. However, this
cost is in the magnitude of milliseconds, which is a very small part
of the total preparation cost of the STI index are could be negligible.
So they are not reported in figures.

Figure 8 reports the performance of STI-CPs with respect to
the checkpoint budget B. In most situations, the query-set strategy
outperforms other strategies in processing time. The only exception
is in FHVwithB = 0.2%where it performs similar to the others. This
is expected as average CSS of checkpoints in FHV is much larger
than the other datasets, so query-set cannot set enough checkpoints
for all clusters when the budget is low. As the budget increases, the
advantage of the query-set strategy becomes apparent.

Figure 9 reports the performance of STI-CPs with respect to the
distribution of queries in a workload. Observe that the query-set
strategy performs best when the clustering ratio r is in [0.8, 0.95].
However, the advantage of the query-set strategy declines when
r = 0.5 and r = 1. Query-set checkpointing strategy does not per-
form as well when r = 0.5 due to lack of clustered queries, hence
limited query-aware optimization is possible. In other words, the
checkpoints for clusters do not have much influence on overall pro-
cessing cost. Query-set performance when r = 1 can be explained
by the cluster-detecting method we use. By analyzing the details in
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Figure 5: Performance of basic algorithms with respect to the dataset size.

checkpoint selection procedure, we find that mean-ISI method can-
not properly identify the duration of each cluster when there are no
uniform queries in workload. That is, the identified duration does
not completely cover all queries in a cluster yet it could identify the
correct number of clusters. This is due to the threshold which is
used for clustering being smaller than the possible maximum inter-
time between two consecutive qstart in the same cluster, when
queries are completely clustered. However, when some uniform
queries are introduced (i.e., r < 1), the calculated threshold could
be lifted so it can not properly cover cluster duration and filter
uniform queries.

To further understand the effect of the chosen clustering method,
we carry out an additional experiment to test the performance of the
query-set strategy with respect to the size of training set, reported
in Figure 10. Comparing to the processing cost of other strategies
(when x = 0% in Figure 6), we observe that the query-set one
begins to outperform the others when training set increases to 0.4
of the test set, and its advantage becomes more stable and apparent
when the ratio increases to 0.6-1.0. This is expected because test set
used in experiments are small (1000 queries in each) so the smaller
training set is not enough for the query-set strategy to learn the
clustering structures especially when training set ratio is low. In
other words, if we increase the size of processing set, even the
training set at the size of 0.2 of processing set could present clear
clustering structure information for the query-set strategy.

7 CONCLUDING REMARKS
In this paper, we propose STI and STI-CP approaches for temporal
k-clique enumeration. STI is designed to overcome the efficiency
bottlenecks in the state-of-art methods and STI-CP use checkpoints
to further improve processing efficiency. Our experimental results
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Figure 6: Performance of STI-CPs with respect to the size of
the query window.

demonstrate that STI outperforms current state-of-the-art meth-
ods and all proposed checkpointing strategies outperform random
checkpoint selection method by a wide margin. In future work,
we plan to study additional checkpointing strategies and the ap-
plicability of STI and STI-CP approaches in the context of scalable
temporal graph analytics methods.
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Figure 7: Performance of STI-CPs with respect to the dataset
size.
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Figure 8: Performance for STI-CPswith respect to the budget
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