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Abstract

Many data-intensive applications have to query a database that involves se-
quences of sets of objects. It is not uncommon that the order of the sets in
such a sequence does not affect the result of the query. Such queries are called
symmetric. In this paper, the authors wish to initiate research on symmetric
queries. Thereto, a data model is proposed in which a binary relation between
objects and set names encodes set membership. On this data model, two query
languages are introduced, QuineCALC and SyCALC. They are correlated with the
symmetric Boolean functions of Quine, respectively symmetric relational func-
tions, on sequences of sets of given length. Symmetric Boolean functions involve
the Boolean operations union, intersection, and complement, whereas symmet-
ric relational functions additionally involve projection and Cartesian product.
Quine’s characterization of symmetric Boolean functions in terms of incidence
information is generalized to QuineCALC queries. This generalization also yields
an incidence-based normal form for QuineCALC queries. Inspired by these desir-
able incidence-related properties of QuineCALC queries, counting-only SyCALC
queries are introduced as those SyCALC queries for which the result only depends
on incidence information. Counting-only SyCALC queries are then characterized
as quantified Boolean combinations of QuineCALC queries, and a normal form
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is proposed for them as well. It is shown that, while it is undecidable whether a
SyCALC query is counting-only, it is decidable whether a counting-only SyCALC
query is a QuineCALC query. Finally, some decidability problems are consid-
ered, such as satisfiability, containment, equivalence, validity, and emptiness. It
is shown that all these problems are undecidable for SyCALC, but decidable for
QuineCALC and counting-only SyCALC queries.

Keywords: bag of sets data model, symmetric query, two-sorted first-order
logic, two-sorted relational calculus, symmetric Boolean function, symmetric
relational function, counting-only query, normal form, expressibility,
satisfiability

1. Introduction

Many applications, several of which data-intensive, have to deal with se-
quences of sets of objects, where all objects are of the same type. Here are some
classical examples:

e objects are parts, and Si,...,.5, is a sequence of sets of parts such that
S; is the set of parts supplied by supplier j.

e objects are products, and S1,...,.S, is a sequence of sets of products such
that each S; is the set of products bought in transaction j.

e objects are students, and Sy, ..., S, is a sequence of sets of students such
that each S; is the set of students taking course j.

Observe that, in all these examples, it is possible that S; = S; for ¢ # j.
Indeed, two distinct suppliers may supply exactly the same parts; or two distinct
transactions may involve exactly the same products; or two distinct courses
may have exactly the same students enrolled in them. Other possible examples
include companies and their customers, documents and the words contained
therein, or RDF relationships involving pairs of objects [1-3].

In this paper, we study computable queries q(S1,...,S,) that take as input
a sequence of sets S1,...,S,, n > 0, of objects of some common type, return as
output a set of m-tuples of such objects (for some fixed value of m > 0), and
satisfy, for each permutation ¢1,...,4, of 1,...,n,

q(Sil,...,Sin) = q(S177Sn)

We call such queries symmetric queries.

It should be emphasized at this point that, unlike m, the number n should
not be considered as fixed, but rather as a parameter of the problem under
consideration.

Obviously, the class of symmetric queries is a strict subset of the class of
all computable queries that operate on sequences of sets. For example, the
query returning the first set of the input sequence is clearly not symmetric.
Nevertheless, the class of symmetric queries is quite rich. The following example
queries, referring to the application with parts and suppliers, illustrate this.



1. Retrieve the parts that are supplied by at least two suppliers.
2. Retrieve the parts that are supplied by all suppliers.
3. Is each supplied part supplied by just one supplier?

4. Retrieve the parts that are supplied by exactly one supplier, provided that
there exist parts that are supplied by at least three suppliers.

5. Do all suppliers supply the same parts?

6. Retrieve the pairs of parts that together are supplied by at least two
suppliers.

7. Retrieve the pairs of parts supplied by exactly the sane suppliers.

The above queries will be used in examples throughout the paper. We shall
refer to them as Queries 1-7, respectively.

Wherever numbers of sets are mentioned in Queries 1-7, we chose small
values for purposes of exposition. In the context of vast amounts of data, it is
to be expected that these numbers will actually be quite large (e.g., variations
on Query 6 in the context of the frequent-itemset problem [4]).

Not only symmetric queries, functions, and operators are prevalent in many
fields. The same holds for the simple sequence-of-sets data model we use in this
paper. Practical applications can be found in cluster computing, data-parallel
computation on partitioned data, data analytics, and other Big Data techniques.
In these applications, the commutative and associative nature of symmetric
operators can be exploited to improve performance, as these operators can be
ordered, grouped, combined, and merged arbitrarily. A good example of this
is MapReduce, where the overall communication cost of the reduce step can
be minimized by first reducing data at each computational node using a so-
called combiner function, and only then redistributing the partly-reduced data,
grouping them, and applying the final reduce step [5-8]. For this optimization
to work, it suffices that the reducer and combiner functions are symmetric.
Typically, it is up to the programmers to guarantee that this property is satisfied.
The strategy followed in this paper is to propose expressive query languages that
guarantee this property implicitly, and thus liberate programmers from having
to argue for it explicitly.

MapReduce is often illustrated via the problem of counting words in docu-
ments and, based on these counts, make further decisions. This setting is closely
related to itemset mining in transaction databases [9]. Additionally, decisions
based on frequency of objects is also at the basis of many machine learning
techniques [10]. We observe that the input to counting words is a sequence of
documents, each document consisting of a set of words. As word-counts do not
depend on the ordering of documents, we disregard the ordering of sequence.
Hence, the data is simply a bag of sets. These bags of sets has many alterna-
tive representations such as bipartite graphs or binary many-to-many relations.
We illustrate this in Figure 1. On the left is a sequence of documents, each
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Figure 1: Left, a sequence of documents. Middle, the same dataset represented as a bipartite
graph. Right, the frequency of words in this data set.

a sequence of words. When disregarding order, this sequence is a bag of sets
of words and this bag of sets of words can alternatively be interpreted as the
bipartite graph, shown in Figure 1, middle. On the right, the frequency of each
word is provided, which is independent of the order of the documents.

Symmetric functions are also prevalent in other fields, such as mathemat-
ics. As an example, symmetric polynomials play a fundamental role in finding
roots of single-variable polynomials and finding solutions to systems of multi-
variable polynomial equations [11]. The study of these symmetric polynomials
has a long history, and even dates back to fundamental results established by
Isaac Newton [12]. In linear algebra, functions such as those that determine
the rank, determinant, and eigenvalues of a square matrix are invariant un-
der permutations of rows or columns [11, 13]. In statistics, most summary
data are symmetric functions of the input, such as sum, count, average, me-
dian, maximum, minimum, variance, and higher-order moments. There is also
a comprehensive literature on symmetric Boolean functions (e.g., [14-16]). In
programming, examples of symmetric functions on lists of data include size,
membership checking, and sorting. Furthermore, the HAVING clause of SQL
reasons about incidence information, as in, e.g.,

SELECT  product, SUM(price * quantity)
FROM Purchase

WHERE date > 9/1

GROUP BY product

HAVING  SUM(quantity) > 30

It is therefore surprising that symmetric queries have hardly been studied in the
context of database systems, even though our examples above show that sym-
metric queries are quite prevalent as well. We should note that certain special
examples of symmetric queries have been considered in the context of nested
relations and complex-object databases. For example, the “unnest” operator in
the nested relational model [17] is an operator that, when applied to a set of
sets, returns the union of these sets (see also, the “(J” operator in NRC [18§]



and the “set-collapse” operator in the complex-object algebra [19]). Other ex-
amples of symmetric queries were introduced by Sarathy et al. [20], using the
“Uy7 ‘N, and the “@” operators. Applied to a set of sets, “(J” returns the
union of these sets, “(” returns the intersection of these sets, and “@” returns
the set of objects that are members of just one of these sets.

Notice that Queries 1-7 above can be expressed in terms of union, inter-
section, complement, projection, and Cartesian product. Below, we give the
corresponding expression for each of these seven queries.?

ql(Sl,...,Sn): U SiﬂSj;

1<i<j<n
q2(51,~--75n): m Si;
1<i<n
qg(Sl,...,Sn)zwo( U SiﬂSj);
1<i<j<n
q4(51,...,5n)=(( U s)n U smsj)x
1<i<n 1<i<j<n
7'l'<>( U SiﬂSjﬂSk);
1<i<j<k<n
as(S1-nSa) =mo (U S0 )
1<i<j<n
QG(SI>~--aSn): U (SiﬂSj)X(SiﬂSj);
1<i<j<n
ar(S1,..,8) = | (SixS) U (Six S)).
1<i<n

Observe that several of the above expressions can be rewritten using set differ-
ence instead of complement3. The latter is stronger, as S; — So = S N Syt

To our knowledge, the class of symmetric queries that can be expressed
using union, intersection, complement, projection, and Cartesian product, has
not been studied. Initiating such a study is the purpose of the present paper.

For this study, we start from the work of Quine [16], who studied so-called
symmetric Boolean functions which have as argument a sequence of sets of
objects of a given length and return a set of objects defined in terms of the

2If S is a set, then m(y(S) = {()} if S # 0, and m(y(S) =0 if S = @. These are the only
null-ary sets. We view “{()}” as a representation of true and “(” as a representation of false.
In this way, Boolean queries can easily be expressed. Also notice that T' x {()} = T and
Tx0=0.

3With respect to some appropriately chosen domain.

4For domain-independent queries, complement and difference can be used interchangeably;
we chose, however, not to impose additional semantic and/or syntactic restrictions which
could obfuscate the focus of this work.



input sets using only union, intersection, and complement. Quine obtained the
remarkable result that such a symmetric Boolean function can be entirely char-
acterized in terms of the incidence of each object in the domain, i.e., the number
of sets in which this object occurs. Concretely, given a sequence Sy, ...,S, of
sets of objects as argument for the function, there is some subset N of {0,...,n}
such that, for each object in the domain, this object is in the result of the func-
tion applied to Si,...,S, if and only if the number of sets among S1,...,S5,
to which the object belongs to is in N. Moreover, this property characterizes
symmetry of Boolean functions.

Returning to our example symmetric queries above, notice that Queries 1
and 2 have been expressed as symmetric Boolean queries in the sense of Quine.?
For these queries, the set N in Quine’s characterization result is {2,...,n},
respectively {n}. Notice that this characterization allows for an efficient eval-
uation of these queries, as the relevant incidence information can be retrieved
efficiently. All other queries are not expressed as symmetric Boolean functions in
the sense of Quine, as the corresponding expressions involve projection and/or
Cartesian product. Notice, however, that the expressions for Queries 3, 4, and 5
contain subexpressions representing symmetric Boolean functions in the sense
of Quine. We may therefore hope that Quine’s characterization can still be of
use to evaluate also such queries efficiently. In sharp contrast with these three
queries, the expressions for Queries 6 and 7 do not contain subexpressions rep-
resenting symmetric Boolean functions in the sense of Quine. This should not
be too surprising if we look at the semantics of these symmetric queries. For
example, if we look at Query 6, “Retrieve the pairs of parts that together are
supplied by at least two suppliers,” or Query 7, “Retrieve the pairs of parts sup-
plied by exactly the same suppliers.” knowing the number of suppliers for each
part is not very helpful for answering them. Not only these example queries, but
also the word counting problem illustrated in Figure 1, which is at the basis of
decision-based systems, underlines the relationship between symmetric queries
and counting.

In order to study the issues raised above more closely, we first want to
get rid of the explicit occurrence of n in the model considered so far, which
is undesirable from a database perspective. To see this, consider again parts
and suppliers. First of all, the interesting setting is a dynamic one where new
suppliers start up a business all the time and old ones go out of business. Second,
the number of suppliers n is “hard-wired” in the expressions given above for our
example queries. Changing n will yield another expression. Thus, to overcome
these limitations, we need a data model for representing sequences of sets of
arbitrary length. In such a model, we must moreover be able to define query
languages for specifying symmetric queries without making explicit reference to
the length of the represented sequence of sets.

Concretely, we propose to model an arbitrary sequence of sets by a set o of
set names, one for each entry in the sequence, and a binary membership relation

5Technically, one for each value of the parameter n.



~. In this representation, a set name S in o represents the set of all objects o
for which (0, S) € . Notice that we need the set o because some sets in the
sequence under consideration may be empty and hence will not occur in 7. In
the representation we propose, we of course lose the order of the sets in the
sequence, but this is irrelevant in our setting as all queries under consideration
are symmetric anyway.

In this paper, we propose as a query language a two-sorted first-order logic
over a binary predicate I' representing the set membership relation of our data
model, called SyCALC (from “Symmetric Calculus”). As mentioned, SyCALC
has two sorts of variables: one ranges over set names and one over objects.
The language is designed in such a way that the only comparisons allowed are
between set variables. Of course, we will ensure that only symmetric queries
can be expressed in SyCALC. As an illustration, Query 6 is expressed in Sy-
CALC by {(z,y) | 3X3IY T'(z, X) AT (2, Y) AT (y, X)AT(y, Y)A (X #Y)}. Our
considerations above lead naturally to the following research questions:

1. Is there a syntactically definable fragment of SyCALC that is a conservative
extension of the symmetric Boolean functions in the sense of Quine?

2. If so, let us call this fragment QuineCALC. Can the characterization result
of Quine for symmetric Boolean functions using incidence information be
lifted to a characterization of QuineCALC?

3. It is possible to extend the symmetric Boolean functions in the sense of
Quine to what we call symmetric relational functions by also allowing
projection and Cartesian product besides union, intersection, and com-
plement. Is SyCALC a conservative extension of the symmetric relational
functions?

4. Are there unary symmetric queries that are expressible in SyCALC but
not in QuineCALC which can nevertheless be characterized in terms of
incidence information?

5. Are there also non-unary symmetric queries expressible in SyCALC which
can be characterized in terms of incidence information?

6. We shall call SyCALC queries that can be expressed in terms of inci-
dence information counting-only. Are there SyCALC queries that are not
counting-only?

7. Is there a syntactically definable fragment of SyCALC that expresses pre-
cisely the counting-only SyCALC queries?

8. Is it decidable whether a counting-only SyCALC query is a QuineCALC
query? Is it decidable whether a SyCALC query is counting-only?

9. Finally, we may consider decidability problems such as satisfiability, con-
tainment, equivalence, validity, or emptiness. Are these problems decid-
able for SyCALC queries? Or for counting-only SyCALC queries? Or for
QuineCALC queries?



In this paper, we show that the answer to Research Questions 1-7 is “yes.” As
for Research Question 8, it is decidable whether a counting-only SyCALC query is
a QuineCALC query, but it is not decidable whether a SyCALC query is counting-
only. As for Research Question 9, finally, we show that the problems considered
are decidable for counting-only SyCALC queries and QuineCALC queries, but not
for general SyCALC queries.

This paper is organized as follows. In Section 2, we elaborate some more on
related work, both from the present authors and other authors. In Section 3, we
present our data model. We introduce symmetric queries over our data model as
well as functions on finite sequences of sets of a given length, and correlate both.
In Section 4, we introduce QuineCALC, and establish a correspondence between
QuineCALC queries and symmetric Boolean functions. We also characterize
QuineCALC queries in terms of incidence information of the objects they return.
In Section 5, we introduce SyCALC, and establish a correspondence between Sy-
CALC queries and symmetric relational functions. We also introduce counting-
only SyCALC queries, which we characterize as quantified Boolean combinations
of QuineCALC queries. In Section 6, we show that, while it is undecidable
whether a SyCALC query is counting-only, it is decidable whether a counting-
only SyCALC query is equivalent to a QuineCALC query. We also show that
the problems mentioned in Research Question 9 are decidable for counting-only
SyCALC queries and QuineCALC queries, but not for general SyCALC queries.
Finally, in Section 7, we formulate some conclusions, and discuss direction for
future research.

2. Related work

This is a revised and extended version of Gyssens et al. [21]. Not only
did we add full proofs, but we also added additional results with respect to
decision problems (Research Questions 8 and 9). More specifically, we have
answered several questions that were stated as open problems in Gyssens et
al. [21]. First, we provide results on whether it is decidable if a SyCALC query
is a QuineCALC query. We also provide results on the behavior of SyCALC
and QuineCALC queries with respect to traditional decision problems such as
satisfiability, containment, equivalence, validity, or emptiness.

Additionally, the work presented in this paper inspired us to further study
the concept of “counting-only” in more depth as stated in the Conclusions and
Future Work section, under “Extensions of the concept ‘counting-only””. As
it turns out, the counting-only queries we study in this paper are only one
fragment of a much larger class of counting-based queries that are well-behaved
and intuitive to understand. Hellings et al. [22] study these counting-based
queries and address the questions raised in this paper.

This work is inspired on the one hand by the work on symmetric Boolean
functions [14-16]), and on the other hand by the occurrence in practice of sev-
eral counting-based queries—including the common statistical queries—which
by nature are all symmetric. Ample examples of operators and formula express-
ing such queries can be found in the literature, including, e.g., [5-9, 17-20].



Despite there being numerous examples of symmetric queries, both in the liter-
ature and in practice, we believe, as mentioned in the Introduction, that this is
to the best of our knowledge the first systematic study of symmetric queries.

3. Preliminaries

As explained in the Introduction, we work with two sorts, objects and sets
of these objects. We assume the existence of an infinitely enumerable domain
D of objects and an infinitely enumerable domain S of names of sets of objects.
For clarity of exposition, we shall distinguish between sets and set names in
this section by denoting the former with (possibly subscripted) capital letters,
such as S, 53, 53, .. ., and the latter with (possibly subscripted) accented capital
letters, such as S7, 5%, 5%, ... We shall always implicitly assume that each object
under consideration is in D, and each set name under consideration is in S.

For our data model, we consider structures (D,S,o,v), where o is a finite
subset of S, expliciting the set names under consideration in the structure, and
v is a finite subset of D X o, providing set membership information. Hence, for
all §' in o, S’ is the name of the set {0 | 0 € D & (0,5’ € v}. Notice that
this set may be empty: all set names in o not occurring in the set membership
relation ~ represent the empty set.

For each o in D, we define the incidence of o in v as inc(o,v) = [{S’ € o |
(0,8’ € v}, i.e., the number of sets under consideration to which o belongs.
Similarly we define the co-incidence of o in «y as coinc(o,y) = |[{S" € 0| (0, 5"} ¢
~}, i-e., the number of sets under consideration to which o does not belong.
Clearly, coinc(o,v) = |o| — inc(o,7).

In the work of Quine [16], symmetric Boolean functions operate on a fi-
nite sequence of sets. We now explain formally how such a sequence can be
encoded in our model. Thereto, let Sq,...,S, be a sequence of sets, and let
Si,..., 8! be a sequence of pairwise different set names. Then, the encoding of
Si,...,S, given set names S7,...,S), denoted by enc(Si,...,S,;S,...,50),
is the structure (D, S, 0,7), where o = {S7,...,5/,} and ~ is defined by

v={{0,8))|1<i<n&oeS}
Notice that, whenever i1,...,14, is a permutation of 1,...,n, then

enc(S1,...,50;5],...,S)) =enc(S;,...,5:,;5;

119 Inr Mgt
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Conversely, if (D, S, 0,7) is a structure with o = {S},...,5.}, and S1,...,5,
are the sets represented by S7,...,S), respectively, then (D,S,0,7v) equals
enc(S1,...,5,;81,...,5)). This converse encoding is not unique, of course,
as (D, S, 0,v) also encodes every permutation of Sy, ...,S,, as shown above.
We notice that the encoding of a sequence of sets omits any ordering infor-

mation. Hence, all permutations of a sequence will yield isomorphic structures

60Observe that this number does not depend on D or S, justifying the notation.



(that possibly differ in set names). This is on purpose, the main focus of this
work are symmetric queries on sequences of sets, queries which do not rely on
ordering information in the sequence.

If we denote by inc(o, S, ...,S,) the incidence of o in the sequence of sets

S1,...,8p, i.e., the number of sets in this sequence to which o belongs, then,
clearly, inc(o, S1,...,S,) = inc(o,7) in the encoding.
Ezample 1. Consider the sets R, S, T, and U visualized by the Venn diagram in
Figure 2, left. (Elements of D not in R, S, or T are not shown.) Furthermore, we
assume that U is empty. The sequence R, S,T,U (or any of the 24 permutations
thereof) is encoded by the structure (D, S, g,v), where 0 = {R’, 8", T7/,U’} and
the binary membership relation ~ is shown in Figure 2, right.

v | Object Set
a R
R/
S/
T/
S/
T/

o o0 oS o

Figure 2: Encoding of a finite sequence of sets by a binary membership relation.

In this example, we have inc(a, R, S, T,U) = inc(a,v) = 1,inc(b, R, S, T, U) =
inc(b,v) = 3, and inc(c, R, S, T,U) = inc(c, ) = 2.

As explained in the Introduction, we consider (symmetric) queries at two
levels: a restricted “static” level, in which we consider as input sequences of sets
of a given length, and a “dynamic” level, in which this restriction is removed
by encoding the sequence of sets into a structure as defined above.

Inspired by the terminology of Quine [16], we shall speak of functions on
sequences of sets at the “static” level. Such a function f, taking as arguments
a sequence of n sets, for some fixed n > 0, and returning m-tuples of objects
of these sets, for some fixed m > 0, is called symmetric if, for all sequences of
sets S1,...,S, and for all permutations 41,...,4, of 1,...,n, f(Sy,...,5:,) =
f(S1,...,5n).

At the “dynamic” level, we shall speak of queries. A query q takes as input
a structure (D, S,0,v) and maps it to a subset of D™ for some fixed m > 0.
We say that q is symmetric if, for all permutations 7 of S and for all structures
(D,8.0.7), a((D,8,(0), (7)) = a((D,S.0,7)), where n(0) = {n(s') | §' €
o} and w(v) = {{o,7(S5")) | {0,5") € v}. This condition formalizes the intuition
that symmetric queries only look at the content of the sets and not at their
names.

If q is symmetric, then, for all sequences of sets St, ..., S,, for all sequences
of pairwise different set names T7,...,T), and Uq,...,U], and for all permuta-
tions 41,...,i, of 1,...,n,

q(enc(S1,...,Su; Ty, ..., T))) = q(enc(Si,, ..., Si,; Ul,...,U.)),

10



matching the notion of symmetric functions at the static level.

The “static” level and the “dynamic” level are of course closely intercon-
nected.

For a fixed value of n > 0, we can associate with each symmetric query q a
function fq , on sequences of n sets Si,...,S, defined by

Jan(S1,...,Sn) :=qalenc(S1,...,Sn; S, ..., S0)),

where S},...,S; is an arbitrary sequence of pairwise different set names.” The
above property guarantees that fq , is both well-defined and symmetric. Since
n is a parameter in this construction, we actually obtain a family of symmetric
functions, one for each value of n.

Conversely, consider a family F = {f,, | n > 0} of symmetric functions such
that f,, n > 0, operates on sequences of n sets and returns output of arity
independent of n. Then, we can associate with F' a query qr operating on
structures (D, S, 0,7) as follows:

qF(Dv‘SaUv 7) = fn(Sh .. '7Sn)7

where n is the cardinality of o and Sy, ...,S, is the sequence of sets (in some
order) represented by the set names in o. The well-definedness of g relies on
the symmetry of fo, f1, f2,.... Clearly, fqpn = fan-

Notice that the mathematical construction detailed above corresponds to a
definite reality. Indeed, in all examples of symmetric functions on sequences of
sets S1,...,5, presented in the Introduction, the number n is in fact a param-
eter. Hence, it is indeed fair to say that, in all the cases, we have been dealing
with a family of symmetric functions, one for each value of n, rather than with
just one symmetric function for some fixed value of n.

Remark 2. As we have seen above, the particular names that are chosen to
represent sets in a structure are immaterial in the context of symmetric queries.
To simplify notation, we shall therefore no longer make an explicit distinction
in what follows between the sets that are encoded and the corresponding set
names, and use (possibly subscripted) capital letters such as Sp, S2, 52, ... for
both. In the same vein, we shall henceforth no longer refer explicitly to the
particular set names used in an encoding of a sequence of sets.

In this paper, we shall establish interconnections between particular classes
of symmetric queries and particular classes of symmetric functions on sequences
of sets. We must point out, though, that our main focus is the study of sym-
metric queries.

4. QuineCALC

We now define a first-order language, called QuineCALC, of which we show
that it is a conservative extension of the symmetric Boolean functions in the

7Since the choice of the set names S1,...,S), is arbitrary, we shall henceforth abbreviate
enc(S1,...,50;57,...,5}) toenc(S1,...,Sn), by slight abuse of notation. See also Remark 2.

11



sense of Quine. Later, in Section 5, we will extend QuineCALC to SyCALC, the
language which is at the core of this study.

4.1. Language definition

QuineCALC is a restricted first-order logic with a single binary relation name
I representing set membership, i.e., I'(z, X) means that object = belongs to the
set named X.

The alphabet contains two sorts of variables: lowercase variables x,y, z, . ..
and uppercase variables X,Y, Z, ..., possibly subscripted. Lowercase variables
denote objects and uppercase variables denote set names. The alphabet contains
no constant symbols.

QuineCALC formulae are defined by the following syntax rule:

=T, X) | X =Y |p1 V2 |pr | IX o1

We also allow the usual abbrevations, such as X # Y, o1 A ¢, and VX .
Observe that the (in)equality predicate and existential quantification operate on
uppercase variables only. Since the language has no quantification over lowercase
variables, all occurrences of lowercase variables in a QuineCALC formula must
be free.

A QuineCALC query {z | ¢(z)} is defined by a QuineCALC formula with
exactly one lowercase variable  and without free occurrences of uppercase vari-
ables.

Given a structure (D,S,0,7), a QuineCALC query is evaluated in the usual
way, where lowercase (object) variables range over D and uppercase (set name)
variables range over 0. Observe that equality or inequality of uppercase variables
refers to the equality or inequality of the set names to which they are evaluated,
and not the contents of the corresponding sets! The binary relation symbol I' is
interpreted as the membership relation v. Observe that QuineCALC queries are
symmetric by their definition: set names are always quantified and the language
does not allow referencing specific set names via constants.

For o € D, we denote by (D, S,0,7) = ¢(0) that ¢(x) evaluates to true in
the structure under consideration if x is substituted by o. For n > 0, we say
that two QuineCALC queries {z | ¢1(z)} and {x | p2(x)} are n-equivalent if, for
all structures (D, S, 0,v) with |o| = n, and for all objects o € D, (D,S,0,7) E
©1(0) if and only if (D, S, 0,7) = ¢2(0). Two QuineCALC queries are equivalent
if they are n-equivalent for all n > 0.

Ezample 3. The QuineCALC query {z | IXIY (I'(z, X) AT (2, Y)AN (X #Y))}
expresses Query 1 and the QuineCALC query {z | -3X —I'(z, X)} expresses
Query 2 in the Introduction.

In the following example, we present QuineCALC queries which will be used
throughout this paper.

Ezxample 4. For evey natural number ¢ > 0, the query that upon input the
structure (D,S,0,v) returns the objects that belong to at least i sets of o
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according to the membership information in v is expressed by the QuineCALC
query
{z]3X:-3x:( N\ X;#X)A( N\ T X))}
1<j<k<i 1<j<i

We shall denote the QuineCALC formula in this query by gteq(z,¢). The query
that returns the objects that belong to exactly i sets of o is then expressed by the
QuineCALC query {z | gteq(z,?) A —gteq(x,i+ 1)}. We shall denote the Quine-
CALC formula in this query by eq(xz,7). We shall also consider the query that
returns the objects that do not belong to at least i sets of o (or, equivalently,
the objects that belong to at most |o| — ¢ sets of o), which is expressed by the
QuineCALC query

{z]3x-3x:( N\ Xs#X)A( N\ T X))}

1<j<k<i 1<j<i

We shall denote the QuineCALC formula in this query by cogteq(z,i). The
query that returns the objects that do not belong to ezactly i sets of o (or,
equivalently, the objects that belong to exactly |o|—i sets of o) is then expressed
by the QuineCALC query {x | cogteq(z, i) A ~cogteq(x,i + 1)}. We shall denote
the QuineCALC formula in this query by coeq(z, ).

4.2. QuineCALC and symmetric Boolean functions

Obviously, the class of sets that can be specified by QuineCALC queries
given a particular structure as input is closed under union, intersection, and
complement. We will take this observation one step further, and show that
QuineCALC is a conservative extension of the symmetric Boolean functions in
the sense of Quine, thereby solving Research Question 1. Thereto, we introduce
the following terminology.

Definition 5. Let n > 0, and let f be a symmetric function operating on
sequences of n sets of objects and returning sets of these objects, and let q :=
{z | o(x)} be a QuineCALC query. We say that q is n-equivalent to f, denoted
q =, f, if, for all sequences of n sets Si,...,5, and for all objects 0 € D, we
have that o is in f(S1,...,Sy) if and only if enc(Sy,...,S,) = ¢(0).

Intuitively, q =, f says that q and f return the same values on inputs
consisting of sequences of n sets, provided this input is appropriately encoded
for applying QuineCALC queries.

We now formally define Boolean functions and symmetric Boolean functions
in the sense of Quine.

Definition 6. Let n > 0. A (symmetric) function operating on sequences of
n sets of objects Si,...,S5, is called Boolean if the output is again a set of
objects, and this set can be described as a Boolean combination of Sy,...,S,
(using union, intersection, and complement).

The following two theorems link QuineCALC queries with symmetric Boolean
functions, one for each direction.

13



Theorem 7. For every QuineCALC query q, and for every integer n > 0, there
exists a symmetric Boolean function fq, operating on sequences of n sets such

that q =, fqn-

Proof. Let q := {z | ¢(z)} be a QuineCALC query and let n > 0. The operator
qge(+) eliminates existential quantifiers from QuineCALC queries, and is defined
as follows, where 1 < 1i,j < n:

qe(r(xv SZ)) = F(LE, Sl)v
_ oy Jtrue if i = 7,
qe(S; = 9) = {false if i # j;
qe(p1 V 2) = qe(p1) V qe(p2);
qe(—p1) = —qe(p1);
ae@X 1) = \/ qe(er[X — Si]).

1<i<n

In the last line above, p1[X — S;] denotes the expression obtained from ¢
by replacing each free occurrence of X with S; and empty disjunctions are
interpreted as “false”.
We next compute fun(qe(y)) as follows, where 1 < i < n:
fun(true) = D;
fun(false) = 0;
fun(I'(z, 55))
fun(p1 V p2) =
fun(—p1) =

Si;
fun(epr) U fun(2);
fun(e1).

Above, we assume that “D” and “0” are abbreviations of “",.,.,, S;US;” and

“WUicicn Si N S;,” respectively, symmetric expressions which always return the

intended value, even in the limit case n = 0.
It is now straightforward that the expression fun(qe(p)) defines a symmetric
Boolean function fq,(S1,...,S,) on sequences of n sets for which q =, fq.n.
O

Observe that the last rule for the computation of qe() reveals in which way
n occurs as a parameter in fq .

Ezxample 8. Consider the QuineCALC queries in Example 3, expressing Queries 1
and 2. Choose n = 3. Then the symmetric Boolean functions on sequences of
three sets S1, S, S3 that are 3-equivalent to these QuineCALC queries are, after
some straightforward simplifications, defined by the expressions (51 N.S2)U(S1N
S3) U (S2 N S3) and S; NSy N Ss, respectively.

Conversely, Theorem 10 below explains how to translate symmetric Boolean
functions on sequences of n sets into QuineCALC queries. The proof of The-
orem 10 relies on the following property, due to Quine [16, p. 178] (slightly
adapated to our notations and terminology):

14



Lemma 9 (Quine [16)). For a Boolean function f on sequences of n > 0 sets
of objects, the following statements are equivalent:

1. f is symmetric;

2. there exists a finite set N of natural numbers such that, for all sequences
of sets S1,...,S, and all objects o, o € f(S1,...,5,) if and only if
inc(o,Sl,...,Sn) € N.

Theorem 10. For every integer n > 0 and for every symmetric Boolean func-
tion f, on sequences of n sets of objects, there exists a QuineCALC query qy,
such that g5, =y fn.

Proof. Let N be the set of natural numbers characterizing the symmetric Boolean
function f,, in the statement of Theorem 10 in the sense of Lemma 9. Consider
the QuineCALC query qy, := {z | p(x)} where p(x) is false if N = ) and

\/ eq(x, 1)

iEN
otherwise. It is straightforward that qy, =, fn. O

Ezample 11. We revisit Example 8.

First consider the symmetric Boolean function f3(S7,S2,535) = (51 N S2) U
(81N S3)U(S2NS3). For this function, the characterizing set N according to
Lemma 9 equals {2,3}. Hence, it follows from Theorem 10 that qy, =3 fs,
where

qy, = {z]eq(z,2) Veq(z,3)}.
The QuineCALC query in Example 3 (from which f3 was derived in Example 8)
can be rewritten as {z | gteq(z,2)}. The latter QuineCALC query is 3-equivalent
to qf,, and, hence, they are both 3-equivalent to f3. Notice, however, that both
QuineCALC queries are not equivalent: they are not even 4-equivalent.

For the other symmetric Boolean function in Example 8, g3(S, S2,S53) =
S1N Sy N S3, we have that N = {3}. Hence, qg, =3 g3, with

dgs = {.’t | eq(:c,3)}.

The QuineCALC query in Example 3 from which g3 was derived in Example 8
can be rewritten as {x | coeq(x, 0)}. The latter QuineCALC query is 3-equivalent
to qg,, and, hence, they are both 3-equivalent to g3. Notice, however, that both
QuineCALC queries are not equivalent: they are not even 4-equivalent.

Theorems 7 and 10 together settle Research Question 1: QuineCALC (which
will turn out to be a syntactically definable fragment of SyCALC in Section 5)
is a conservative extension of the fixed-arity symmetric Boolean functions.

From Theorem 7 and Lemma 9, we can immediately derive the following
corollary.

Corollary 12. Let {z | p(z)} be a QuineCALC query and let (D,S,0,7) be a
structure. Let 01,09 € D such that inc(o1,7) = inc(o2,v). Then (D,S,0,7) =
¢(o01) if and only if (D,S,0,7) |= ¢(02).
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4.8. QuineCALC and counting

In Section 4.2, we already established a correspondence between QuineCALC
queries and incidence information, provided we only consider structures where n,
the number of set names under consideration, is fixed. How does this incidence
information for different values of n relate to each other? We provide an answer
to that question in Theorem 13, below.

Theorem 13. Let q := {z | p(x)} be a QuineCALC query for which ¢(x) has
quantifier depth ¢ > 0. Then, there exists a QuineCALC query qinc = {z |
Y(x)} where ¥ is a disjunction of subformulae of the form eq(x,i) (0 <i < q),
subformulae of the form coeq(z,j) (0 < j < q), and at most one subformula of
the form gteq(z, q) Acogteq(x, q), such that, for alln > 2q—1, q is n-equivalent
to Qinc-

To put Theorem 13 into perspective, recall that Quine’s result states, that,
for every symmetric Boolean function f on n sets, there exists N C {0,1,2,...,n}
such that f is equivalent to the following query: “return precisely those objects
whose incidence belongs to N.” Analogously, Theorem 13 states that, for every
QuineCALC query q = {x | p(z)} with quantifier depth ¢, there exist two sets
Ni, Ny C {{0},{1},{2},...,{g — 1},{n € N | n > ¢}} such that on structures
with at least 2¢ — 1 sets, q is equivalent to the following query: “return precisely
those objects whose incidence belongs to | J N1 or whose co-incidence belongs to
JN2.” Two remarks are in place:

e If J Vi contains some number that is greater than or equal to ¢, then | Ny
contains all numbers that are greater than or equal to ¢, and likewise for
JNa2. The reason is that a QuineCALC query with quantifier depth ¢
can verify whether the number of sets an object x belongs to (or does
not belong to) is equal to 0,1,2,...,¢ — 1, or strictly greater than ¢ — 1.
Intuitively, a QuineCALC query with quantifier depth ¢ can count up to,
but not beyond g — 1.

e In a structure with at least 2q — 1 sets, the incidence and the co-incidence
of an object cannot both be smaller than or equal to ¢ — 1. Therefore, if
the incidence of an object is smaller than or equal to ¢ — 1, then its co-
incidence must necessarily be greater than or equal to q. Symmetrically,
if the co-incidence of an object is smaller than or equal to ¢ — 1, then its
incidence must necessarily be greater than or equal to q.

One way of proving Theorem 13 is by using Ehrenfeucht-Fraissé games. Here,
we choose for a more constructive approach. Lemma 14, below, generalizes The-
orem 13 to arbitrary subformulae of QuineCALC formulae. This generalization
allows for a proof by structural induction. The details of this proof reveal how
we must transform a QuineCALC formule bottom up starting from its constituent
atoms until the entire formula is in the form required by Theorem 13.
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Lemma 14. Let {x | ¢(z)} be a QuineCALC query, with quantifier depth q.
When restricted to structures (D, S, o,v) with n = |o| > 2q — 1, all subformulas
oz, X1,...,X,) of p, 0 <1 < gq, can be rewritten as®

\V oz X1, X,) (1)

1<i<m
with
e m >0 and,
e fori=1,...,m, 0; equals

1/}1- ANAN S“F(x, Xl) VARV Si"F(l’,XT),
where,?
— ;18 /\1§j<kgr X, Oijx Xi with 0,5 either “=” or “£”;

— ¢; s of the form eq(x,n;), with n; < q, or of the form coeq(x,n;),
with n; < q, or of the form gteq(x, q) A cogteq(z, q); and

— for j = 1,...,r, s;; is either “+7 or “=”, where TI'(x,X;) must
be interpreted as ‘T(x,X;)” and ~T'(z,X;) must be interpreted as
(4_\ ($7X]’)”,

Proof. The proof goes by structural induction.
Base cases: The building blocks of QuineCALC formulae are expressions of
the form I'(x, X) and expressions of the form X =Y.

1. An expression of the form I'(z, X') can be rewritten as
true A true A TT'(z, X).

The first “true” can be seen as an empty conjunction (cf. Footnote 9).
The second “true” can be rewritten as

eq(z,0) V... Veq(z,q — 1) V (gteq(w, q) A cogteq(z,q)) V
coeq(x,q— 1) V...V coeq(x,0).

Using distributivity, we can rewrite the above expression for I'(z, X) as a
disjunction of subformulae of the required form.

2. An expression of the form X =Y, where X and Y are different set name
variables, can be rewritten as

(X =Y)Atrue A T'(z,X)ATT(z,Y)) Vv
(X =Y)Atrue A T'(z,X)A T(z,Y)).

8Empty disjunctions are always interpreted as “false.”
9Empty conjunctions are always interpreted as “true.”
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An expression of the form X = X, which always evaluates to true, can
be rewritten as

(true A true A TT'(z, X)) Vv
(true A true A "T'(z, X)).

The occurrences of “true” can be dealt with as in Case 1 to obtain sub-
formulae of the required form.

Padding: Before proceeding with the induction step, we explain a tech-
nique, to which we shall henceforth refer to as padding. Let o(z, X1, ..., X,) be
a subformula of the QuineCALC formula ¢(z) satisfying the Lemma, and let ¥
be a set name variable not occurring in ¢ which is quantified at a higher level
in p(x). We now show how p(z, X1,...,X,) can be rewritten to a subformula
o' (z,X1,..., X, Y), also satifsying the Lemma, without changing the semantics
of p(x).

Since o(z, X1, ..., X,) satisfies the Lemma, it can be rewritten as

\/ 0i(z, X1,...,X,)

1<i<m
with, for i =1,...,m,
0i =W Nc; A S“F(.%‘7X1) VANRRRIAN S"F(CL‘, XT>7

as explained in the statement of the Lemma. Now, let o be

V Xi=Y)v(Xi#Y),

1<j<r

which always evaluates to true. We take ¢'(z, X1,...,X,,Y) to be the subfor-
mula
\/ Q{i(m?Xla"wXTaY)

1<i<m

where, for i = 1,...,m, g equals
i ANaAc; NS T (e, X)) A+ A5 T (2, X)) A (TT(2,Y) vV  T(z,Y)).

Clearly, for every valid assignment to the variables x, Xi,...,X,, the terms
oi(z, X1,...,X,) and g}(z,X1,...,X,,Y) evaluate to the same truth value,
irrespective of the set name assigned to Y. By applying distributivity, the
above expression can be cast in the desired form.

We are now ready to proceed with the induction step of our structural in-
duction proof, and consider all the constructs that may occur in a QuineCALC
formula.

Disjunction: Without loss of generality, we may assume that the subfor-
mula to be rewritten is of the form

o (2, X1, Xy Yorts oo Yo )V 02 (0, Xay o, Xy Zpity s Zoy)

s Lrg
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with Xi,..., X, precisely the set name variables common to both disjuncts.
By the induction hypothesis, both disjuncts satisfy the Lemma. Using padding
repeatedly, we can rewrite the first disjunct to

I
ot (w, X1y, X Yout, o Yo, Zpits ooy Zny)
and the second disjunct to
!/
92 (anla' . aXpaYp-‘rla s aY;1aZp+1a .. 'aZTz)v

both also satisfying the Lemma. Since the rewritten disjuncts now run over the
same set of variables, their disjunction obviously also satisfies the Lemma.
Negation: Consider a subformula of the form —p(z, X1, ..., X,) for which

o(x, X1,...,X,) satisfies the Lemma, i.e., can be rewritten as in Expression (1).
Hence, —o(x, X1, ..., X,) is equivalent to a conjunction of the form
/\ _'Qi(valv cee 7X7’)7
1<i<m
where, for i = 1,...,m, o; is of the form

1,[12' ANe; N\ S“F(m, Xl) VANAN S”F(I,XT),

satisfying the conditions of the Lemma.
We first show that the induction step in this case follows provided we can
prove that

—0;(z,X1,...,X,) can be rewritten as a disjunction of the form
\/ Qili(£r7X17"'aX’r‘)7 (2)
1<I<t;
where, for i =1,...,mand l; =1,...,;, 0, is of the form

Y, A ci; NPT (e, Xp) AL AT (2, X,
as in the Lemma.

Indeed, (2) implies that —g;(x, X1,...,X,) is equivalent to a conjunction of
disjunctions of the form

A (CV ou@x,... X)), 3)
1<i<m 1<l <t;
which, by distributivity, is equivalent to the disjunction of conjunctions
\/ (Qlll(x,Xl, ey X)) AN O, (2, X, ,XT))7
(Ui yeeislm ) ECP

where CP is the Cartesian product {1,...,¢1} x --- x {1,...,tn}. We now
focus on each of the disjuncts o017, (2, X1,..., X:) A oo A 0, (2, X1, .., Xp)
separately. Such a disjunct is unsatisfiable—and may then be omitted from the
disjunction—unless
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1. Y11y, ..., ¥mi,, are mutually equivalent;
2. ciyyy- - - Cmi,, are mutually equivalent; and
3. forallv=1,...,7, S1,0 =+ = Smil,,0-

in which case the disjunct is equivalent to each of its conjuncts—and hence can
be replaced by any of it. We may thus conclude that Disjunction (3) can be
rewritten in the form required by the Lemma.

Hence, it only remains to prove Claim (2). Clearly, —g;(z, X3,...,X,) is
equivalent to

(i A A= D (2, X1) A AT (2, X))
(i Amei A (D (@, X)) AL AT (2, X))
(s A —e; A —|(S“F(I,X1) AT (2, X))
(i Aeg AT (@, Xa) A AT (2, X))
(=i A ey A= (P T (, X1) AT (2, X))
(- Xr)
(-

J

-

i N\ —c; N\ (S“I‘(x,Xl) A...AN%T (
—; —'Ci/\—\(S“F(JI,Xl)/\.../\S"F(ZIJ,X )

In the rewriting above, there are only three different negated subexpressions:
(i) = D(x, X1) A -+ A 5T (2, X)), (it) —egy and (466) —1p;. We show that
each of these three negated subexpressions can be rewritten as a disjunction of
subformulae of the appropriate form. By applying distributivity, it then readily
follows that the entire Expression (4) can be rewritten in the appropriate form.
We first rewrite ~(*1T'(x, X1) A -+ A 57 T'(z, X)), as follows:
(_S“F(x,Xl) A (FT(2, X2) V ~T(@, Xa)) A (T (2, X3) V T2, X3)) A ..
A (FT(z, X)) V *r(z,XT))) v
((+r(x,X1) V ~T(x, X1)) A =521 (2, Xo) A (FT(x, X3) V T2, X3)) A ...
A (FT(, X)) V _F(m,Xr))) v

((+r(x,X1) vV T(z, X1)) A (FT(z, }(2) Vv T(x, X2)) A
A (D (2, X 1) V T, X)) A 50T, XT)),

where —s;;, 1 < j < r, stands for the sign opposite to s;;.
We next rewrite —¢;. If ¢; is eq(x, n;), with n; < g, then —¢; is equivalent to

eq(z,0) V... Veq(z,n; — 1) V (gteq(x,n; + 1) A cogteq(z, 0)).

Clearly, the last condition can be written as a disjunction of conditions of the
types allowed in the statement of this Lemma. A similar reasoning can be made
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if ¢; is coeq(z,n;), with n; < ¢. Finally, if ¢; is gteq(z, q) A cogteq(z, q), then
—¢; is equivalent to

eq(z,0) V... Veq(z,g — 1) Vcoeq(z,qg— 1) V...V coeq(z,0).

We conclude this argument by observing that —); is equivalent to the disjunction
of all other expressions of the same form on the same set of variables.

Quantification: Consider a subformula 3X, o(z, X1,...,.X,), 1 <p <,
for which o(x, X1,..., X,) satisfies the Lemma, i.e., can be rewritten as in Ex-
pression (1). Since we can distribute the existential quantification over disjunc-
tion, we may assume without loss of generality that o(z, X7,...,X,) is of the
form ¢ Ae AT (x, X1) A--- AT (z, X,). Since ¢ does not contain set name
variables, 3X,, o(z, X1,...,X,) can be rewritten as

eA3X, (0 AT (2, X)) A - AT (x, X)), (5)

In order to be able to proceed, we first introduce a few concepts. Let V =
{Xi,...,X,}. The set V is the disjoint union of V* and V~, were VT consists
of the set name variables occuring in a positive I'-conjunct and V'~ consists
of the set name variables occuring in a negative I'-conjunct of Expression (5).
Furthermore, let G be the complete undirected graph on V', where the edge
between variables X; and X;, 1 <17 < j <7, is labeled with either “=" or “#”,
depending on whether X; = X; or X; # X is the corresponding conjunct of .
Finally, we define GT and G~ as the subgraphs of G induced by V* and V~,
respectively. Observe that G and G~ are complete, since G is.

If G contains an edge between a variable of V* and a variable of V'~ labeled
=7, then Expression (5) is unsatisfiable, and can be omitted from the disjunc-
tion of which it is part. Thus, without loss of generality, we assume that all
edges in G connecting a variable of VT to a variable of V= are labeled “#”.

Also, if G is not colorable (with r colors), then, again, Expression (5) is
unsatisfiable, and can be omitted from the disjunction of which it is part. Thus,
without loss of generality, assume that G is colorable (with r colors). Since G
is a complete graph, all colorings of G are actually isomorphic. The colorings of
G induce colorings of G (respectively G™), and, by the same argument, these
are also isomorphic. So, let s¥ and s~ be the exact numbers of colors needed
to color GT and G~ respectively (and, hence, s + s~ is the exact number of
colors needed to color G). Since s + s~ < r < g, it follows that both sT < ¢
and s~ <gq.

Now, let (D,S,0,7) be a structure with n = |o| > 2¢ — 1. We evaluate
() over this structure. For convenience we shall abbreviate the subformula
in Expression (5) to the right of the existential quantifier as o'(x, X1,..., X,).
(Hence, Expression (5) can be written as ¢ A 3X, o'(z, X1,...,X,).) Let 0 € D.

We first claim that, if there exist set names Sy, ..., S, in o (not necessarily
all different) such that'® (D,S,0,7) & 0'(0,51,--.,S,), then sT <inc(o,v) <

“

10Slightly extending a previously introduced notation in the straightforward way.
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n — s~ .11 To see this, notice that it follows from (D, S, 0,7) = ¢/ (0, S1, ..., S.)
that G can be colored by assigning the “color” Sy to X, 1 < k < r. The
number of different set names assigned to variables in V' is precisely st and
the number of different set names assigned to variables in V'~ is precisely s~.
Hence, s™ <inc(o,v) <n —s~.

Now, let ¢"(z, X1,...,Xp—1,Xp41,...,X;) be the formula obtained from
o' (z,X1,...,X,) by omitting all conjuncts containing X,. We claim that, for all
objects o in D and for all set names St,. .., Sp—1, Sp+1, - - -, Sy in 0 (not necessar-
ily all different), (D, S, 0,7v) E (3X, 0')(0, 51, ..., Sp—1, Sp+1, ..., Sr) if and only
if (D,S,0,7) = 0"(0,51,...,Sp—1,5p+1,---,5) AsT <inclo,7) <n—s~. We
start with the “only if.” If (D, S,0,v) = (3X, 0')(0, 51, .., Sp—1,Spt+1,-- -+ 5r),
then, by definition, there exists a set name S, in o such that (D,S,0,v) E
o (0,51,...,S). As shown above, it follows that s < inc(o,7) < n —s~. By
construction, it also follows that (D, S, 0,v) = 0”(0, S1, ..., Sp=1, Sp+1s - - -, Sr)-
We now turn to the “if.” Thereto, we need to distinguish two cases: X, € V'
and X, € V. As both cases are completely symmetric, we assume without
loss of generality that X, € V. Hence, in Expression (5), s, equals “+.” Let
G’ be the subgraph of G generated by V — {X,}, and let G’* and G'~ be the
subgraphs of G’ generated by V* — {X,} and V~ — {X,}, respectively. Notice
that G’ is also the subgraph of G generated by V* — {X,}, and that G~
equals G~. Since (D,S,0,7) = 0"(0,51,...,5p—1,5p+1,--.,Sr), we can color
G’ by assigning Si to Xi, 1 <1 < r, k # p. We must again distinguish two
cases:

1. There exists X; € VT, i # p, such that the edge between X; and X, in G*
is labeled “=7". Let S, denote the same set name as S;. Then, Sq,..., Sk
is a coloring of G. (To conclude this, we rely on the colorability of G and
the fact that all colorings of a node-generated subgraph of the complete
graph G are isomorphic). Moreover, the assumption implies v(o, S;), and
hence also y(o, Sp)

2. For all X, € V', k # j, the edge between X, and X; in GT is labeled
“L”  Since GT requires s colors to color, G'" requires only st — 1
colors to color. Hence, there are only s — 1 different set names among
S . Sp—1,5p+1,...,S, associated to variables in V. Since inc(o,7) >
sT, however, there exists a set name different from all those used to color
G'*, say Sp, such that v(0,S,). If we associate S, to X,, we obtain a
coloring for GT, and hence also one for G.

From the assumption, and the fact that the assignment of Si to X, 1 <
k <, is a coloring of G satisfying (o, Sp), it readily follows that (D, S,0,v) =
0'(0,81,...,5;), and, hence, also that

(D,S,O’,’Y) ): (HXP Ql)(O,Sl,...,Sp,175p+1,...7sr).

11The two statements are actually equivalent, but the reverse implication is not relevant to
this proof.
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We may thus replace 3X, p(z, X1,...,X,) by
c A gteq(z,sT) A cogteq(z, s ) A 0" (X1, s Xp—1, Xpt1y--r Xr)-

Since both s < ¢ and s~ < ¢, it follows that ¢ A gteq(z, s™) A cogteq(x,s™)
is either unsatisfiable, in which case the subformula can be omitted from the
disjunction of which it is part, or equivalent to ¢. It now suffices to observe that
the subformula ¢ A ¢”(X1,..., Xp—1, Xpt1,...,X,) is of the required form. [

Of course, every QuineCALC formula ¢(x) can be considered as a subformula
of itself. If we apply Lemma 14 to ¢(z) as subformula of itself, we observe that
each g; term can be simplified to ¢; since there are no free uppercase variables
and, hence, the terms v; and *T'(x, X;) A--- A% T'(z, X,) are both equivalent
to true and can be omitted. This yields precisely Theorem 13.

What Lemma 14 and Theorem 13 add to what we already know from Quine’s
results is that we can not only express a QuineCALC query in terms of incidence
information for structures with a given size n of ¢, but also that we can do this
uniformly so from a certain minimal value of n onward, defined as one less than
twice the quantifier depth. The following example shows that, in general, this
bound is tight.

Ezample 15. Consider the QuineCALC query

{2 | ~(3X3Y3IZ (X £ Y)AY # Z)A(Z # X)AT(z, X)AD(z,Y)AT(z, Z)) A
~(AX3IVIZ (X £Y)AY £ Z)NZ # X)A-T(z, X)A-L(z,Y)A-L(z, Z))}.

In words, this query returns an object if and only if both the number of sets in
which this object occurs and the number of sets in which this object does not
occur is at most 2. The quantifier depth ¢ of the above formula is 3, and hence
2q — 1 = 5. Theorem 13 therefore pertains to all values of n greater than or
equal to 5.

Indeed, if we only consider structures (D,S,0,v) with n = |o| > 5, the
output of the above query is obviously empty (i.e, the query formula is equivalent
to an empty disjunction, which we interpret as false). For n = 4, however, the
query is equivalent to eq(z,2); for n = 3, the query is equivalent to eq(x,1) V
eq(z,2); for n < 2, the query is equivalent to eq(z,0) V ...V eq(x,n), which
evaluates to true.

The underlying reason for the lowerbound 2¢ — 1 for n lies in the fact that
eq(x,n;) A coeq(z,n;), with 0 < n;,n; < g —1, is only guaranteed to evaluate
to false if n > 2¢ — 1. For smaller values of n, it may be that n; = n — n;, for
example, if ¢ = 3, n =4, and n; = n; = 2 (cf. Example 15 above).

In the proof of Lemma 14, we had to rely eq(z, n;) Acoeq(z, n;) evaluating to
false, for example in the induction step for negation where we had to consider
conjunctions of subformulae g;(z, X1, ..., X,) of the form

Vi N e A S“F(l‘, Xl) VANAN S”F(x,XT).
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Depending on the precise values of n; and n; in the conjunctions eq(z,n;) A
coeq(x,n;) that must be considered, however, it may sometimes be possible to
decrease the lowerbound of 2¢—1. In the extreme case where no such conjuction
occurs, there is actually no lowerbound. This is, e.g., the case for the query
{z | -3X —T'(z, X)}, expressing Query 1 in the Introduction, which in general
returns the objects that are in all sets under consideration. Obviously, this
query is equivalent to {x | coeq(x,0)}.

Since there are only a finite number of values of n to which Theorem 13
does not apply, we can deal with these values separately using Quine’s results,
yielding the following Corollary.

Corollary 16. Let q := {z | ¢(x)} be a QuineCALC query for which p(x)
has quantifier depth ¢ > 0. Then, q is equivalent to the QuineCALC query
qd ={z| ¢ (x)}, where ¢’'(z) has the form

2q—2

(\/ (Ea(n) A ¢n(2))) V (Gteq(2q — 1) A¢b(x)),

n=0
where
e Gteq(r) stands for 3X1...3X; N, e, Xi # Xj;
e Eq(r) stands for Gteq(r) A =Gteq(r + 1);

o Y, (x) is a disjunction of subformulae of the form eq(xz,i) (0 < i < n);
and

o (x) is a disjunction of subformulae of the form eq(z,i) (0 <1i < q), sub-
formulae of the form coeq(z,j) (0 < j < q), and at most one subformula
of the form gteq(x, q) A cogteq(z, q).

Ezxample 17. Consider again the QuineCALC query of Example 15. By Corol-
lary 16, and after applying some straightforward simplifications, this query is
equivalent to

Eq(0) v Eq(1) v Ea(2) V (Eq(3) A (eq(x, 1) Veq(,2))) V (Eq(4) A eq(z, 2)).

We can see the incidence-defined form for a QuineCALC query provided by
Corollary 16 as a mormal form for QuineCALC queries. Notice, however, that
this normalization leads to quantifier depth that is alsmost double of the original
one, as the quantifier depth of Eq(2¢ — 2) equals 2¢ — 1. This, however, is the
price one has to pay for normalization. The situation can be compared with
putting a first-order formula in prenex normal form. The standard algorithm
to achieve this increase the quantifier rank to the number of quantifiers in the
original formula. Moreover it can easily be shown that it is in general impossible
to replace a first-order formula by an equivalent prenex normal form formula
with the same quantifier rank.

As the characterization result of Corollary 16 lifts the characterization result
of Quine for symmetric Boolean functions using incidence information to Quine-
CALC queries, we have answered Research Question 2 in the affirmative.
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5. SyCALC

As announced in the opening paragraph of Section 4, we will now extend
QuineCALC to SyCALC, the language which is at the core of this study.

5.1. Language definition

QuineCALC is a generalization of symmetric n-ary Boolean functions whose
arguments and values are sets, and that are specifiable exclusively by means
of union, intersection, and complement. We now add projection and Cartesian
product to this list of operators. In our logic framework, this corresponds to
extending QuineCALC by allowing multiple lowercase variables in formulas over
which quantification is allowed. More precisely, SyCALC formulae are defined
by the following syntax rule:

=T, X) [ X=Y]o1 V|| T e |IX 0.

We also allow the usual abbrevations, such as X # Y and o1 A p2. A Sy-
CALC query has the form {(z1,...,zm) | @(z1,...,2m)}, where @(x1,...,2m)
is a SyCALC formula without free occurrences of uppercase variable and where
Z1,...,Ty, are the only free lowercase variables. A SyCALC formula is called
closed if no variable occurs free in it. A SyCALC query defined by a closed
SyCALC formula represents a query with Boolean output or a “yes-no query,”
where “{()}” is interpreted as true and “@” is interpreted as false. We usually
refer to such SyCALC queries as Boolean queries.

The semantics of SyCALC is analogous to the semantics of QuineCALC. As
a consequence, also SyCALC queries are symmetric. For a sequence of objects
01,...,0m € D, we denote by (D,S,0,7) E ¢(01,...,0m) that o(z1,...,2m)
evaluates to true in the structure under consideration if x; is substituted by
0i, 1 <i <m.? For n > 0, we say that two SyCALC queries {(z1,...,7m) |
o1(z1, .. xm)} and {{(@1, ..., 2m) | @2(21, ..., 2m)} are n-equivalent if, for all
structures (D, S, 0,7) with |o| = n, and for all sequences of objects o1, ..., 0pn,
(D,S,0,7) E ¢1(01,...,0m) if and only if (D,S,0,v) E p2(01,...,0m). Two
SyCALC queries are equivalent if they are n-equivalent for all n > 0.

Ezxample 18. The SyCALC queries

(3) {() | "323X3Y (D2, X) AT(z,Y) A (X #Y))};

(4) {(2) | 3X (T(2,X)A-3Y ([(z,Y) A (X £Y))) AJy3X3IVIZ (T(y, X) A
Ly, V) ATy, ) NX #Y)NY # Z)N(Z # X))}

(5) {() | ~323X3Y (I(z, X) A -L(2,Y))};

(6) {(z,y) [ 3X3Y (T2, X)AT(y, X) AT (2, Y) AT(y, Y) A (X #Y))

(7) {z,y) | BX Tz, X)) A (BX Ty, X)) A

12Recall that lowercase (object) variables range over D, whereas uppercase (set name) vari-
ables range over o.
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(=3X (T, X) A =D(y, X)) A (=3X (= (2, X) AT(y, X))}

respectively express Queries 3—7 in the Introduction.

Ezample 19. Let v > 0. The expressions Gteq(r) and Eq(r) described in the
statement of Corollary 16 are closed SyCALC formulae. The corresponding
queries {() | Gteq(r)} and {() | Eq(r)} are Boolean SyCALC queries that, upon
input a structure (D, S, 0,7), return whether n = |o| > r, respectively whether
n=lol=r.

Unsurprisingly, the language SyCALC is more expressive than the language
QuineCALC, even if we restrict ourselves to SyCALC queries returning unary
output. We give an example of such a SyCALC query that is not expressible in
QuineCALC.

Ezxample 20. Consider the SyCALC query in Example 18 equivalent to Query 4
in the Introduction. Let 01,09 € D, S1,52,53 € S, and o = {51, 52, S5},
and let y1 = {{o1, S1), (02, 51), (02,52), (02,53)}, and y2={(01, S1)}. Although
inc(o1,71) = inc(01,v2) = 1, 01 is returned upon input the structure (D, S, o, 71),
but not upon input the structure (D,S,0,72), in violation of Corollary 16.
Hence, this query is not equivalent to a QuineCALC query.

5.2. SyCALC and symmetric relational functions

In order to solve Research Question 3, we extend Theorems 7 and 10 from
QuineCALC to SyCALC.

First, we extend Quine’s notion of “(symmetric) Boolean function” to ac-
commodate the presence of projection and Cartesian product. Thereto, we must
allow the output to be relations of any arity over the objects in D. To empha-
size the distinction, we shall refer to such functions as (symmetric) relational
functions.

Definition 21. Let n,m > 0. A (symmetric) function operating on sequences
of n sets of objects S1,...,95, is called relational if the output is an m-ary
relation on these objects, and this relation can be described as a combination
of S1,...,S5, using intersection, union, complement, projection, and Cartesian
product.3

We also extend the notion of equivalence of a QuineCALC query and a sym-
metric function returning sets of objects to the equivalence of a general SyCALC
query and a symmetric function returning a relation on these objects.

Definition 22. Let n,m > 0, and let f be a symmetric function operating on
sequences of n sets of objects and returning m-ary relations on these objects, and
let q := {{x1,...,2m) | @(z1,...,2m)} be a SyCALC query. We say that q is n-
equivalent to f, denoted q =,, f, if, for all sequences of n sets Sy,...,.5, and for
all sequences of m objects 01, ..., 0., we have that (o1,...,0m) € f(S1,...,5n)
if and only if enc(S1,...,Sn) E ©(01,...,0m).

13Note that union and intersection are only applied to operands with the same arity.
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We can now generalize Theorem 7.

Theorem 23. For every SyCALC query q, and for every natural number n > 0,
there exists a symmetric relational function fqn(S1,...,Sn) such that q =,

fan-

Proof. Let q := {{x1,...,2m) | p(z1,...,2m)} be a SyCALC query and n > 0.
The proof goes along the same lines as the proof of Theorem 7. In the context of
SyCALC, the function qe(-) to eliminate quantification over uppercase variable
must be extended by adding the rule

qe(Fz ¢1) = Iz qe(p1).

to take into account quantification over lowercase variables.

Defining the function fun(-) that translates ge(y) into a symmetric relational
function requires some more care. From the proof of Theorem 7, we retain the
rules

fun(true) = D;
fun(false) = 0;
fun(I'(z, S;)) = 5.
In the other rules below, fun(yy(z1,...,2,)) always defines a subset of D":

fun(Fz, 41 1(z1, .. 2r, ps1)) = w1 (fun(@r(za, ..o 20, Trs1)));
fun(o1(z-(1), -+ Tr()) = Ty, r () (Fun(er (21, ..., 20)));
fun(o1(z1, ... &) V 02 (Tryg1y -, )
(fun(p1 (21, ..., 20, ) X D7) U (D™ X fun(wa(Tryt1s -« Tr)));
fun(—¢1(z1,...,2.)) = D" —fun(p1(x1,...,2,)).

In the second rule, 7 is a permutation of {1,...,7}. We use this rule to reorder
the variables whenever needed to apply the rules before. Notice that, in the
last rule, D" — fun(¢1(z1,...,2,)) is the complement of fun(yy(zy,...,x.)),
which we shall often denote more compactly as fun(¢1(z1,...,2,)). It is now
straightforward that the expression fun(qe(p(z1, ..., Zm))) defines a symmetric
relational function fq, on sequences of n sets that returns m-ary relations for
which q =, fq,n- O

Ezxample 24. Consider the SyCALC queries in Example 18, expressing Queries 3—
7. Choose n = 3. Then the symmetric relational functions on sequences of three
sets S7,.99,53 that are 3-equivalent to these SyCALC queries are, after some
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straightforward simplications,

(3) 7T<>((S1 N Sg) U (SQ N 53) U (53 n Sl));

(4) ((Sl NSy U 53) @] (52 NnSs; U Sl) U (53 nsS; U 52)) X 7T<>(Sl NSy N 53);

(5) m (51N S2) U (S2nS3) U (S5 S));
6 ( Sl X Sl Sg X 52)) U ((SQ X SQ) N (Sg X 53)) U ((53 X 53) n (Sl X Sl));

(7) ((S1US2U83) x (S1US2US3))N
(S1 x S1) U (S2 x So) U (S35 x S3) N (Sy x S1) U (Sy x Sa) U (S3 x S3),

respectively.

We now turn to the generalization of Theorem 10 to SyCALC queries.

Theorem 25. For all natural numbers n,m > 0 and for every symmetric rela-
tional function fn,(S1,...,S,) on sequences of n sets that return m-ary relations
over D, there exists a SyCALC query qy, = {{(x1,...,Zm) | p(1,...,2m)} such
that qf, =n fn-

Proof. By assumption, the symmetric relational function f;,, in the statement of
Theorem 25 can be described by some expression E(Sy,...,S,) that only uses
S1,...,Sp, intersection, union, complement, projection, and Cartesian product.
Hence, E can be translated to a relational calculus expression {(x1,...,2Zpn,) |
C(z1,...,xm)}. Nowlet C'(x1,...,2m, X1,...,Xn), be C(21,...,Zy) in which
each atomic subexpression of the form “x; € S;” is substituted by “I'(z;, X;).”
Finally, define ¢(z1,...,zy,) as

3Xy 32X, (Cl(n, oy am, Xay o X)) A N\ X £ X5).

1<i<j<n

Then, the expression qe(¢) computed in the proof of Theorem 23 yields

/\ C/(l‘l,...,xm,ST(l),...,ST(n)).

T€Perm{1,...,n}

In the computation of fun(qe(y)) in the proof of Theorem 23, I'(z;, S;) is trans-
lated into S;. Hence, we may conclude that the expression fun(qe(y)) is the
standard translation of

(@) | N\ Clarye ).

T€Perm{1,...,n}

into the relational algebra (with complement instead of difference), which, by
construction, is equivalent to the expression UTEPerm{l ’’’’’ ) E(S-qy, - Srm)),
describing the relational function UTGPerm{l ____ n} fn(Szys -+, Sr(ny). Since fp
is a symmetric relational function, all terms in this union are equal, and hence
equal to f,,(S1,...,S,). Theorem 25 now follows readily. O
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Ezxample 26. We revisit Example 24. As a first example, consider the symmetric
relational function f3(S1,S2,S3) = 7 ((S1NS2) U (S1NS3)U(S2NS3)). We
apply the construction in the proof of Theorem 25 to this relational function.
First, we rewrite the given function to a relational calculus expression {() | C()}
with C() =

—Jdx (z€S1ANze€S)V(reS AxeSs)V(xe Sy Ax € S3)).

Next, we construct C'(X1, Xo, X3) by replacing € S;, 1 < j <3, by I'(z, X),
resulting in C" (X1, X0, X3) =

-3z (T(z, X1) AT (2, X2)) V (T(x, X1) AT(x, X3)) V (T'(z, X2) AT (z, X3))).
Finally, we obtain the SyCALC query
{01 3X13X53X5 (X1 # Xo) A (X1 # X3) A (Xa # X3) A C' (2, X1, Xo, X3))},

which, on structures with n > 3, can be simplified to the SyCALC query in
Example 18 expressing Query 3. So, both queries are 3-equivalent, and hence
also 3-equivalent to fs.

As a second example, consider gs(Si,S52,53) = ((S1 x S1) N (S2 x S3)) U
((S2 x S3) N (S3 x S3)) U ((S3 x S3) N (S1 xS1)). If we apply the construction
in the proof of Theorem 25 to this relational function, we obtain the SyCALC
query

{{z,y) | 3X3IY3Z <X7éY/\Y7éZ/\Z7£X/\(
(T(z, X)AT(y, X)AD(2,Y)AT(y,Y)) V
Tz, Y)AT(y,Y)AD(2, Z) AT (y, Z)) V
((z, 2) AT(y, Z) AT(z, X) AT(y, X)) )},
which, on structures with n > 3, can be simplified to the SyCALC query in

Example 18 expressing Query 6. So, both queries are 3-equivalent, and hence
also 3-equivalent to fs.

Theorems 23 and 25 together settle Research Question 3.

5.8. SyCALC queries that only count

Let us call two structures (D,S,0,71) and (D, S, 0,72) incidence-equivalent
if, for each object o € D, inc(o,v1) = inc(o,72). By Corollary 16, QuineCALC
queries can, alternatively, be expressed in terms of counting-only terms such
as eq(z,1). As such, QuineCALC queries cannot distinguish between incidence-
equivalent structures. This is no longer true for SyCALC queries, however.
Ezxample 27. Consider the SyCALC query in Example 18 equivalent to Query 7
in the Introduction. Let 01,09 € D, S1,52,55 € S, and 0 = {51, 52,53}, and
let

71 = {{o1,51), (01, S2), (02, 51), (02, 52) } and
Y2 = {(01,51), (01, 53), (02, 52), (02, 53) }.
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Although inc(o1, 1) = inc(o1,72) = 2 and inc(02,v1) = inc(02,72) = 2, (01, 02) is
returned upon input the structure (D, S, o, fyl), but not upon input the structure
(D7 87 O-? 72)

Therefore, it makes sense to call SyCALC queries that cannot distinguish
between incidence-equivalent structures counting-only.

Definition 28. Let q := {{z1,...,2m) | ¢(z1,...,2m)} be a SyCALC query.
We say that q is a counting-only query if, for all incidence-equivalent structures
(D,S,0,71) and (D,S,0,7v2), we have, for all objects o1,...,0, € D, that
(D,S,0,7v1) E plo1,...,0m) if and only if (D,S,0,72) = p(01,...,0m).

By Corollary 16, all QuineCALC queries are counting-only. There are, how-
ever, many counting-only SyCALC queries that are not equivalent to a Quine-
CALC query.

Example 29. Consider the SyCALC queries in Example 18.

The SyCALC query expressing Query 3 in the Introduction returns true
on structure (D,S,0,7) precisely if, for all o € D, inc(o,v) < 1. Hence, it
is counting-only. As it does not return unary output, it can of course not be
equivalent to a QuineCALC query.

Given a structure (D, S, 0,7), the SyCALC query expressing Query 4 returns
all objects o € D with inc(o, ) = 1 provided there exists o’ € D with inc(o’,v) >
3. Hence, it is counting-only. Even though it returns unary output, it is not
equivalent to a QuineCALC query, as shown in Example 20.

Given a structure (D, S, 0,7), the SyCALC query expressing Query 5 returns
true if, for all objects o € D, inc(o,v) = n, with n = |o|. Hence, it is counting-
only. As it does not return unary output, it can of course not be equivalent to
a QuineCALC query.

Next consider the SyCALC query expressing Query 6. Let 01,092,035 € D,
51,855,553 €S, and 0 = {Sl, 52,5’3}, and let

Y1 = {<01, Sl>7 <01, S2>7 <02, Sl>7 <02, 52>7 <03, S3>} and
Y2 = {(01,51), (01, 52), (02, 51), (02, S3), (03, 52) }.

While we have that inc(o1,71) = inc(o1,72) = 2, inc(0o2,71) = inc(oz,72) =
2, and inc(os3,71) = inc(o3,v2) = 1, the query returns (o1,02) upon input
(D,S,0,71), but does not return (01, 02) upon input (D,S,0,72). Hence the
query is not counting-only, and, therefore, not equivalent to a QuineCALC query.

Finally, the SyCALC query expressing Query 7 is not counting-only either,
as shown in Example 27, and, therefore, also not equivalent to a QuineCALC
query.

In Figure 3, we summarize the above classification of queries. Observe that
not all symmetric queries are also SyCALC queries, and not all queries are nec-
essarily symmetric. An example of a symmetric query not in SyCALC is q4,
“return the mazximum number of objects in a set encoded by the structure,”
and an example of a non-symmetric query is qp, “return the objects in the set
encoded by set name S in the structure.”
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1,2
QuineCALC 3,4,5
6,7

Counting-only SyCALC qa

aB

SyCALC

Symmetric queries

Queries (including non-symmetric)

Figure 3: Summary of the hierarchal structure of classes of symmetric queries. For each
class, we provide example queries which are not in the immediate subclass. Query q4 is a
symmetric query not in SyCALC, and query qp is a non-symmetric query. Both are introduced
in Example 29. The other example queries are referred to by the number that was assigned
to them in the Introduction.

With Example 29, Research Questions 4, 5, and 6 have been answered in
the affirmative.

Definition 28 is in our opinion a very compelling, intuitive semantic defini-
tion of counting-only SyCALC queries, but, unfortunately, it does not teach us
much about the nature of counting-only SyCALC queries. Therefore, we state a
characterization of counting-only SyCALC queries in the same vein as in Corol-
lary 16 for QuineCALC queries.

Theorem 30. Let q := {{(x1,...,2m) | ©(z1,...,2m)} be a counting-only
SyCALC query for which @(x1,...,2m) has quantifier depth qs > 0 in the
uppercase (set name) variables. Then, q is equivalent to a SyCALC query
d ={{z1,...,xm) | ¢ (x1,. .., xm)}, in which @' (x1,...,2Tm) has the form

2qs—2

(' (Ea(n) A (ar,... zm))) V
" (Gteq(2gs — D) Ap(x1, ..oy m)),
where

o form=0,...,2q5 — 2, Yn(x1,...,2m) s a disjunction of formulae of the
form 9o A ... A9 Aar(x1) A A (2,), with'd

— fori=1,...,n,9; is Iz eq(x,i) or =3z eq(x,1);

— for £ =1,...,m, ay(xs) is of the form eq(xye, ke), with 0 < ky < n;
and

o Y(x1,...,2m) is a disjunction of formulae of the form

DA AN ge 1t ANIAISTEA LA Aag (@) A A (Tm),

14 Observe that, in this construction, 1 can always be simplified to either true or false.
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with
— fori=1,...,qs — 1, 9; is either 3z eq(x,i) or =3z eq(x,1);
— ¥ is Jx (gteq(w, gs)Acogteq(z, gs)) or ~3x (gteq(w, gs)Acogteq(z, gs));
— forj=qs —1,...,0, ¥ is either 3x coeq(x,j) or =3z coeq(z,j);
— for £ = 1,...,m, ap(xzy) is either of the form eq(xe, ke), with 0 <
k¢ < qs; or of the form coeq(x¢, ke), with 0 < ky < gs; or of the form
gteq(z¢, gs) A cogteq(ze, gs)-

The formula ¢’(Z) in Theorem 30 above is a disjunction of 2¢s disjuncts.
Each structure (D, S, 0,v) will satisfy exactly one of these disjuncts, depending
on whether the size of o is equal to 0,1,2,...,2qs — 2, or is greater than or
equal to 2gs — 1.

Since ¢ has quantifier depth gs in the uppercase variables, ¢ can be expressed
by a formula that contains at most gs distinct uppercase variables. Given an
object o, such formula can test whether the number of objects o belongs to (or
does not belong to) is equal to 0,1, ...,gs — 1, or is greater than or equal to gs.
Intuitively, a formula with only gs distinct uppercase variables can “count” up
to gs — 1, but not beyond. Significantly, if o contains at least 2gs — 1 sets, the
incidence and co-incidence of o cannot both be in {0, 1, ..., gs — 1}; therefore, if
o can count one of these numbers, it cannot count the other. This is the reason
why the number 2¢s — 1 is a threshold in ¢’.

As was the case in Corollary 16 for QuineCALC queries, the quantifier depth
of ¢’ in Theorem 30 is 2¢ — 1, i.e., alsmost double the quantifier depth of (.

Theorem 30 will also serve to derive the final result of this Section (Corol-
lary 39), which states that every counting-only SyCALC query is equivalent to
a quantified Boolean combination of QuineCALC queries.

As already mentioned, Theorem 30 relies in essence on the limited ability
of SyCALC queries to count and distinguish objects. To be able to prove Theo-
rem 30, we first need to show that two structures who are similar with respect
to their incidence and co-incidence information as far as counting up to gs is
concerned cannot be distinguished by a counting-only SyCALC query with quan-
tifier depth ¢gs in the uppercase (set name) variables provided theses structures
involve at least 2¢s — 1 set names.!®

We achieve this result step-by-step in an series of five lemmas.

1. First, we show (Lemma 31) that two structures in which each object either

e has the same coincidence in both structures, if this coincidence is at
most gs — 1; or else

e has the same incidence in both structures
cannot be distinguished by a counting-only SyCALC query with quantifier

depth ¢s in the uppercase (set name) variables. This lemma is at the basis
of comparing structures involving different sets of set names.

15See also the explanation of Theorem 30.
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2. Next, we show (Lemma 32 and Corollary 33) that two structures over the
same set of set names in which each object either

e has the same incidence in both structures, if this incidence is at most
qs — 1; or else

e has the same coincidence in both structures, if this coincidence is at
most gs — 1; or else

e has an incidence and a coincidence of at least ¢s in both structures

cannot be distinguished by a counting-only SyCALC query with quantifier
depth ¢s in the uppercase (set name) variables.

3. Lemma 34 combines Lemma 31 and Corollary 33 and states essentially
the same as Corollary 33, but with the condition removed that the sets of
set names in both structures must be the same.

4. In our penultimate lemma (Lemma 35), we remove the condition that
the two structures must actively involve the same objects. We show that
two structures, which involved the same number of sets names, and in
which each natural number is either the incidence of an object in both
structures of not the incidence of an object in either structure cannot be
distinguished by a counting-only SyCALC query.

5. Finally, Lemma 36 combines Lemmas 34 and 35 and states essentially
the same as Lemma 34, but with the condition removed that the objects
actively involved in both structures must be the same.

We start with Lemma 31 below, which compares structures involving differ-
ent numbers of set names.

Lemma 31. Let {{(z1,...,2m) | @(x1,...,2m)} be a counting-only SyCALC
query, where ¢ has quantifier depth gp in the lowercase variables and qs in
the uppercase variables. Let (D,S,01,7v1) and (D,S,09,72) be structures with
lo1| > 2gs — 1 and |o3] > 29s — 1 such that, for all o € D,

e if coinc(o,71) > ¢s, then inc(o,y2) = inc(0,71); or
e clse, if coinc(o,71) < gs — 1, then coinc(o,72) = coinc(o,71).

Then, for all o01,...,0m € D, (D,S,01,71) = ¢(01,...,0m) if and only if
(D7870—27’72) ': 90(01,...,0m).

Proof. Let ny = |o1| and ng = |oa2|. Notice that Lemma 31 holds trivially if
ni1 = ng. Thus assume n; # no. By symmetry, we may assume that ny > n;.
Now, it suffices to prove Lemma 31 for the special case where no = n;+1, as the
general case follows from repeatedly applying Lemma 31 for this special case.

To simplify the exposition, we call objects o € D for which coinc(o,y1) > gs
objects of the first category and objects o € D for which coinc(o,71) < ¢gs — 1
objects of the second category. Now, let o7 = {S1,...,S,,} € S and o) =
{Ty,....,Th,+1} C S with of No) = 0. We construct 7; and ~4%, which are
initially empty, as follows:
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1. for each object o of the first category, add the pairs (o, S1),..., {0, S;) to
vy and add the pairs (0, T1),. .., {0, T;) to ¥4, where i = inc(0,y1);

2. for each object o of the second category, add the pairs (0, Sj41), ..., (0, Sn,)
to 7; and add the pairs (0, Tji1),...,(0,Th,), (0,Tn,+1) to 75, where
J = coinc(o,71).

By construction, we have that, for each object o in the first category, inc(o,v1) =
inc(o,7;) = inc(0,74) = inc(o,72), and, for each object o in the second category,
coinc(o,7y1) = coinc(o,71) = coinc(o,v4) = coinc(o,y2). Since |o1| = |of], |o2| =
|o4], and the SyCALC query under consideration is counting-only, it follows that,
for all o1,...,0m € D,

(D,S,01,m) Eelor,...,0m) < (D»‘S‘uo—/h’)’{) ):‘p(olv"'vom);
(D7850—23'-Y2) ':80(01,---70m) — (D7830/277£) ?@(017--~,0m)-

Now, consider the Ehrenfeucht-Fraissé pebble game of ¢p + gs rounds (¢gp of
which involve selecting objects in D and ¢s of which involve selecting set names)
on structures (D, S,01,v1) and (D, S, 05,+4). To show that the Dupplicator has
a winning strategy for this game, we make the following observations:

1. For all objects o € D, and for all k =1,...,n1, (0, Sk) € 71 if and only if
(0,Ty) € 7. This follows immediately from the construction of 71 and ~5.

2. For all objects o € D, and for all k = ny —gs + 1,...,n1, {0,Sk) € 7}
if and only if o is of the second category. To see the “only if,” it suffices
to observe that if o is of the first category, then coinc(o,v1) > ¢s, and,
hence, by construction, none of Sy, _45+1,--..,5n, can be associated with
o in 1. To see the “if,” let 0 be an object of the second category, and let
coinc(o,7y1) = j. Then, by construction, for all k = j+1,...,n1, {0,S;) €
v Since j < gs — 1, it follows in particular that, for all & = gs,...,n,
(0,Sk) € 1. It now suffices to observe that ny > 2¢gs — 1 implies that
gs <n1—gs+1.

3. Similarly, we have that, for all objects o € D, and for all k = n; — gs +
1,...,n1 4+ 1, {0,T}) € 4 if and only if o is of the second category.

Properties 2 and 3 above imply that the set names Syg11,...,5,, in 7] and
Tys+1r---s Doy Tny+1 in v all correspond with the set of all objects of the
second category.

We now exhibit a winning strategy for the Duplicator:

e if the Spoiler chooses an object in D in one structure, the Duplicator
chooses the same object in the other structure;

e if the Spoiler chooses S;, 1 < ¢ < my — ¢s, in 74, then the Duplicator
chooses T; in ~4;

e if the Spoiler chooses T;, 1 < i < ny — ¢s, in 75, then the Duplicator
chooses S; in v{;
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e if the Spoiler chooses S;, n1 — gs + 1 < i < ny, in 7] not selected before,
then the Duplicator chooses one of Ty, —gg+15 - - - » Iny+1 10 ¥4 not selected
before;'® and

e if the Spoiler chooses T;, n1 —gs+1 < ¢ < ny+1, in 74 not selected before,
then the Duplicator chooses one of S, _gs+1,. .., 5, i 7] not selected
before.*”

By Properties 1-3, set names selected in the same round are associated with
precisely the same objects in ] and ~4, respectively. Hence, the above is indeed
a winning strategy for the Duplicator. Using a straightforward generalization
of the classical result for Ehrenfeucht-Fraissé pebble games to two-sorted logics,
it now follows that, for all o1,...,0,, € D,

(D7Sa 0-/1771) ): (p<01’ v 70m) — (D7$7 0-127,75) ): 80(017 e ,0m>7
which concludes the proof. O

We now show that two structures over the same set of set names in which
each object either

e has the same incidence in both structures, if this incidence is at most
qs — 1; or else

e has the same coincidence in both structures, if this coincidence is at most
gs — 1; or else

e has an incidence and a coincidence of at least ¢s in both structures

cannot be distinguished by a counting-only SyCALC query with quantifier depth
gs in the uppercase (set name) variables. Lemma 32 below exhibits a special
case of this result, a repeated application of which will lead to the actual result
(Corollary 33).

Lemma 32. Let {{(x1,...,2m) | ¢(z1,...,2m)} be a counting-only SyCALC
query, where ¢ has quantifier depth qp in the lowercase variables and qs in the
uppercase variables. Let (D,S,0,71) and (D,S,0,7v2) be structures such that,
for some 0 € D,

1. inc(0,71) > ¢qs and coinc(o,v1) > gqs; and
2. inc(0,72) > qs and coinc(o,v2) > gs.-

Assume furthermore that, for all o' € D\ {o}, inc(o’,71) = inc(0o’,v2). Then, for
all 01,...,0m € D, (D,S,0,7) |E ©(01,...,0m) if and only if (D,S,0,v) E
w01, 50m)-

16Since there are more than gs set names available to choose from, this is always possible.
17Since there are gs set names available to choose from, this is always possible.
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Proof. Let n = |o|. The object o in the statement of Lemma 32 can only exist
if n > 2gs. If n = 2¢s, then, necessarily, inc(o,71) = inc(o,72) = ¢s and
Lemma 32 holds trivially. Therefore, we assume in this proof that n > 2¢s.

Also, it suffices to consider the case where, in one of the structures, o occurs
in exactly gs sets, as the general case follows from two applications of Lemma 32
in this special case.

Thus, assume that inc(o,71) = gs. Let inc(o,72) = k. Without loss of
generality, we may assume that gs < k < n —¢s.!® Let 0 = {S1,...,S,}, let
Ty,...,T4s, Ui, ..., Uy be pairwise different set names not in o, and let o/ =
{51,...,8.,Th,...,Tys,Ur, ..., Ug}. We construct 7] and 5 by adding pairs
to v\ {{0,51),...,(0,Sn)}, as follows:

1. for each object o' € D\ {0} with coinc(o’,71) < gs — 1, add the pairs
(0, Th),..., (0, Tgs), (0, Ur),..., {0, Ug) to both v and 5.
2. add the pairs (0,T1),. .., (0, Tys) to ¥i;
3. add the pairs (o, Uy),..., {0, Ug) to 5.
Then, the structures (D, S,0,71) and (D, S,0’,v1), respectively (D, S, o, v2) and
(D, S, 0’,74), satisfy the conditions of Lemma 31!, and hence
(D,S,O’, ’Yl) ): 50(017 s 70m) — (D,S, 0/7’71) ': L)0(017 R Om);
(D,S,0,72) E ¢(01,...,0m) < (D,S,0",75) E p(01,...,0m).
Now, consider the Ehrenfeucht-Fraissé pebble game of ¢p + gs rounds (gp of
which involve selecting objects in D and ¢s of which involve selecting set names)

on structures (D, S, 01,71) and (D, S, 04, +4). We exhibit a winning strategy for
the Duplicator:

e if the Spoiler chooses an object in D in one structure, the Duplicator
chooses the same object in the other structure;

e if the Spoiler chooses S;, 1 < i < n, in one structure, then the Duplicator
chooses the same set name in the other structure;

e if the Spoiler chooses T;, 1 < i < ¢s, in v not selected before, then the
Duplicator chooses one of Uy, ..., U in 74 not selected before;2°

e if the Spoiler chooses T;, 1 < i < gs, in v not selected before, then the
Duplicator chooses one of Uy, ..., Uy in v} not selected before.?°

e if the Spoiler chooses U;, 1 < ¢ < k in v not selected before, then the
Duplicator chooses one of T1, ..., T, in 74 not selected before;?!

18Observe again that the case where k = ¢s holds trivially.

19In particular, this is the case for the condition |o| > 2¢s — 1.

20Gince there are more than gs set names available to choose from, this is always possible.
21Gince there are qs set names available to choose from, this is always possible.
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e if the Spoiler chooses U;, 1 < i < k, in 4 not selected before, then the
Duplicator chooses one of T1,...,T,s in 7} not selected before.?!

Since set names selected in the same round are associated with precisely the
same objects in ] and ~4, respectively, the above is indeed a winning strategy
for the Duplicatator. As in the proof of Lemma 31, it now follows that, for all
01y...,0m €D,

(D7S7U/772/l) ':¢(017"'70m) @ (D7S?a/7’>/é) ':w(ol""70m)?
which concludes the proof. O

The desired result of the second step of our step-by-step approach follows
from a repeated application of Lemma 32, and is stated and proved below, as
Corollary 33.

Corollary 33. Let {(z1,...,2Zm) | p(x1,...,2m)} be a counting-only SyCALC
query, where ¢ has quantifier depth gp in the lowercase variables and qs in
the uppercase variables. Let (D,S,0,v) and (D,S,0,72) be structures with
|o| > 2qs — 1 such that, for all o € D,

e cither inc(o,v1) = inc(o,v2) < gs — 1;
e or coinc(o,v1) = coinc(o,72) < gs — 1;
e orinc(o,71) > gs, coinc(o,71) > gs, inc(o,72) > ¢s, and coinc(o,v2) > ¢s.

Then, for all 01,...,0m € D, (D,S,01,71) E ¢(01,...,0m) if and only if
(Da87027’72) |: @(Ola"'aom)'

Proof. Let {o',...,0"} be the set of all objects such that, for j = 1,...,k,
inc(o’,71) > ¢s and coinc(0?,v1) > ¢s.22 By the statement of Corollary 33,
these are also all objects such that, for j = 1,...,k, inc(0?,72) > ¢s and
coinc(0?,y2) > gs. Notice that, for o € D\ {o',...,0"}, inc(o,v]) = inc(o,3).
Now define ¥ := ~1, and, for j =1,...,k,

7= (TINS5 [ (07, S) € mb) U{(07, 8i) | {7, Si) € e}
Clearly, v* = 45. By Lemma 32, we have that, for all j = 1,...,k,
(D,S,0,v 1) = p(o1,...,0m) <= (D,S,0,77) = p(01,...,0m).
Hence,
(D,S,0,7m1) E ¢(o1,...,0m) < (D,S,0,%) | ¢(o1,...,0m). O

Using Lemma 31, we bootstrap Corollary 33 to the more general case where
both structures do not necesarilly involve the same set names:

22Notice that this set may be empty if |o| = 2¢s — 1.
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Lemma 34. Let {{x1,...,2m) | ¢(z1,...,2m)} be a counting-only SyCALC
query, where ¢ has quantifier depth gp in the lowercase variables and qs in
the uppercase variables. Let (D,S,01,v1) and (D,S,02,72) be structures with
lo1] > 2gs — 1 and |oa| > 2gs — 1 such that, for all 0 € D,

e cither inc(o,v1) = inc(o,v2) < gs — 1;
e or coinc(o,v1) = coinc(o,7y2) < gs — 1;
e orinc(o,71) > gs, coinc(o,71) > gs, inc(o,v2) > ¢s, and coinc(o,v2) > ¢s.

Then, for all 01,...,0m € D, (D,S,01,71) E ¢(01,...,0m) if and only if
(Da87027’72) ': 90(017"'50771)'

Proof. Without loss of generality, we may assume that o1 Ngy = ). Let 0 =
o1 Uos, and let

Y1 =1 U{{0,T) | coinc(o,71) < qs —1 & T € 02};
v = v2 U {{0,5) | coinc(o,72) < qs—1& S € o1}

Then, the structures (D,S,01,7) and (D, S, 0,71), respectively (D, S, 02,72)
and (D, S, 0,v%), satisfy the conditions of Lemma 31, and hence

(D78301771) ): 90(01""707?1) — (D,S,O’,’yi) ': 50(017"'70771);
(D,S,Uzv”m) }: @(017"'70?%) — (D,S,O’,’yé) ': @(017"'70711)'

Lemma 34 now follows from the observation that the structures (D, S, 0,~1) and
(D, S, 0,7%) satisfy the conditions of Corollary 33. O

Before we can prove Theorem 30, we need to generalize Lemma 34 to the
situation where the structures under consideration do not necessarily involve
the same objects (Lemma 36). The key to this generalization is Lemmas 35,
below. As both Lemmas 35 and 36 will be used to prove Theorem 30, Lemma 35
is stated slightly more general than strictly required to prove Lemma 36.

Lemma 35. Let {(x1,...,Tm) | ©(@1,...,Zm)} be a counting-only SyCALC query.
Let(D,S,01,7) and (D, S,02,72) be structures with |o1] = |o2| such that, for

all 01 € D, there exists oo € D with inc(o2,7v2) = inc(o1,71), and vice versa.

Let 011,...,01m,021,...,02m € D be such that, fori=1,...,m, inc(o15,71) =

inc(02i,7v2). Then, (D,S,01,71) = ¢(011,--.,01m) if and only if (D, S,02,72) =

@(021, ey Ogm).

Proof. Let o1 = {S1,...,5,}. We construct v; from ~; as follows. Initially,
vy = 0. Then, for all o € D, if inc(o,71) = i, add (0, 51),...,(0,S;) to ~}.
We construct 4 from 75 in a similar way. Since the SyCALC query under
consideration is counting-only, we have that

(D,S,O'l,’)/l) ': @(011;---,01m) — (D,S,Ul,’yi) ): @(011,---701m);
('D,S,O'Q,’)/Q) ): @(021,...,027”) < (D,S,O’Q”yé) ): (p(021,...,OQm).
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By assumption, {inc(o,71) | o € D} = {inc(o,72) | o € D}. Let us denote
this set as {i1,...,4t}. Now, for j = 1,...,k, choose 0]1 and 03 in D such
that inc(ojl-, Y1) = inc(O?, v2) = i;. We construct ;" from 7, as follows. Initially,
7y = 0. Then, forall j = 1,...,k, add (0}, 51), ..., (0}, Si,) to 7. We construct
~4 from 9 in a similar way. Let hy : D — D be the mapping sending an object
o to the unique object 0}, 1 < j < k, for which inc(o,71) = ¢;. Similarly,
let ho : D — D be the mapping sending an object o to the unique object 0?,
1 < j <k, for which inc(o,v2) = ¢;. Observe that for each object o in D, o0 and
h1(o) are associated with exactly the same set names in +;, and o and hy(0) are
associated with exactly the same set names in 4. Since, furthermore, lowercase

(object) variables are never compared in SyCALC, it follows that?3

(D,S, 01771) ): 90(0117 ceey Olm) — (D,S, 01771/) ': @(h1(011)7 LR hl(olm));
(D,S, 0'27/7/&) ’: <p(021a EERE OQM) — (D’S7 02775/) ': QO(hQ(OQl)? L) hQ(OQm))'

Now, let h : D — D be any bijective mapping sending o} to 0?, 1 < i <
k. Clearly, h defines an isomorphism between (D,S,01,7v{) and (D, S, 02,7%).
Also, by construction, we have that h(hi(o11)) = ha(021), ..., h(hi(o1m)) =
ha(o2m). Hence, by genericity [23], (D, S,02,7!) E ¢(h1(011),...,h1(01m)) if
and only if (D, S, 02,74) = ¢(ha(021), - .., ha(02m)), which concludes the proof.

O

Lemma 36. Let {{x1,...,Zm) | ©(z1,...,2m)} be a counting-only SyCALC
query, where @ has quantifier depth gp in the lowercase variables and qs in
the uppercase variables. Let (D,S,01,v1) and (D,S,02,72) be structures with
lo1] > 2gs — 1 and |oa| > 2gs — 1 such that, for all 0; € D,

e ifinc(o1,71) < qs — 1, there exists o3 € D with inc(og,72) = inc(o1,71),
and vice-versa;

e ifcoinc(o1,71) < gs—1, there exists oo € D with coinc(og,y2) = coinc(o1,v1),
and vice-versa; and

e if inc(o1,71) > ¢s and coinc(o1,71) > qs, there exists oo € D with
inc(o2,72) > gs and coinc(oz,v2) > qs, and vice-versa.

Furthermore, let 014, ...,01m,021,---,02m € D such that, fori=1,...,m,
e either inc(o14,71) = inc(02;,72) < qs — 1;
e or coinc(oy;,71) = coinc(02;,72) < gs — 1;

e orinc(013,71) > ¢s, coinc(013,71) > ¢s, inc(02i,72) > ¢s, and coinc(02;,v2) >
gs-

Then7 (D,S, 01, ’Yl) ): @(011, sy Olm) Zf and Only Zf (Da Sa 02, 72) ’: 410(0215 ey O2m)-

23This intuition can be corroborated by a straightforward structural induction argument.
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Proof. Let n = 2gs, and let ¢ = {S1,...,S,}. Using 71, we construct 71, as
follows. Initially, 71 is empty. Let o € D. If 1 < i = inc(o,m) < ¢s — 1,
then add (o, S1),...,(0,5;) to v;. Otherwise, if j = coinc(o,11) < ¢s — 1,
then add (o, 51),...,(0,Sn—;) to 7;. Otherwise, i.e., if inc(o,71) > ¢s and
coinc(o,71) > gs, add (0, 51), ..., (0,S,s) tov;.2* Using 72, we construct 74 in a
similar way. The structures (D, S,01,71) and (D, S, 0,71) satisfy the conditions
of Lemma 34, and hence

(D,S,01,m) Ego11,...,01m) <= (D,S,0,7) E ¢(011,-..,01m);
(D,S,O’Q,’Yg) }: 90(021a'~'702m) — (D,S,O’,’}/é) ': 50(0217"'502771)'

Lemma 36 now follows from the observation that the structures (D, S, 0,v}) and
(D, S, 0,v%) satisfy the conditions of Lemma 35. O

Using Lemmas 35 and 36. we can now prove Theorem 30, stated on p. 31.

of Theorem 30. Let (D,S,,~) be a structure and let o1, ..., 0, € D such that
(D,S,0,v) = ¢(o1,...,0m). We now construct a SyCALC formula ¢, 5 de-
scribing the incidence information contained herein, where ¢ denotes the se-
quence o1, ...,0,. Thereto, we distinguish two cases.

1. n=lo| < 2¢gs — 1. Then, let ¢, 5 be the formula Eq(n) A ¢, ~ 5, where
Yo,,5 15 a conjunction of the following formulae:

o for i =1,...,n, Iz eq(x,1) if there exists o € D with inc(o,7) = i,
and -3z eq(x,¢) otherwise; and
o for j =1,...,m, eq(z;,inc(o;,7)).

2. n=|o| > 2¢s —1. Let ¢, ~,5 be the formula Gteq(2¢s — 1) A, ~.5, Where
Yo ,,5 is a conjunction of the following formulae:

o fori=1,...,qs—1, 3z eq(x, i) if there exists o € D with inc(o,v) = 1,
and -3z eq(x, i) otherwise;

e Jz (gteq(z,gs) A cogteq(z,qs)) if there exists o € D with ¢gs <
inc(o,v) < n —gs, and -3z (gteq(z, gs) A cogteq(z, ¢s)) otherwise;

o for j = gs — 1,...,0, 3z coeq(x,j) if there exists o € D with
inc(o,v) =n — j, and -3z coeq(z, j) otherwise;

o for £ =1,...,m, ay(xs), which equals
eq(ze, inc(og, 7)) if inc(og,7) < gs;
coeq(xzy¢, inc(og, 7)) if inc(og,7) > n — gs;

gteq(zy, gs) A cogteq(ze, qs) otherwise.

24Notice that inc(0,7}) = gs and coinc(o,7}) = gs.
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Now, let g := {{z1,...,2zm) | ¢'(x1,...,2m)} With ¢’ equal to

\/ <Po,y,5($17--~7xm)-

o,7,5 with
(D,S,0,7)F¢(3)

From the onset, it appears that ¢’ may be an infinite disjunction, as the size of &
is in principle unbounded and ¢'is drawn from the infinite enumerable domain D.
Closer inspection of the construction of the formula ¢, 5(21,...,2y) reveals,
however, that there are only finitely many different such formulae (their number
being bounded by a function of gs only). Hence, by ignoring duplicates, we may
perceive the disjunction as finite, and q’ as a well-formed SyCALC formula.
We claim that the original counting-only SyCALC query q is equivalent to
q’. To see this, let (D,S,0’,7') be a structure and let o},...,0,, € D be
such that (D,S,0',7") = ¢(0},...,0),). Hence, @y 1 5 is a disjunct of ¢,
and (D,S,0',7) E ¢'(0),...,0,). Conversely, assume that (D,S,0’,7)

/

¢'(0,...,0,). Hence, for at least one of the disjuncts ¢, 50of ¢’, (D,S,0',7') =
/

Po,v,5(01, ..., 00,). Since ¢,  5is a disjunct of ¢’, we also know that (D, S, 0,7) =
©(01,...,0m). We distinguish two cases:

1. |o| < 2¢s — 1. Then, by construction of ¢, 5 and from (D,S,0’,7’) =
Vo501, ..., 00,), it follows that the conditions of Lemma 35 are met
for the structures (D,S,0,7) and (D, S,c’,7') and the objects o1, ..., 0m,

oy,...,00.. Since q is counting-only, (D,S,0,v) = ¢(01,...,0,) implies

ryme

(D,S,0",v") E p(oy,...,0.,).

2. |o] > 2¢s — 1. We reason precisely as in the previous case, except that
we use Lemma 36 instead of Lemma 35. Hence, also in this case, we may
conclude that (D, S,0’,v") = ¢(0,...,0.,).

It now suffices to observe that all the disjuncts of ¢'(x1,. .., x,,) are of the form
described in the statement of this Theorem. O

Remark 37. Superficially, the proof of Theorem 30 seems non-constructive, be-
cause of the argument involving the infinite disjunction. A closer look to the
construction of the subformulae ¢, 5(x1,...,2m) of that disjunction reveals
that it is possible to consider all different such formulae by only considering
structures (D, S, o,v) with at most 2¢s — 1 set names in ¢ and at most 2¢gs — 1

objects in the active domain (to ensure that, for all N C {1,...,|o|}, one can
construct 7 in such a way that {inc(o,v) | 3 € o (0,5) € v} = N). Notice
that, upon isomorphism, these structures (D,S,o,7) and objects o1,...,0pm

can be finitely enumerated. It can also be verified in each instance whether
(D,S,0,v) = ¢(o1,...,0m), and hence whether ¢, - 5(x1,...,2y) is part of
the disjunction.

Example 38. As shown in Example 29, the SyCALC queries in Example 18
expressing Queries 3—-5 are counting-only.

The SyCALC query expressing Query 3 can be rewritten as {() | =3z gteq(z, 2) };
the SyCALC query expressing Query 4 can be rewritten as {z | eq(z,1) A
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Jy gteq(y, 3)}; and, finally, the SyCALC query expressing Query 5 can be rewrit-
ten as {() | -3z (gteq(z,1) A cogteq(z,1))}.

The rewritten queries conform to Theorem 30, after applying some straight-
forward simplifications. In particular, we did not have to distinguish between
different sizes of o. This is not always the case, however, as was already illus-
trated in Example 17 for QuineCALC queries (which are special cases of counting-
only SyCALC queries).

The formulae Eq(n) or Gteq(2¢s — 1) in the statement of Theorem 30 are of
course not QuineCALC formulae (if only because they do not have a free lower-
case variable). However, they can easily be grouped with one of the formulae
with which they are conjoined, so that we can derive the following corollary to
Theorem 30.

Corollary 39. Let q := {(z1,...,Zm) | ¢(z1,...,2m)} be a SyCALC query.
Then q is counting-only if and only if ¢ is equivalent to a quantified Boolean
combination of QuineCALC query formulae.

In other words, the query language that includes QuineCALC and that is
closed under quantification and Boolean operators is equivalent to the language
of the counting-only SyCALC queries.

Theorem 30 and Corollary 39 also provide a positive answer to Research
Question 7.

6. Decidability

Here, we consider the decision problems stated in Research Question 8 and 9.
We first show that it is decidable if a counting-only SyCALC query is a Quine-
CALC query (Section 6.1), but that it is undecidable if a SyCALC query is
counting-only (Section 6.2). We then show that satisfiability, validity, emptiness,
containment, and equivalence are decidable for counting-only SyCALC queries,
but undecidable for general SyCALC queries (Section 6.3).

6.1. Is a counting-only SyCALC query a QuineCALC query?

All QuineCALC queries are unary counting-only SyCALC queries, but, as
already established in Example 29, not all unary counting-only SyCALC queries
are equivalent to a QuineCALC query. Comparing the normal forms exhibited
for QuineCALC queries in Corollary 16 respectively for general counting-only
SyCALC queries in Theorem 30, we also see why.

Let q := {z | ¢(x)} be a unary query, let (D, S, 0,v) be a structure, and let
o € D. The normal form for QuineCALC queries in Corollary 16 reveals that, for
a fixed size of o, the truth of (D,S,0,7v) | ¢(0) in that case only depends on
the incidence of o in the structure. For general counting-only SyCALC queries,
on the other hand, the normal form in Theorem 30 reveals that the incidence
of other objects in the structure may also play a role.
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It turns out that the difference between QuineCALC queries and general
counting-only SyCALC queries exhibited above actually characterizes the dis-
tinction between both. Moreover, this difference, appropriately formalized, may
actually be used to decide whether a unary counting-only SyCALC query is
equivalent to a QuineCALC query, as is shown next.

Theorem 40. [t is decidable whether a counting-only SyCALC query is equiv-
alent to a QuineCALC query.

Proof. By definition, non-unary queries cannot be equivalent to QuineCALC
queries. Thus, consider a unary counting-only SyCALC query q := {z | ¢'(x)}
with quantifier depth ¢s in the uppercase variables. Let Si,...,S25-1 € S
be pairwise different set names, and let og, 01,...,02¢5—1 € D be pairwise dif-
ferent objects. Now, consider n, 1 < n < 2gs —1 and N C {0,...,n}. Let
(D,S,04,vn) be the structure where o, = {S1,...,5,} and

w = J {0, 81),. -, (0i, ) 1.2

iEN

Define K, v ={k € N | (D,S,0n,7n) = ¢(0r)}. We claim that q is equivalent
to a QuineCALC query if and only if, for all n = 1,...,2¢s — 1, and for all
Ny, N2 CH{0,...,n}, Kyn, N Na= K, n, N N1.25 We now prove this claim.

e We start with the “only if”. Thus suppose q is equivalent to a QuineCALC
query of the form shown in Corollary 16. We use ¢ (z) and v, () as defined
in Corollary 16. Observe that the quantifier depth ¢ occurring in the
expression for ¢’ need not be equal to ¢s! By symmetry, it suffices to prove
that, for all n = 1,...,2¢s — 1, and for all N1, Ny C {0,...,n}, KN, N
Ny C K, n,NN;. So, assume that for some n, Ny, and N, k € K;, n, NNa.
In particular, k& € Ny, from which we derive that inc(og,yn,) = k, and
(D,S,0n,7N,) E ¢'(0r). We again distinguish two cases:

1. n <2¢—2. Since (D, S,0n,7n,) E ¢ (o), we have (D, S, 0n,7n,) E
¥ (0r). This is only possible if ¥,,(x) contains the disjunct eq(z, k).
Since k € Na, we have inc(og,vn,) = k, and hence (D, S,0p,7nN,) =
Un(ok), (D, S,0n,vn,) E ¢'(0k), and (D, S, 0y, 7n,) E ¢(0k). Hence,
ke KmNz'

2. n>2q—1. Since (D, S,0,,7vn,) FE ¢'(0k), we have (D, S, 0, vn,)
(o). We now distinguish three subcases:

(a) ¥ < ¢. Then (D,S,0n,7n,) FE ¥(ox) can only hold if i(x)
contains the disjunct eq(z, k).

(b) ¢ <k <n-—gq. Then (D,S,0,,vn,) E ¥(0x) can only hold if
1 (x) contains the disjunct gteq(x, ¢) A cogteq(z, q).

25Hence, even if 0 € N, 0p never occurs in yy.
26Tntuitively, this condition expresses that the truth of (D, S, on,vn) = ¢(0x) only depends
on the incidence of o in this structure and not on the incidence of other objects.
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(¢) k >mn—gq. Then (D,S,0n,vn,) = ¥(ox) can only hold if ¢(z)
contains the disjunct coeq(z,n — k).

The remainder of the reasoning in all three subcases is now com-
pletely analogous to Case 1.

e We now turn to the “if”. Since q is counting-only, we may assume it is
equivalent to a query of the form shown in Theorem 30 with m = 1. We use
¥(x) and 9, (x) as defined in Theorem 30. We show now that the condition
that, for all n = 1,...,2¢s — 1, and for all N1, Ny C {0,...,n}, KN, N
Ny = K, n, N N; implies that subformula with existentially quantified
domain (lowercase) variables can be eliminated from ¢’, and hence that q
is equivalent to a QuineCALC query.

1. We first consider the subformula v, (z1), 1 < n < 2¢s — 2.27 Let
P11 A ... A, Aag(z1) be one of the disjuncts of ¥, with aq(z1) :=
eq(z1,k), 0 < k < n. We distinguish two subcases:

(a) k=0. Let Ny ={0}U{i |1 <i<n& ;= 3z eqx,i)}.
Clearly, (D, S, 0n,vn,) E ¢'(00), and, hence, 0 € K,, n,. Now,
let N2 be any subset of {0,1,...,n} containing 0. Since 0 €
K, nyNNy = K, n,NN1, it follows that (D, S, 05, vn,) = ¢’ (00).
This is only possible, however, if 1, contains a disjunct Y91 A
.o N2y A a1(z1), where, for i = 1,...,n, ¥9; is Iz eq(x, 1) if
i € Ny and —~3z eq(z,7) otherwise. Hence, all disjuncts of ¥, (1)
containing a1 (x1) together are logically equivalent to ay(z1).

(b) 1 < k < n. Without loss of generality, we may assume that 9
is Jx eq(x, k), otherwise the disjunct is unsatisfiable and can be
omitted. Let Ny = {i | 1 <14 <n & ¥1; = Iz eq(x,1)}. Clearly,
(D,S,0n,7n,) E ¢ (o), and, hence, k € K,, n,. Now, let N2 be
any subset of {0, 1,...,n} containing k. Since k € K,, n, NNy =
K, n, NNy, it follows that (D, S, 0y, vN,) = ¢’ (o). This is only
possible, however, if 1, contains a disjunct 991 A. . .Ada, Aay (z1),
where, fori =1,...,n, ¥9; is Iz eq(x, i) if i € Ny and -3z eq(z, )
otherwise. Hence, all satisfiable disjuncts of v, (z1) containing
aq (1) together are logically equivalent to (3 eq(z, k)) Aoy (1),
which in turn is logically equivalent to as(x1).

2. We next consider the subformula ¢ (z). Let
191/\.../\19qs_1 /\19/\19(13_1/\...’[90/\041(.1?1)

be a subformula of ¥ (). We distinguish three subcases:

(a) ay(z) is eq(x, k), with 0 < k < gs. Then, choose n = 2gs — 1
and proceed as in Case 1 for ¢, (x1) with 1 <n < 2¢s — 2.

2TWe need not consider n = 0, since, by construction, g is free of quantification over
domain variables.
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(b) ay(x) is gteq(z, gs) A cogteq(x, gs). Then, choose n = 2¢s — 1
and k = gs, and proceed as in Subcase 1b of Case 1 for 1, (x1)
with 1 <n < 2¢gs — 2.

(c) ax(z) is coeq(x, k'), with 0 < k' < ¢s. Then, choose n = 2¢s — 1
and k = n—k’, and proceed as in Subcase 1b of Case 1 for 1, (1)
with 1 <n <2¢gs — 2.

It now suffices to observe that there are only a finite number of sets K, n,
1<n<2s—1and N C {0,...,n}, that can all be computed. Hence, the
condition shown above to be equivalent with “q being equivalent to a Quine-
CALC query” can effectively be evaluated. O

Hence, Research Question 8 has a positive answer for QuineCALC queries.

6.2. Is a SyCALC query counting-only?

We show that this problem is undecidable by a reduction of satisfiabilty
of a domain-independent Boolean relational calculus query which uses only
one, ternary, relation symbol and no constants, which is undecidable [24, Theo-
rem 6.3.1 and Exercise 6.19], to deciding whether a SyCALC query is counting-
only.

The reduction consists of two steps. First, in Section 6.2.1, we show how to
encode arbitrary ternary relations by binary relations which can be represented
by the structures considered in this paper. Then, in Section 6.2.2, we provide
the actual reduction.

6.2.1. Encoding ternary relations in binary relations

Let I = {t1,...,t,} be a set of triples that do not use the pairwise different
constants 0, $1, $2, $3, $4, and, for 1 < ¢ < n, the constants i, fi1, #io, fis,
$i1, $io, and $i3. We shall refer to these constants as encoding constants. We
now construct the binary relation containing the pairs (40, $1), (0, $2), (10, $3),
(#0, %4), and, for every triple t; = (A;, B;, C;), 1 <i < n, the tuples:

ﬁ0,$7;1>, <ﬁ0,$Z2>, and <ﬁ0,$23>,

i, $ia), (Hiz, $ia), (Hiz, $is), (His, $iz), and (fiz, C;).

Ezample 41. Let I = {(A1, B1,C4), (A2, Ba, C3)} be a ternary relation with two
triples. If we apply the above construction to I, we obtain the binary relation
in Figure 4, left. In Figure 4, right, we have visualized this relation (except for
the parts involving #0).

Let A = {$0} U (U, <<, {0 i1, §i2, #is}) and

o=1{$1,92,$3,84} U ( | {4 B:,C;, $ir,$in, Sis}).

1<i<n
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<A17Blycl> <A27B27CQ>
<ﬁ07$1> <ﬁ07$11> <ﬁ07$21> Al
($0,%2) | (40, 812) (40, $22) A
(0, $3) (j{07$13> (q0,$13> 1=—> %1, « {11 —> B
(10, 84) g’?ﬁé g7§221>> $1o «— filo — $13 «— ti13 — C
(#11,811) (#21,$21)
(411, B1) (#21, B2) A
(1,$12) (2,$25) A 2
(#12,812) (122, $22) 57— $2; « 21 — By
15,81 22, $2
§§13, $1§§ ég%, $2§§ 822 =122 = 82 25 = Ch
<ﬁ137 Cl> <ﬁ237 02>

Figure 4: The ternary relation I = {(A1, B1,C1), (A2, B2, C2)} translated to a binary relation.

Observe that A No = @ and that the constructed binary relation is a subset
of A x o. Therefore, we can easily store the binary relation as a structure
(D,S,0,v) with A C D, 0 C S, and v the constructed binary relation. We
write TerToBi(I) to denote this structure (or any isomorphic structure obtained
by renaming the encoding constants).?®

We now exhibit a SyCALC formula Triple(X,Y, Z) such that TerToBi(I)
Triple(A, B, C) if and only if (A, B,C) € I. In order to do so, we first observe
that it is not necessary to know which object and set names represent which
type of encoding constant, or which set names represent entries of the ternary
relation 7. It turns out that we can derive this information from the encoding,
as follows.

1. The zero constant 40 can be distinguished as the only object in the encod-
ing associated to at least four set names. We express this by Zero(z) :=

gteq(z, 4).

2. The identifier constants i, 1 < ¢ < n, can be distinguished as precisely
those objects in the encoding associated to exactly three set names. We
express this by Id(z) := eq(z, 3).

3. The sharp constants iy, fiz, and fiz, 1 < i < n, can be distinguished
as precisely those objects in the encoding associated to exactly two set
names. We express this by Sharp(z) := eq(z, 2).

4. The dollar constants $i1, $is, and $i3, 1 < i < mn, can be distinguished
as precisely those set names in the encoding to which the zero constant
has been associated. We express this by DollarSet(X) := 3z (Zero(z) A
I'(z,X)).

28 Genericity considerations [23] allow us to ignore this minor ambiguity.
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5. All other set names in the encoding are referred to as pure constants, and
these are precisely the entries A;, B;, and C;, 1 < i < n, of the triples
of the original ternary relation I. We express this by PureSet(X) :=
—DollarSet(X) A3z I'(z, X).

Looking at the encoding of the triple t; = (A;,B;,C;), 1 < i < n, we
additionally observe the following:

6. The first entry of triple ¢;, A;, is represented by in the binary member-
ship relation of the encoding the single pair (7, A;). We express this by
First(z, X) := Id(z) A PureSet(X) AT(z, X).

7. The second entry of triple t;, B;, is represented in the binary membership
relation of the encoding by a so-called short path consisting of the three
pairs (7, $i1), (#i1,$i1), (i1, B;). We express this by

ShortPath(x,Y1,21,Y) := Id(x) A DollarSet(Y1) A Sharp(z1) A
PureSet(Y) AT (z, Y1) AT (21, Y1) AT (21,Y).

8. The third entry of triple ¢;, C;, is represented in the binary membership
relation of the encoding by a so-called long path consisting of the five pairs
(2, $i2), (fia, $ia), (Hia, $i3), (His, $i3), (#i3, Ci). We express this by

LongPath(x,Ys, z2,Ys, 23, Z) := Id(x) A DollarSet(Yz2) A Sharp(z2) A
DollarSet(Ys) A Sharp(zs) A PureSet(Z) AYs # Y3 A
F(xa }/2) A F(z27 YQ) A F(ZQa Y?)) A F(Z37 Y3) A F(Z?n Z)

This encoding using short and long paths is graphically visualized in Figure 4,
right, for the ternary instance considered in Example 41. We now define the
following abbreviation:

Triple(X,Y, Z) := F23Y13Y53AY3321 320323
First(xz, X) A ShortPath(x,Y1, 21, X) A LongPath(z,Ys, 22, Y3, 23, Z),

Clearly, (A, B,C) € I if and only if TerToBi(I) |= Triple(A, B, C).

Of course, the SyCALC formula Triple(X,Y, Z) can also be applied to ar-
bitrary structures. Given such a structure (D, S, 0,v), we associate to it the
ternary relation BiToTer(D, S, 0,) as the set of all triples (A, B, C) for which
(D,S,0,v) E Triple(A, B,C).

Upon evaluating this formula, the various objects and set names correspond-
ing to encoding constants and pure constants must of course satisfy the con-
straints expressed by the subformulae in Items 1-8 above. From these, addi-
tional constraints can be inferred. To see this, consider a structure (D, S, d,7),
and assume that (D,S,0,v) = LongPath(i, $is, #is, $is, ti3, C;). Taking into
account that objects and set names are disjoint, the formulae in Items 1-5
distinguish pure constants from encoding constants, as well as all the various
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types of encoding constants we considered. In particular, $i3 # C;. By defini-
tion of long path, we also have $is # $is (Item 8). Since each sharp constant is
associated with precisely two set names (Item 3), it follows that fis # fiz. For
the same reason, (D,S,0,v) & LongPath(j, $j2, i3, $js, iz, C;), irrespective of
J, 872, 873, and Cj.

If both (D,S,0,7) = LongPath(i, $is, tis, $is, i3, C;) and (D,S,0,v)
ShortPath(i, $i1, #i1, B;), we can use an analogous argument to conclude that
i1 # fio. However, it is possible that #i; = i3, provided also $i; = $i3 and
Ezample 42. Consider a structure (D,S,o0,7) of which the membership re-
lation contains the pairs shown graphically in Figure 5. Then, (A, D, D) €
BiToTer(D, S, 0,7).

A

14$11(—ﬁ11—)D
NN

$12 «— ﬁ12

Figure 5: For any structure (D, S, o,v). whose membership relation contains the pairs visu-
alized above, BiToTer(D, S, 0,7) contains (A, D, D).

Clearly, for a ternary relation I, we have BiToTer(TerToBi(I)) = I.

6.2.2. Reduction

Let ¢ be a domain-independent relational calculus query over a single ternary
relation named R and that does not use constants. For convenience, we use
uppercase variables for the variables in ¢. We recursively translate ¢ to a Sy-
CALC formula [p], with the same free variables, as follows:

[R(A, B,C)] := Triple(A, B, C);

[X=Y]:=X=Y;
[=] == —lel;
[3X o] :==3X [¢l;
[1 A o] = [p1] A [p2]-

We relate this translation to the encoding of ternary relations by structures in
Section 6.2.1, as follows:

Lemma 43. Let p(X1,...,X) be a domain-independent relational calculus
query that uses no constants and only one ternary relation name R. Let (D, S, 0,7)
be a structure and let I be a finite ternary relation over the relation scheme R.
We have the following:

1. for all pure constants Dy,...,Dy in o, (D,S,0,7) E [¢](D1,...,Dy) if
and only if BiToTer(D, S, 0,v) = (D1, ..., Dy), where R is considered to
be the scheme of this ternary relation;
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2. for all entries Dy,..., D, in the active domain of I, I = ¢(D1,...,Dg)
if and only ifTerToBi(I) = [¢](D1, ..., Dx).

Proof. 1. For relation atoms, the first statement follows from the definition
of BiToTer(D, S, 0,v). For equalities, the first statement follows trivially,
because (X = Y)(D;, D2) holds if and only if D; = Dy independent of
the context in which it is evaluated. The remainder of the proof of this
statement goes by a straightforward structual induction.

2. The second statement follows from the first by putting (D,S,0,7) =
TerToBi(I) and using that BiToTer(TerToBi(I)) = I. O

We are actually only interested in the Boolean case, which we obtain by
putting £ = 0 in Lemma 43, but we also had to include the case k > 0 in order
to be able to use structural induction.

We are now able to prove the following:

Theorem 44. [t is undecidable whether a SyCALC query is counting-only.

Proof. Let 1 be a domain-independent Boolean relational calculus query that
uses no constants and only one ternary relation name R. Consider the SyCALC
query {(z2, 23) | ©(22, 23)} with

©(z2,z3) == [¢] A F2AY13Y2TY332,3XTFY3IZ
First(x, X) A ShortPath(x,Y1, z1,X) A LongPath(z,Ys, 29, Ys, 23, Z).

We now show that ¢ has a nonempty model if and only if {(z2, z3) | ¥ (22, 23)}
is not counting-only. The desired result then follows, because the following
problem is undecidable: given a domain-independent Boolean relational cal-
culus query that uses no constants and only one ternary relation name, decide
whether this has a nonempty model (since the unsatisfiability of such queries [24,
Theorem 6.3.1 and Exercise 6.19] can be reduced straightforwardly to that prob-
lem).

To see this, first assume that 1 has a nonempty model. Hence, there exists a
nonempty ternary relation I such that I = . By Lemma 43, TerToBi(I) = [¢].
Let (4;, B;,C;) be any triple of I. By construction, there exist constants ¢, $i1,
$i2, $i3, ﬂil, ﬁig, and ﬁi3 such that

{(i, A)} C TerToBi(I);
{<iv $i1>7 <ﬁi1; $i1>7 <ﬁi1a B>} g TerToBi(I);
{(i, $is), (s, $ia), (tiz, $is), (i, $i3), (tis, C)} C TerToBi(I).

Hence, TerToBi(I) E ¢(fia,fiz). The last inclusion above expresses that, in
particular, TerToBi(I) = LongPath(i, $ia, tiio, $is, i3, C;). From our analysis
in Section 6.2.1, we may deduce that #is # fii3, and that, as a consequence,
TerToBi(I) [= LongPath(j, $j2, fis, $73, fiz, C;), irrespective of j, $j2, $j3, and
C;. Hence, TerToBi(I) = ¢(fis, fi2). Now, if 4 is the membership relation
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of TerToBi(I), then inc(#i2,7) = inc(ftis,y) = 2. If {(22,23) | p(22,23)} were
counting-only, then, by Lemma 35, TerToBi(I) &= ¢(fis,fi3) if and only if
TerToBi(I) = o(tiis, fi2). Hence, we must conclude that {(zq,23) | ¢©(22,25)}
is not counting-only.

Conversely, assume that ¢ has no nonempty model. We show that {(z2, z3) |
©(22,23)} is unsatisfiable. Assume to the contrary that there exists a struc-
ture (D,S,0,v) and objects 01,02 € D such that (D,S,0,v) E ¢(01,02).
In particular, (D,S,0,v) = [¢]. By Lemma 43, BiToTer(D,S,0,7v) E 9, if
we assume that the scheme of this ternary relation is R. By construction,
(D,S,0,v) E p(o1,02) implies that BiToTer(D, S, o, ) contains at least one tu-
ple, implying that BiToTer(D, S, o,7) is a nonempty model of ¢, a contradiction.
Hence, ¢ is unsatisfiable, from which it voidly follows that {({y, z) | ¢(y, 2)} is
counting-only. O

Hence, Research Question 8 has a negative answer for SyCALC queries.

6.3. Deciding properties of symmetric queries

We first look at the decidability of the following decision properties for
counting-only SyCALC queries.

Definition 45. A Boolean SyCALC query ¢ is satisfiable if it is satisfied by
some structure and is valid if it is satisfied by all structures. A SyCALC query
p is empty if, for every structure (D,S,0,7), ¢(D,S,0,7) = . A SyCALC
query @ is contained in a SyCALC query ¢ if, for every structure (D,S,a,7),
o(D,S,0,7) C Y(D,S,0,7). SyCALC queries ¢ and ¢ are equivalent if, for
every structure (D, S, 0,7), ¢(D,S,0,7) =¢¥(D,S,0,7).

In turns out that all these properties are decidable for counting-only SyCALC
queries:

Theorem 46. 1. Satisfiability is decidable for Boolean counting-only SyCALC
queries;

2. Validity is decidable for Boolean counting-only SyCALC queries;
3. Emptiness is decidable for counting-only SyCALC queries;

4. Containment is decidable for counting-only SyCALC queries; and
5. Equivalence is decidable for counting-only SyCALC queries.

Proof. If the quantifier depth of the counting-only SyCALC query (queries) in-
volved in checking one the above properties is at most gs > 0, then, by Re-
mark 37 on the constructive nature of the proof of Theorem 30, it suffices to
check the property on (upon isomorphism) all structures with up to 2¢s — 1 set
names and up to 2gs — 1 active domain objects. O
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Since QuineCALC queries are unary counting-only SyCALC queries, query
containment and query equivalence is also decidable for them. Because of their
unary nature, the definitions of satisfiability and validity in Definition 45 do not
literally apply to them, but we can ask a very related question, which we can
also answer in the positive:

Corollary 47. Given a QuineCALC query o(x), it is decidable whether 3z p(x)
1s satisfiable, respectively valid.

Proof. Tf p(z) is a QuineCALC query, then, by Corollary 39, 3z ¢(x) is a Boolean
counting-only SyCALC query. O

So, it is fair to say that we have answered Research Question 9 in the positive
for both counting-only SyCALC queries and QuineCALC queries.

Unfortunately, Research Question 9 has a negative answer for general Sy-
CALC queries:

Theorem 48. Satisfiability, emptiness, validity, containment, and equivalence
are undecidable for Boolean SyCALC queries.?”.

Proof. Using Lemma 43, it is straightforward to reduce satisfiability of a domain-
independent Boolean relational calculus query over a single ternary relation and
that does not use constants, which is undecidable [24, Theorem 6.3.1 and Exer-
cise 6.19], to satisfiability of a Boolean SyCALC query. This problem can then be
reduced straightforwardly to any of the other problems under consideration. [

7. Conclusions and future work

In this paper, we have introduced two query languages, QuineCALC and Sy-
CALC, with the purpose of capturing symmetric queries over sequences of sets
of objects. We have defined these languages in such a way that QuineCALC
is a syntactic fragment of SyCALC. We have shown that QuineCALC queries
correspond to symmetric functions specifiable by means of union, intersection,
and complement, i.e., the symmetric Boolean functions of Quine [16], while
SyCALC queries also capture projection and Cartesian product.

We have characterized QuineCALC queries in terms of incidence information
of the objects involved, which is an important simplification in order to answer
these queries. In general, this simplification is no longer possible for SyCALC
queries. However, we have been able to characterize the class of SyCALC queries
that can be answered using only incidence information as quantified Boolean
combinations of QuineCALC queries. Unfortunately, it is undecidable whether
a SyCALC query is such a counting-only query, but it is decidable whether a
counting-only SyCALC query is equivalent to a QuineCALC query.

Reviewing both our original motivation to study symmetric queries and the
theoretical results reported upon in this paper, we may thus conclude that,

29Notice that emptiness coincides with satisfiability for Boolean queries.
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on the one hand, the class of symmetric queries is interesting to study from
a practical, application-oriented, point of view and, on the other hand, that
non-trivial foundational questions can be answered about this class. At the
same time, however, we realize that our paper is just a first step in the study
of symmetric queries, and leaves many problems unaddressed. Below, we list
some of these.

1. Ezxtensions and restrictions. Several extensions or restrictions of SyCALC
are worthwhile to study:

(a) Observe that in SyCALC we excluded the binary predicate “xz = y”
on domain variables. On the one hand, several results in this paper
depend on that (in particular, Theorem 30 and Corrollary 39 on
counting-only SyCALC queries), but, on the other hand, adding this
predicate would permit us to study symmetric queries that can be
expressed in terms of the full relational algebra (including equality
and inequality selection).

(b) We could study extensions of SyCALC that incorporate aggregate
functions. For example, the query “Find all pairs of students taking
the same number of courses” is not expressible in SyCALC, but is
clearly an interesting counting-only symmetric query.

(¢) Tt would also be interesting to characterize the monotonic (or anti-
monotonic) fragments of the languages considered in this paper.

2. Complezity and optimization problems. In this paper, we did not study
the efficiency of evaluating and optimizing symmetric queries. For ex-
ample, we have algorithms to “normalize” QuineCALC (Corollary 16) and
counting-only SyCALC queries (Theorem 30) into queries that only involve
incidence predicates. We have not yet analyzed time or space complexity
of these algorithms, however. In any case, these normal form algorithms
are not effective translations of QuineCALC or SyCALC queries to queries
in terms of incidence information, as they can cause a huge blow-up in the
size of the query. So, one may ask if there is an effective translation of a
SyCALC query to a query in terms of incidence information. What is the
worst-case blow-up in the query size of such a translation?

Another topic for further study is query optimization. For example, the
counting-only SyCALC query {z | gteq(z,3) A =Jygteq(y, 3)} can be opti-
mized to {x | false}.

3. Eatensions of the concept “counting-only”. If we consider the query “Re-
trieve the pairs of words that occur together in at least three documents,”
we cannot help but feel that it has the flavor of a counting-only SyCALC
query, yet we can prove it is not. A strategy to study this query is to
extend our notion of incidence information to pairs of objects. For a
structure (D, S, 0,7), and 01,02 € D, we can define

incz(01,02,7) = [{S | (01,5) € v A (02,5) € v}
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The above query actually searches for all pairs of objects (01, 02) for which
inca(01,02,7) > 3. Of course, this notion of 2-incidence can be generalized
to k-incidence for any k£ > 1. We plan to investigate whether our current
results about counting-only SyCALC queries can be extended for a broader
notion of “counting-only” based on these more general notions of incidence
information.

. Precomputation and indexes. To evaluate efficiently QuineCALC and, more

generally, counting-only SyCALC queries, we could precompute the inci-
dence relation and maintain an index on it. For example, we could store
and maintain an index that keeps pairs of the form (i, {01, ..., 0,}) where
{01, ...,0,} is the set of all objects that occur in at least ¢ sets. This could
speed up evaluating symmetric queries that involve incidence predicates.

Simulation. Since SyCALC queries are first-order, it makes sense to ask
how these queries may be simulated in SQL and MapReduce in a “smart”
manner. This could well be very challenging, since (1) many interesting
symmetric queries are non-monotonic and (2) the data sets involved can
be very large.
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