
First-order definable counting-only queries?

Jelle Hellings1, Marc Gyssens1, Dirk Van Gucht2, and Yuqing Wu3

1 Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
2 Indiana University, 150 S. Woodlawn Ave, Bloomington, IN 47405, USA

3 Pomona College, 185 E 6th St., Claremont, CA 91711, USA

Abstract. For several practical queries on bags of sets of objects, the
answer does not depend on the precise composition of these sets, but
only on the number of sets to which each object belongs. This is the
case k=1 for the more general situation where the query answer only
depends on the number of sets to which each group of at most k ob-
jects belongs. We call such queries k-counting-only. Here, we focus on
k-SyCALC, k-counting-only queries that are first-order definable. As k-
SyCALC is semantically defined, however, it is not surprising that it is al-
ready undecidable whether a first-order query is in 1-SyCALC. Therefore,
we introduce SimpleCALC-k, a syntactically defined (strict) fragment of
k-SyCALC. It turns out that many practical queries in k-SyCALC can
already be expressed in SimpleCALC-k. We prove that the k-counting-
only queries form a non-collapsing hierarchy: for every k, there exist
(k+1)-counting-only queries that are not k-counting-only. This result
specializes to both SimpleCALC-k and k-SyCALC. Finally, we establish a
strong dichotomy between 1-SyCALC and SimpleCALC-k on the one hand
and 2-SyCALC on the other hand by showing that satisfiability, validity,
query containment, and query equivalence are decidable for the former
two languages, but not for the latter one.

1 Introduction

Often, (parts of) queries can be viewed as operating on a bag of sets, or, equiv-
alently, on transaction databases [8], bipartite graphs, or binary many-to-many
relations. As an example, consider the bag-of-sets dataset of Figure 1, left, in
which each set represents a course and contains the students taking that course.
This bag of sets can alternatively be interpreted as the bipartite graph, shown in
Figure 1, right. Many practical queries on bags of sets turn out to be counting-
only : in order to answer them, it is not necessary to know to which sets each
object belongs, but only to how many sets each object belongs. As examples,
consider the queries ‘return students who take at least 2 courses’, expressed by

Q1 = {〈x〉 | count(x) ≥ 2},

? This material is based on work supported by the National Science Foundation under
Grant No. NSF 1438990.

pl

Alice
Bob

db

Alice
Bob
Carol

ai

Dan

Alice

Bob

Carol

Dan

pl

db

ai

Fig. 1. Left, a bag-of-sets dataset. Right, same dataset represented as bipartite graph.

and ‘return pairs of students who take the same number of courses’, expressed
by

Q2 = {〈x, y〉 | (x 6= y) ∧ count(x) = count(y)}.

In the above expressions, “count(·)” counts the number of sets (here, courses) to
which the argument (here, a student) belongs. Clearly, one need not know which
courses each student takes to answer Q1 or Q2, but only how many courses each
student takes. Next, consider the queries ‘return pairs of distinct students which
take a common course’, expressed by

Q3 = {〈x, y〉 | (x 6= y) ∧ count(x, y) ≥ 1},

and ‘return pairs of distinct students which take the same courses’, expressed by

Q4 = {〈x, y〉 | (x 6= y) ∧ count(x, y) = count(x) ∧ count(x, y) = count(y)}.

Notice that Q3 is a basic intersection query and Q4 is a basic equivalence query.
Both can be answered by counting not only (i) how many courses each student
takes, but also (ii) how many courses each pair of students share. For k ≥ 0, we
call a query k-counting-only if it can be answered by only counting to how many
sets each group of at most k objects belongs. Hence, Q1 and Q2 are 1-counting-
only, while Q3 and Q4 are 2-counting-only. Similarly, the Boolean query ‘does
there exist a course taken by 3 students’, expressed by

Q5 = {〈〉 | ∃x∃y∃z ((x 6= y ∧ x 6= z ∧ y 6= z) ∧ count(x, y, z) ≥ 1)},

is 3-counting-only. In contrast, the Boolean Boolean query ‘there are at least 3
courses’, expressed by

Q6 = {〈〉 | count() ≥ 3}.

can already be answered at the scheme level, and is therefore 0-counting-only.
Observe that the counting-only queries Q3 and Q4 only differ in the use of the

generalized quantifiers ‘takes some’ versus ‘takes all and only’. Similar familiar
families of counting-only queries can be formulated using other generalized quan-
tifiers such as ‘takes only’, ‘takes all’, ‘takes no’, ‘takes at least k’, and ‘takes
all but k’. Such queries are not only of relevance in the study of generalized
quantifiers [4,19], but also play an obvious central role in the frequent itemset
problem [8]. In essence, bag-of-set-like data models and counting-only queries can
also be found in the differential constraints of Sayrafi et al. [17], citation analysis
and bibliometrics [5], the symmetric Boolean functions of Quine [16,11], finite

pl

Alice
Bob

db

Alice
Carol

ai

Bob
Carol

vr

pl

Alice
Bob
Carol

db

Alice

ai

Bob

vr

Carol

count() = 4;

count(A) = 2;

count(B) = 2;

count(C) = 2;

count(A,B) = 1;

count(A,C) = 1;

count(B,C) = 1.

Fig. 2. Left, Bags of sets S1 (top) and S2 (bottom), both assigning students to four
courses. Right, Count-information shared between S1 and S2.

set combinatorics [2], and the data spaces of Fletcher et al. [7], either explicitly
or implicitly.

A more formal way to capture the notion of k-counting-only query is that
such queries cannot distinguish between bags of sets which share the same up-
to-k counting information. Consider, e.g., the bags of sets S1 and S2 of Figure 2.
Clearly, S1 and S2 agree on all up-to-2 counting information, but disagree on
count(Alice,Bob,Carol). Hence, Q1–Q4 and Q6 yield the same result on S1 and S2,
whereas Q5, which is 3-counting-only, evaluates to false on S1 and true on S2.

Finally, notice that the concept of counting-only query applies to more gen-
eral data models than the bag-of-sets model. Consider, e.g., a database with
a student-course relation SC and a department-course relation DC, with the
obvious meaning. On this database, query

P = {〈x, y〉 | count({z | SC(x, z) ∧DC(y, z)}) = count({z | SC(x, z)})}

returns student-department pairs in which the student only takes courses offered
by that department. This query, conceptually similar to Q4 above, certainly has
a counting-only flavor.

Motivated by the above, we believe that the class of counting-only queries
deserves a broader understanding. Our notion of k-counting-only queries, k ≥ 0,
significantly generalizes the notion of counting-only queries of Gyssens et al. [11],
which only corresponds with our case k = 1.

As many interesting counting-only queries are first-order definable, includ-
ing Q1 and Q3–Q6, we study more specifically the class of first-order definable
counting-only queries on the bags-of-sets data model. To do so, we use (a varia-
tion of) the two-sorted first-order logic SyCALC of Gyssens et al. In this logic, we
have object variables, set name variables, and a set-membership relation relating
objects and set names. Our main results are as follows:

1. We semantically define the class of k-counting-only queries, and show that
they include many practically relevant first-order-definable queries.

2. We syntactically define the class SimpleCALC-k, k ≥ 0, a fragment of the
first-order-definable queries. All queries in this class turn out to be k-counting-

only. We show that they capture many practical queries in k-SyCALC, the k-
counting-only queries in SyCALC. This is in particular the case for those that
can be written using simple “count(·)” terms, such as Q1 and Q3–Q6.

3. We establish that the k-counting-only queries form a non-collapsing hier-
archy: for every k, k ≥ 0, there are (k+1)-counting-only queries that are not k-
counting-only. This result specializes to k-SyCALC and SimpleCALC-k.

4. We show that 1-SyCALC and SimpleCALC-k, k ≥ 0, have the finite model
property and use that to prove that satisfiability (and, hence, validity, query con-
tainment, and query equivalence) is decidable for these classes. We also establish
that satisfiability is NEXPTIME-hard for SimpleCALC-k. In contrast, satisfiabil-
ity for 2-SyCALC is shown to be undecidable. Hence, there is a strong dichotomy
between 1-SyCALC and SimpleCALC-k, k ≥ 0, on the one hand and 2-SyCALC
on the other hand. Moreover, the decidability of 1-SyCALC and SimpleCALC-k,
k ≥ 0, sets them apart from many other fragments of first-order logic. In partic-
ular, this result identifies a large “well-behaved” fragment of first-order logic in
which many practical queries can be expressed, and other than the usual classes
of “well-behaved” first-order queries such as the conjunctive queries, the monadic
first-order logic, and the two-variable fragments of first-order logic [1,14,3,9,10].

2 Bags of sets and counting-only queries

Let D andN be two disjoint infinitely enumerable domains of objects and names.
We represent finite bags of finite sets by structures, as follows:

Definition 2.1. A structure S is a pair S = (N, γ), with N ⊂ N a finite set
of set names and γ ⊂ D × N a finite set-membership relation. For n ∈ N,
objects(n; S) = {o | (o,n) ∈ γ} is the set of objects that are a member of the set
named n. We write adom(S) =

⋃
n∈N objects(n; S) for the active domain of S.

If A ⊆ D, then S|A denotes the structure (N, γ ∩ (A×N)).

Structures explicitly define the set N of set names they use, whereas objects
are only defined via the set-membership function γ. In this way, N allows the
representation of empty sets:

Example 2.2. The bag-of-sets dataset of Figure 1 is represented by the structure
S1 = (N, γ) with N = {pl,db,ai} and γ = {(Alice,pl), (Bob,pl), (Alice,db),
(Bob,db), (Carol,db), (Dan,ai)}. If we were to add course vr to N without
changing γ, this would mean that vr is offered but no student takes it.

A query q maps a structure to a relation of fixed arity over objects. We write
[[q]]S to denote the evaluation of q on structure S. If the arity of q is 0, then q
is Boolean. The only two relations of arity 0, ∅ and {〈〉}, represent false and
true, respectively. In the Introduction, we showed that many queries on bags of
sets cannot distinguish structures with the same up-to-k count information, for
some k, k ≥ 0. We formalize this next:

Definition 2.3. Let S = (N, γ) be a structure and I ⊂ D a finite set of
objects, often referred to as an itemset. The cover of I in S is defined by
cover(I; S) = {n | (n ∈ N) ∧ (I ⊆ objects(n; S))}. The support of I in S is
defined by [[count(I)]]S = |cover(I; S)|. Structures S1 and S2 are exactly-k-count-
ing-equivalent if [[count(I)]]S1

= [[count(I)]]S2
for every itemset I with |I| = k.

Structures S1 and S2 are k-counting-equivalent if they are exactly-j-counting-
equivalent for all j, 0 ≤ j ≤ k.4

Structures are exactly-0-counting-equivalent if they have the same number
of set names. Hence, for all k, k ≥ 0, k-counting-equivalent structures have the
same number of set names.

Example 2.4. Consider the structures S1 and S2 in Figure 2. Both have four set
names representing courses. In both S1 and S2, each student takes two courses,
and each pair of distinct students shares one common course. Since the itemset
{Alice,Bob,Carol} has no cover in S1, but is covered by {pl} in S2, we conclude
that S1 and S2 are 2-counting-equivalent, but not 3-counting-equivalent.

We are now ready to define k-counting-only queries:

Definition 2.5. A query q is k-counting-only if, for every pair of k-counting-
equivalent structures S1 and S2, we have [[q]]S1 = [[q]]S2 . A query is counting-
only if there exists k, k ≥ 0, such that the query is k-counting-only.5

Example 2.6. As mentioned in the Introduction, Q1 and Q2 are 1-counting-only,
Q3 and Q4 are 2-counting-only, Q5 is 3-counting-only, and Q6 is 0-counting-only.
Query Q5 is not 2-counting-only, since, on the 2-counting-equivalent structures
S1 and S2 in Figure 2, it returns different results. Notice that Q2 involves pairs of
objects despite being 1-counting-only. To illustrate that this generalizes, consider

Q7 = {〈〉 | ∃x∃y1∃y2 (x 6= y1) ∧ (x 6= y2) ∧ (y1 6= y2) ∧
count(y1) = count(x, y1) ∧ count(y2) = count(x, y2) ∧

count(x) = count(x, y1) + count(x, y2)− count(x, y1, y2)}.

On the student-courses examples, Q7 returns true if there is a student who takes
exactly the courses taken by a pair of distinct other students combined. Clearly,
it is 3-counting-only. However, Q7 is also 2-counting-only, as it is equivalent to

Q′7 = {〈〉 | ∃x∃y1∃y2 (x 6= y1) ∧ (x 6= y2) ∧ (y1 6= y2) ∧
count(y1) = count(x, y1) ∧ count(y2) = count(x, y2) ∧

count(x) = count(x, y1) + count(x, y2)− count(y1, y2)}.

So, some 2-counting-only queries can be used to reason on more than two objects.

4 Gyssens et al. [11] use the tem incidence to refer to the support of a single object,
and incidence-equivalence to refer to 1-counting-equivalence.

5 Gyssens et al. [11] use the term counting-only to denote the first-order definable
queries that are 1-counting-only.

We now show that k-counting information can be used to express the exis-
tence of any set-membership relation between at most k objects. To do so, we
use the notion of generalized support, borrowed from Calders et al. [6].

Definition 2.7. The generalized cover of itemsets I and E in structure S =
(N, γ) is defined by gcover(I;E; S) = {n | (n ∈ N) ∧ (I ⊆ objects(n; S)) ∧
(objects(n; S) ∩E = ∅)} and the generalized support of I and E in S is defined
by [[gcount(I;E)]]S = |gcover(I;E; S)|.

Observe that I∩E 6= ∅ implies that gcover(I;E; S) = ∅ and [[gcount(I;E)]]S =
0. Using the inclusion-exclusion principle [6], we can show that generalized-sup-
port terms [[gcount(I;E)]]S are fully expressible using |I∪E|-support terms only:

Proposition 2.8. Let S1 and S2 be k-counting-equivalent structures and let I,E
be itemsets with |I ∪E| ≤ k. We have [[gcount(I;E)]]S1 = [[gcount(I;E)]]S2 .

Allowing basic gcount(·) terms6 of the form gcount(X;Y) ∼ c, with X and Y

sets of object variables, “∼” a comparison, and c a constant, often simplifies the
expression of counting-only queries.

Example 2.9. Since count(X) = gcount(X; ∅), Q1, Q3, Q5, and Q6 can be expressed
with basic gcount(·) terms. Query Q2 cannot be rewritten with basic gcount(·)
terms, because it is not first-order definable [15] (see also Proposition 5.3). Query
Q4 is equivalent to Q′4 = {〈x, y〉 | (x 6= y) ∧ gcount(x; y) = 0 ∧ gcount(y;x) = 0}.
Finally, Q7 and Q′7 are equivalent to

Q′′7 = {〈〉 | ∃x∃y1∃y2 (x 6= y1) ∧ (x 6= y2) ∧ (y1 6= y2) ∧
gcount(x; y1, y2) = 0 ∧ gcount(y1;x) = 0 ∧ gcount(y2;x) = 0}.

3 A first-order logic for bag-of-sets structures

We now study the relationships between counting-only queries and first-order
definable queries. To query bag-of-sets structures, we use a two-sorted variant
of first-order logic denoted SyCALC, based on the work of Gyssens et al. [11].7

Partial SyCALC formulae are defined by the grammar

e := Γ (x,X) | x = y | X = Y | e ∨ e | ¬e | ∃x e | ∃X e,

in which the lowercase variables x and y represent objects and the uppercase
variables X and Y denote set names. We also allow the usual shorthands.

As to the semantics of a partial SyCALC formula e, let S = (N, γ) be a struc-
ture, νD a mapping from object variables to objects in D, and νN a mapping from

6 These play a central role in the normal form of 1-counting-only first-order definable
queries of Gyssens et al. [11]: gteq(o, c) corresponds to [[gcount(o; ∅)]]S ≥ c and
cogteq(o, c) to [[gcount(∅; o)]]S ≥ |N| − c.

7 Gyssens et al. [11] disallow object comparisons (x = y in the grammar).

set name variables to set names in N. We define the relationship (S, νD, νN) � e,
with all free variables of e in the union of the domains of νD and νN, as follows:

(S, νD, νN) � Γ (x,X) if (νD(x), νN(X)) ∈ γ;

(S, νD, νN) � x = y if νD(x) = νD(y);

(S, νD, νN) � X = Y if νN(X) = νN(Y);

(S, νD, νN) � e1 ∨ e2 if (S, νD, νN) � e1 or (S, νD, νN) � e2;

(S, νD, νN) � ¬e if (S, νD, νN) 2 e;
(S, νD, νN) � ∃x e if there exists o ∈ D with (S, νD[x 7→ o], νN) � e;

(S, νD, νN) � ∃X e if there exists n ∈ N with (S, νD, νN[X 7→ n]) � e.

Above, M [α 7→ β] denotes M modified by mapping α to β.
Let e be a partial SyCALC formula with free object variables x1, . . . , xm and

free set name variables X1, . . . , Xn, and let S = (N, γ) be a structure. We define
the evaluation of e on S by [[e]]S = {〈o1, . . . , om,n1, . . . ,nn〉 | (S, νD, νN) � e} in
which νD = {x1 7→ o1, . . . , xm 7→ om} and νN = {X1 7→ n1, . . . , Xn 7→ nn}. A
SyCALC query is a partial SyCALC formula without free set name variables.8

Example 3.1. Queries Q1 and Q3–Q7 are all expressible in SyCALC:

Q1 = {〈x〉 | ∃X1∃X2 ((X1 6= X2) ∧ Γ (x,X1) ∧ Γ (x,X2))};
Q3 = {〈x, y〉 | (x 6= y) ∧ ∃X (Γ (x,X) ∧ Γ (y,X))};
Q4 = {〈x, y〉 | (x 6= y) ∧ ∀X (Γ (x,X) ⇐⇒ Γ (y,X))};
Q5 = {〈〉 | ∃X∃x∃y∃z ((x 6= y) ∧ (x 6= z) ∧ (y 6= z) ∧

Γ (x,X) ∧ Γ (y,X) ∧ Γ (z,X))};
Q6 = {〈〉 | ∃X1∃X2∃X3 ((X1 6= X2) ∧ (X1 6= X3) ∧ (X2 6= X3))};
Q7 = {〈〉 | ∃x∃y1∃y2 ((x 6= y1) ∧ (x 6= y2) ∧ (y1 6= y2) ∧

(∀X (Γ (x,X) ⇐⇒ (Γ (y1, X) ∨ Γ (y2, X)))))}.

Not all counting-only queries are in SyCALC. An example is the 1-counting-
only query Q2 [15] (see also Proposition 5.3). Also, not all SyCALC queries are
counting-only. To show this, we must exhibit a SyCALC query Q and, for every
k, k ≥ 0, a pair of k-counting-equivalent structures S1,k and S2,k, such that
Q can distinguish S1,k and S2,k. To do so, we generalize the ideas underlying
Example 2.4:

Proposition 3.2. Let A be a finite nonempty itemset, and S1,A and S2,A struc-
tures respectively representing the bags of sets {T | T ⊆ A and even(|A−T|)}
and {T | T ⊆ A and odd(|A−T|)}. We have the following:

(i) S1,A is (|A| − 1)-counting-equivalent to S2,A.
(ii) S1,A is not exactly-|A|-counting-equivalent to S2,A.

8 We also write a SyCALC query e as {〈x1, . . . , xm〉 | e} to show the free object variables
and their order explicitly.

(iii) Only one of the structures has a set name to which no objects are related.

Proof. Statement (ii) follows from the observation that only the itemset A has
|A| objects, and only S1 has a set name that covers this itemset. Statement (iii)
follows from the observation that ∅ is represented only in S1—if even(|A|)— or
only in S2—if odd(|A|). We now turn to Statement (i). Let k = |A| and I (A an
itemset with |I| = m. We must prove that [[count(I)]]S1 = [[count(I)]]S2 . Consider
any itemset T with I ⊆ T ⊆ A. Let |T| = n. As T contains the objects of I,
there remain n − m unconstrained objects in A − I. Hence, there are exactly(
k−m
n−m

)
of such sets T. Thus,

[[count(I)]]S1 =
∑

m≤n≤k,
even(k−n)

(
k−m
n−m

)
=
∑

0≤j≤k−m,
even(k−m−j)

(
k−m
j

)
= 2k−m−1

=
∑

0≤j≤k−m,
odd(k−m−j)

(
k−m
j

)
=
∑

m≤n≤k,
odd(k−n)

(
k−m
n−m

)
= [[count(I)]]S2 ,

completing the proof. ut
Using Proposition 3.2, we can now prove the following:

Proposition 3.3. Not all Boolean SyCALC queries are counting-only.

Proof. For all k, k ≥ 0, let Ak ⊂ D be a set of objects with |Ak| = k + 1, and
let S1,Ak

and S2,Ak
be as in Proposition 3.2. We see that the Boolean SyCALC

query
Q8 = {〈〉 | ∃X∀x (∃Y (Γ (x, Y)) =⇒ Γ (x,X))}

cannot be counting-only, since [[Q8]]S1,Ak
= true and [[Q8]]S2,Ak

= false. ut
Even though not all counting-only queries are in SyCALC and vice versa, there

is a strong connection between both: all basic gcount(·) terms are expressible in
SyCALC. E.g., gcount(X;Y) ≥ c is expressed by

∃Z1 . . . ∃Zc
(∧

x∈X
(
Γ (x, Z1) ∧ · · · ∧ Γ (x, Zc)

)
∧∧

y∈Y
(
¬Γ (y, Z1) ∧ · · · ∧ ¬Γ (y, Zc)

))
.

4 QuineCALC and SimpleCALC

In Section 3, we studied the counting-only SyCALC queries, a semantic fragment
of SyCALC. The observation that the SyCALC expression for gcount(X;Y) ≥ c
above, which can be used to express most queries we have seen up till now,
does not use object quantification inspires us to define the following syntactic
fragments of SyCALC:

Definition 4.1. QuineCALC 9 consist of all SyCALC queries that do not use ob-
ject quantification. SimpleCALC consists of all queries that are built from Quine-
CALC queries using disjunction, negation, and object quantification.

9 Gyssens et al. [11] introduced the single-object-variable fragment of QuineCALC as
a first-order query language that provides a conservative extension of the symmetric
Boolean functions of Quine [16], hence the name.

For k ≥ 0, k-SyCALC denotes the k-counting-only SyCALC queries; Quine-
CALC-k denotes the QuineCALC queries with at most k free object variables; and
SimpleCALC-k denotes the SimpleCALC queries built from QuineCALC-k queries.

By definition, all queries expressible using basic gcount(·) terms only, such
as Q1 and Q3–Q7, are in SimpleCALC. We will show next that all SimpleCALC-k
queries are k-counting-only. To do so, we need

Definition 4.2. Let S1 = (N1, γ1) and S2 = (N2, γ2) be structures, and let I be
an itemset. Set names n1 ∈ N1 and n2 ∈ N2 are I-equivalent if objects(n1; S1)∩
I = objects(n2; S2) ∩ I. A bijection b : N1 → N2 is an I-preserving mapping if,
for all n ∈ N1, n and b(n) are I-equivalent.

We can now give an alternative characterization of k-counting equivalence:

Lemma 4.3. Let S1 = (N1, γ1) and S2 = (N2, γ2) be structures. Then, S1 and
S2 are k-counting-equivalent if and only if, for every itemset I, |I| ≤ k, there
exists an I-preserving mapping b : N1 → N2.

Using Lemma 4.3, a straightforward structural induction argument on partial
QuineCALC formulae—partial SyCALC formula without object quantification—
yields the following:

Lemma 4.4. Let e be a partial QuineCALC formula with k free object variables.
For every pair of k-counting-equivalent structures S1 = (N1, γ1), S2 = (N2, γ2),
every mapping νD from free object variables in e to an itemset I ⊂ D with
|I| ≤ k, every mapping νN1

from free set name variables in e to N1, and every I-
preserving mapping b from S1 to S2, (S1, νD, νN1

) � e ⇐⇒ (S2, νD, b◦νN1
) � e.

Lemma 4.4 implies that QuineCALC-k queries are k-counting-only. To extend
this to SimpleCALC-k, it suffices to show that

Proposition 4.5. k-SyCALC is closed under disjunction, negation, and object
quantification.

Corollary 4.6. All QuineCALC-k and SimpleCALC-k queries are in k-SyCALC .

5 Counting-only hierarchies

We now have four hierarchies of counting-only queries, for k ≥ 0: k-counting-
only queries, k-SyCALC, QuineCALC-k, and SimpleCALC-k. We show that all four
hierarchies are non-collapsing:

Theorem 5.1. Let k ≥ 0.

(i) Every k-counting-only query is also (k+1)-counting-only.
(ii) There is QuineCALC-(k+1) query which is not k-counting-only.

(iii) There is a Boolean SimpleCALC-(k+1) query which is not k-counting-only.

Proof. Statement (i) follows immediately from the definition. For Statements (ii)
and (iii), let S1,A and S2,A be the structures of Proposition 3.2 with |A| = k+1.
These structures are k-counting-equivalent, but not (k+1)-counting-equivalent.
For Statement (ii), we consider e = ∃X

(∧
1≤i≤k+1 Γ (xi, X)

)
, which is a (k+1)-

counting-only QuineCALC-(k+1) query by Corollary 4.6. Let t be a (k+1)-tuple
containing each value of A once. Then, t ∈ [[e]]S1

, but t /∈ [[e]]S2
. Hence, e is not k-

counting-only. For Statement (iii), we construct from e the Boolean SimpleCALC-
(k+1) query e′ = ∃x1 . . . xk+1

((∧
1≤j<j′≤k+1 (xj 6= xj′)

)
∧ e(x1, . . . , xk+1)

)
Then, [[e′]]S1 = true and [[e′]]S2 = false. Hence, e′ is not k-counting-only. ut

Statement (iii) can be interpreted as the Boolean version of Statement (ii).
Since QuineCALC-k and SimpleCALC-k queries are also k-SyCALC queries as well
as k-counting queries, Theorem 5.1 extends to all four hierarchies.

We now proceed by comparing the fragments mutually. The 0-counting-only
fragments have straightforward relationships:

Proposition 5.2. The languages 0-SyCALC , SimpleCALC-0, and QuineCALC-0
all express exactly the same set of queries.

We have already argued that the 1-counting-only query Q2 is not first-order
definable [15]. Also the 0-counting-only query

Q9 = {〈〉 | count() is even}

is not first-order definable. Consequently, we have:

Proposition 5.3. There is a Boolean 0-counting-only query not expressible in
SyCALC .

By Proposition 5.3 and Theorem 5.1 (i), Q9 also witnesses that, for all k,
k ≥ 0, there is a Boolean k-counting-only queries not expressible in k-SyCALC.

Due to QuineCALC queries not allowing object quantification, all Boolean
QuineCALC queries are in QuineCALC-0. Hence, no Boolean query that is k-
counting-only, k ≥ 1, but not (k-1)-counting-only is expressible in QuineCALC-k.
Hence, it only remains to establish a separation between k-SyCALC and Simple-
CALC-k. We first deal with the special case k = 1.

Proposition 5.4. There is a Boolean 1-SyCALC query not expressible in Simple-
CALC-1.

Proof. The Boolean 1-SyCALC query

Q10 = {〈〉 | ∃x∃y (x 6= y) ∧ ∃X∃Y (Γ (x,X) ∧ Γ (y, Y))},

which queries for structures with an active domain of at least two objects, is 1-
counting-only but not expressible in SimpleCALC-1. ut

To establish the separation between k-SyCALC and SimpleCALC-k, k ≥ 2, we
exhibit a 2-SyCALC query, which is not 1-counting-only, that is not expressible
in SimpleCALC. Thereto, let

set-ids =| ∀X∃x (Γ (x,X) ∧ ¬∃Y ((X 6= Y) ∧ Γ (x, Y)))

be the Boolean query specifying that each set in a bag of sets has a distinct
identifying object. We first prove that set-ids is in 2-SyCALC, but not in 1-Sy-
CALC, despite it using only a single object variable.

Proposition 5.5. Query set-ids is 2-counting-only, but not 1-counting-only.

Proof. Let o1, o2 ∈ D and n1,n2 ∈ N . Let S1 = ({n1,n2}, {(o1,n1), (o2,n2)})
and S2 = ({n1,n2}, {(o1,n1), (o2,n1)}). Since S1 and S2 are 1-counting-equiv-
alent, while [[set-ids]]S1 = true and [[set-ids]]S2 = false, set-ids is not 1-
counting-only. For a structure S = (N, γ) with |N| = n, [[set-ids]]S = true

if and only if there exist o1, . . . , on ∈ adom(S) such that, for all i, 1 ≤ i ≤ n,
[[count(oi)]]S = 1 and, for all i, j, 1 ≤ i < j ≤ n, [[count(oi, oj)]]S = 0. By Propo-
sition 2.8, set-ids is 2-counting-only. ut

Observe that set-ids can only evaluate to true on a structure if the size of
its active domain is lowerbounded by the number of set names in the structure.
This contradicts set-ids being expressible in SimpleCALC provided we can prove
that whenever a SimpleCALC query evaluates to true on some structure, it also
evaluates to true on some structure for which the size of the active domain
is upperbounded by a function of the size of the query only. Thereto, we start
with QuineCALC queries. If a QuineCALC query returns on some structure the
tuple t, we can intuitively reduce the number of active-domain objects in that
structure to the number of object variables in the query without compromising
that t is returned, because all object variables are free. In order to substantiate
this intuition, we introduce the notion of active-domain preservation:

Definition 5.6. Let S = (N, γ) be a structure and I an itemset. A bijection
m : D → D is active-domain preserving for S and I if it is the identity on
adom(S|I), and maps objects to D− adom(S|I) only if they are in D− adom(S).

Notice that m is not necessarily the identity on all of I.
For QuineCALC queries with k (free) object variables, we can use active-

domain preservation to state in a precise way that, for our purposes, we can
restrict the active domain of structures to k objects:

Proposition 5.7. Let e be a partial QuineCALC formula with k object variables.
For every structure S = (N, γ), mapping νD from object variables in e to an
itemset I ⊂ D with |I| ≤ k, mapping νN from free set name variables in e to
N, and active-domain preserving mapping m for S and I, (S, νD, νN) � e ⇐⇒
(S|I,m ◦ νD, νN) � e.

To generalize Proposition 5.7 to SimpleCALC, we need to take into account
object quantification:

Definition 5.8. Let e be a SimpleCALC query. We denote the object variable
count of e by vars(e). If e is a QuineCALC query with k (free) object variables,
then vars(e) = k; if e ≡ ¬e′ or e ≡ ∃x e′, then vars(e) = vars(e′); and if
e ≡ e1 ∨ e2, then vars(e) = vars(e1) + vars(e2).

Proposition 5.9. Let e be a SimpleCALC query with k free object variables, S =
(N, γ) a structure, and νD a mapping from free object variables in e to an itemset
I ⊂ D with |I| ≤ k. There exists an itemset V with I ⊆ V and |V| ≤ vars(e) such
that, for every itemset W with V ⊆ W and active-domain preserving mapping
m for S and W, we have (S, νD, ∅) � e if and only if (S|W,m ◦ νD, ∅) � e.

We can now prove that set-ids is not expressible in SimpleCALC:

Proposition 5.10. The query set-ids is not expressible in SimpleCALC .

Proof. Assume there exists a (Boolean) SimpleCALC query e such that, for every
structure S, [[e]]S = [[set-ids]]S. Let n = vars(e) + 1, {o0, . . . , on} an itemset,
and N = {n0, . . . ,nn} ⊂ N . Let Sn+1 = (N, {(oi,ni) | 0 ≤ i ≤ n}), and Sn =
(N, {(oi,ni) | 1 ≤ i ≤ n}). Hence, Sn = Sn+1|W with W = {o1, . . . , on}. By
construction, [[e]]Sn+1 6= ∅ and [[e]]Sn = ∅. By Proposition 5.9, however, [[e]]Sn+1 =
∅ ⇐⇒ [[e]]Sn

= ∅, a contradiction. Hence, set-ids is not expressible in Simple-
CALC. ut

Corollary 5.11. There is a Boolean 2-SyCALC query not expressible in Simple-
CALC .

6 Dichotomy for satisfiability-related decision problems

We study the decidability of satisfiability, validity, query containment, and query
equivalence for the query languages we introduced. We first observe the following:

Lemma 6.1. Let L be k-SyCALC or SimpleCALC-k, and p1 and p2 two deci-
sion problems chosen from satisfiability, validity, query containment, and query
equivalence. Then p1 is decidable for L if and only if p2 is decidable for L.

Because of Lemma 6.1, we only study the satisfiability problem in more detail.

6.1 Satisfiability of SimpleCALC is decidable

To prove that satisfiability is decidable for queries in SimpleCALC, we show that
this language has the finite model property : a query is satisfiable if and only if
it is satisfiable in a structure of which the size (in terms of the number of set
names and active domain objects) is uniformly bounded in terms of the size
of the query. Proposition 5.9 gives an upperbound on the required number of
active domain objects. To also obtain an upperbound on the required number of
set names, we consider that SyCALC is essentially a two-sorted variant of first-
order logic. Intuitively, this puts severe restrictions to the ability of SyCALC and
SimpleCALC to count. We formalize this intuition next.

Definition 6.2. Let k, d ≥ 0. Structures S1 = (N1, γ1) and S2 = (N2, γ2)
are d-partial k-counting-equivalent if, for every pair of itemsets I and E with
|I ∪E| ≤ k, either

(i) [[gcount(I;E)]]S1
= [[gcount(I;E)]]S2

≤ d; or
(ii) d < [[gcount(I;E)]]S1

< |N1| − d and d < [[gcount(I;E)]]S2
< |N2| − d; or

(iii) |N1| − [[gcount(I;E)]]S1 = |N2| − [[gcount(I;E)]]S2 ≤ d.

Even though partial counting-equivalence is a weaker condition than count-
ing-equivalence, it is nevertheless sufficient to establish the indistinguishability
of two structures by a SyCALC query if we know its set name quantifier depth:

Lemma 6.3. Let e be a SyCALC query with set name quantifier depth d, and let
S1 and S2 be d-partial k-counting-equivalent structures with k = |adom(S1)| =
|adom(S2)|. Then [[e]]S1

= [[e]]S2
.

Lemma 6.3 can be proved using an Ehrenfeucht-Fräıssé game in which the
Spoiler can play up to d set names and an arbitrary number of objects. We now
use this lemma to prove the following upperbound:

Proposition 6.4. Let S = (N, γ) be a structure with |adom(S)| = k, and let
d ≥ 0. There exists a structure S′ = (N′, γ′) with |N′| ≤ (d+ 1) · 2k such that S
and S′ are d-partial k-counting-equivalent structures.

Proof. (Sketch.) Initially, S′ is empty. Then, for every itemset I of S, we add
min(d+1, [[gcount(I; adom(S)− I)]]S) relation names to N′ and associate each of
them in γ′ with precisely all elements of I. By construction, |N′| ≤ (d+ 1) · 2k.
It is then verified that S and S′ are d-partial k-counting-equivalent. ut

Combining Propositions 5.9 and 6.4 proves that SimpleCALC has the finite
model property and that the size of these finite models is uniformly upper-
bounded by an exponential function of the query size. Hence, the satisfiability
problem is decidable. Using a reduction involving monadic first-order logic (over
structures with only unary relations), for which satisfiability is NEXPTIME-
complete [14,3], we can also prove a lowerbound on the complexity of the satis-
fiability problem:

Theorem 6.5. Satisfiability is decidable for SimpleCALC queries, and is NEXP-
TIME-hard for SimpleCALC-k query, k ≥ 2.

Proof. (Sketch.) Let S = (M;X1, . . . , Xn) be a first-order structure over do-
mainM with unary predicates X1, . . . , Xn and ϕ a first-order logic formula over
S without free variables. We encode the first-order structure S into bag-of-sets
structure. To do so, we represent the unary predicates X1, . . . , Xn by set names
n1, . . . ,nn. In SimpleCALC, we cannot freely use set name quantification, how-
ever. We solve this by associating to each set name ni a unique identifying object
oi, 1 ≤ i ≤ n. The domain element of M are represented by objects distinct
from o1, . . . , on, and translate predicate membership tests into count(·, ·) terms.

In summary, we encode S by a structure S = (N, γ) with N = {n1, . . . ,nn} and
γ = {(o1,n1), . . . , (on,nn)} ∪ {(m,ni) | m ∈ M ∧ Xi(m)}, in which m is the
object representing m. We now translate ϕ to the expression e given by

count() = n ∧ ∃y1 . . . ∃yn
(
τ(ϕ) ∧

(∧
1≤i≤n

count(yi) = 1
)
∧

(∧
1≤i<j≤n

count(yi, yj) = 0
))
,

in which τ(ϕ) is the translation of ϕ obtained by replacing all subformula ∃y ϕ′ by
∃y (

∧
1≤i≤n(y 6= yi)∧τ(ϕ′(y)) and all terms of the form Xi(b) by count(b, yi) = 1.

Using Lemma 6.10, one can prove that the resulting Boolean formula e is in
SimpleCALC-2, and that e is satisfiable if and only if the monadic first-order
logic formula ϕ is satisfiable. ut

6.2 Satisfiability of 1-SyCALC is decidable

By Propositions 5.2, the decidability of the satisfiability problem for 0-SyCALC
follows from the decidability of the satisfiability problem for SimpleCALC-1. This
does not extend to 1-SyCALC, unfortunately, but we can still prove that the
satisfiability problem for 1-SyCALC is decidable. Again, we show that the finite
model property holds. First, we put an upperbound on the number of set names.

Proposition 6.6. Let d ≥ 0, and let S = (N, γ) be a structure. There exists a
structure S′ = (N′, γ′) with |N′| ≤ 2d + 1 such that S and S′ are d-partial 1-
counting-equivalent structures.

Proof. If |N| ≤ 2d + 1, we put S′ = S, and Proposition 6.6 trivially holds.
Otherwise, let N′ = {n1, . . . ,n2d+1} and

γ′ = {(o,ni) | ([[count(o)]]S ≤ d) ∧ (1 ≤ i ≤ [[count(o)]]S)} ∪
{(o,ni) | (d < ([[count(o)]]S) < |N| − d) ∧ (1 ≤ i ≤ d+ 1)} ∪
{(o,ni) | (|N| − d ≤ [[count(o)]]S) ∧ (1 ≤ i ≤ 2d+ 1− (|N| − [[count(o)]]S)}.

Using that, for o ∈ D and S′′ = (N′′, γ′′) any structure, [[gcount(o; ∅)]]S′′ =
[[count(o)]]S′′ and [[gcount(∅; o)]]S′′ = |N′′| − [[count(o)]]S′′ , we can verify that S
and S′ are d-partial 1-counting-equivalent structures. ut

Next, we put an upper bound on the number of objects.

Proposition 6.7. Let e be a 1-SyCALC query with set name quantifier depth d
and object quantifier depth r, and let S = (N, γ) be a structure. Then, [[e]]S 6= ∅ if
and only if there exists a structure S′ = (N′, γ′) with |N′| ≤ 2d+1, |adom(S′)| ≤
r(2d+ 1), and [[e]]S′ 6= ∅.

Proof. (Sketch.) By Proposition 6.6, we may assume without loss of generality
that |N| ≤ 2d + 1. Let N′ = {n1, . . . ,n|N|} and Ii = {o | [[count(o)]]S = i},
1 ≤ i ≤ |N|. Since S and S′′ = (N′, γ′′) where γ′′ = {(o,nj) | (1 ≤ j ≤ i ≤
|N|) ∧ (o ∈ Ii)} are 1-counting-equivalent, [[e]]S′′ = [[e]]S. Choose Pi ⊆ Ii such
that |Pi| = min(|Ii|, r), 1 ≤ i ≤ |N|, and let S′ = (N′, γ′) where γ′ = {(o,nj) |
(1 ≤ j ≤ i ≤ |N|) ∧ (o ∈ Pi)}. We can show that e cannot distinguish between
S′ and S using an Ehrenfeucht-Fräıssé game in which the Spoiler can play up to
r objects and an arbitrary number of set names. ut

Propositions 6.6 and 6.7 combined prove that 1-SyCALC has the finite model
property and that the size of these finite models is uniformly upperbounded by
a polynomial function of the query size. Hence,

Theorem 6.8. The satisfiability problem is decidable for 1-SyCALC queries.

6.3 Satisfiability of 2-SyCALC is undecidable

To prove undecidability of satisfiability for 2-SyCALC, we reduce satisfiability of
standard first-order logic queries on undirected unlabeled graphs without self-
loops, a well-known undecidable problem,10 to satisfiability of the strict fragment
of 2-SyCALC that does not allow object comparisons (of the form x = y).

An undirected unlabeled graph without self-loops, or graph, for short, is a pair
G = (V,E) in which V is a set of nodes and E ⊆ V×V is an antireflexive and
symmetric edge relation. On such graphs we consider standard first-order logic
formulae of the form e := x1 = x2 | E(x1, x2) | e ∨ e | ¬e | ∃x e, in which x1, x2,
and x are node variables. We write [[e]]G to denote the evaluation of e on G.

We define the encoding of G = (V,E) as the structure enc(G) = (N, γ)
where N = V and γ = {({x1, x2}, x1), ({x1, x2}, x2) | (x1, x2) ∈ E} ∪ {({x}, x) |
x ∈ V}. The active domain consists of node-pair sets, representing the edges of
G, and singleton node sets, serving as distinctive identifying objects. Each node
pair set has a support of 2, identifying the end-points of the edge represented.
The structure enc(G) always satisfies the following Boolean SyCALC query:

enc-graph = set-ids ∧ ∀x∃X1∃X2 (((X1 6= X2) ∧ Γ (x,X1) ∧ Γ (x,X2))⇒
∀Y ((X1 6= Y) ∧ (X2 6= Y)⇒ ¬Γ (x, Y))).

If ν converts node variables in a first-order logic formula on graphs ϕ, then the
corresponding translation τ(ϕ)ν into a SyCALC query is defined as follows:

τ(x1 = x2)ν ≡ ν(x1) = ν(x2);

τ(E(x1, x2))ν ≡ (ν(x1) 6= ν(x2)) ∧ ∃x (Γ (x, ν(x1)) ∧ Γ (x, ν(x2)));

τ(e1 ∨ e2)ν ≡ τ(e1)ν ∨ τ(e2)ν ;

10 We have no direct reference, but if we use a straightforward encoding from binary
relations to undirected unlabeled graphs without self-loops, we can rely on Trakht-
enbrot’s Theorem [15, Theorem 9.2].

τ(¬e)ν ≡ ¬τ(e)ν ;

τ(∃x e)ν ≡ ∃X τ(e)ν[x 7→X],

with X a fresh set name variable. We define the encoding of a Boolean first-order
logic formula on graphs ϕ in SyCALC as enc(ϕ) = enc-graph∧τ(ϕ)∅. Obviously,

Lemma 6.9. Let G be a graph and let ϕ be a Boolean first-order logic formula
on graphs. Then, [[ϕ]]G = [[enc(ϕ)]]enc(G).

Next, we prove that, for any first-order Boolean logic formula ϕ on graphs,
enc(ϕ) is a Boolean 2-SyCALC query. We do so by proving that 2-counting-
equivalent structures satisfying the Boolean 2-SyCALC query set-ids must be
isomorphic.

Lemma 6.10. If S1 and S2 are structures that are 2-counting-equivalent, and
[[set-ids]]S1

= [[set-ids]]S2
= true, then S1 and S2 are isomorphic.

Corollary 6.11. If ϕ is a Boolean first-order logic formula on graphs, then
enc(ϕ) is a 2-SyCALC query.

Now, let S be a structure for which [[enc(ϕ)]]S 6= ∅, with ϕ a Boolean first-
order logic formula. For the last step in our reduction, we must find a graph GS

such that [[ϕ]]GS
6= ∅. Ideally, we would like that, up to isomorphism, enc(GS) =

S, but that can unfortunately not be guaranteed. Nevertheless, we can construct
a graph GS for which [[ϕ]]GS

6= ∅:

Lemma 6.12. Let ϕ be a Boolean first-order logic formula on graphs. If there
exists a structure S satisfying enc(ϕ), then we can construct from S a graph
satisfying ϕ.

Using Lemmas 6.9 and 6.12, we conclude the following:

Theorem 6.13. The satisfiability problem is undecidable for 2-SyCALC queries.

7 Conclusion and discussion

In this paper, we studied so-called counting-only queries on bag-of-sets data,
which can be answered by only counting the occurrence of itemsets of objects.
In particular, we identified and studied the syntactic counting-only fragments
QuineCALC and SimpleCALC of first-order logic. These query languages can ex-
press many practically relevant queries other than the usual classes of “well-
behaved” first-order queries—such as the conjunctive queries, the monadic first-
order logic, and the two-variable fragments of first-order logic—while, at the
same time, still being simple enough for satisfiability, validity, query contain-
ment, and query equivalence to be decidable. We have summarized our findings
in Figure 3.

We have identified several directions for future research:

Counting-only queries

First-order definable queries (SyCALC)
Q8

...
...

...
...

QuineCALC-1

QuineCALC-2

QuineCALC-3

QuineCALC

Q1

Q3, Q4

SimpleCALC-1

SimpleCALC-2

SimpleCALC-3

SimpleCALC

Q5

Q7

1-SyCALC

2-SyCALC

3-SyCALC

Counting-only
SyCALC

set-ids

Q10

QuineCALC-0 ≡ SimpleCALC-0 ≡ 0-SyCALC
Q6

3-counting-only queries

2-counting-only queries

1-counting-only queries
Q2

0-counting-only queries
Q9

Fig. 3. Main relationships between the query languages considered. The counting-only
languages are highlighted in blue, and the first-order definable languages in red. A
language to the left and/or below another language, is less expressive than the lat-
ter. Separate boxes also indicate strict separation in expressive power. The example
queries Q1–Q6 (Introduction), Q7 (Example 2.6), Q8 (proof of Proposition 3.3), Q9 (proof
of Proposition 5.3), and Q10 (proof of Proposition 5.4) are added to the smallest lan-
guage in which they can be expressed. The grey area indicates the first-order definable
counting-only queries for which satisfiability is not decidable.

1. In this paper, we have studied the formal aspect of counting-only first-
order queries, but we have not yet studied practical issues such as query evalu-
ation. Since the queries we study are all first-order queries, we can, off course,
borrow standard techniques from first-order logic for their evaluation. One may
wonder, however, if some of the more restricted classes considered in this pa-
per allow for more efficient query evaluation, for example by using specialized
counting-only index structures.

As an example, consider queries using generalized count-term predicates,
which are all expressible in SimpleCALC. Queries based on generalized count-
term predicates provide a direct connection to an underlying frequent itemset
problems, which can be exploited to further optimize query equivalence. A good
example of such a technique is the FP-tree, used by the FP-Growth Algorithm,
which can be used as an index to quickly find candidate sets of up-to-k-objects
that have a minimum count [12,6], and prune away all other sets of up-to-k-
objects without any counting. Due to these implementation optimization oppor-
tunities and the prevalence of counting-only queries, we believe that the eval-
uation of these simple counting-only queries and their relationship to frequent
itemset mining deserves a deeper understanding.

2. In the Introduction, we have already mentioned that the bag-of-sets data
model and the notion of counting-only query can easily be generalized, e.g., to

a model with relations between more than two disjoint domains. Therefore, it is
only natural to wonder if the concepts we developed generalize to a richer data
model without giving up on the well-behaved nature of SimpleCALC.

3. From a more theoretical perspective, there are several open problems for
further investigation. For example, the precise complexity of the decision prob-
lems for SimpleCALC-k, k ≥ 0, remains open. Crucial in pinpointing an exact
upperbound is finding the exact upperbound on the complexity of model check-
ing. We also want to study the decidability of whether a given (k+1)-counting-
only query is also k-counting-only.

4. Counting is only one type of measure that can be used to define practical
queries on bag-of-sets data, and we have seen that taking counting into account
leads to naturally definable and well-behaved query languages. Many other prac-
tical types of measure exist [18], hence it is only natural to ask if these measures
can be captured in an encompassing framework that leads, for each measure, to
naturally definable and well-behaved query languages.

5. As we have shown in this paper, not all counting-only queries are first-
order definable. To express some of these queries, one might consider augmenting
first-order logic with non-first-order definable counting-based quantifiers [13].
We believe that it is worthwhile to study whether one can construct such query
languages while, at the same time, retain the well-behaved nature of Simple-
CALC.

References

1. Abiteboul, S., Hull, R., Vianu, V. (Eds.): Foundations of Databases: The Logical
Level. Addison-Wesley (1995)

2. Anderson, I.: Combinatorics of Finite Sets. Dover Publications (2011)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Set constraints are the monadic class.
In: Proc. 8th Ann. IEEE Symp. on Logic in Computer Science. pp. 75–83 (1993)

4. Badia, A., Van Gucht, D., Gyssens, M.: Querying with Generalized Quantifiers,
pp. 235–258. Springer US, Boston, MA (1995)

5. Bayer, A.E., Smart, J.C., McLaughlin, G.W.: Mapping intellectual structure of a
scientific subfield through author cocitations. J. Am. Soc. Inform. Sci. Tech. 41(6),
444452 (1990)

6. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Min. Knowl. Discov.
14(1), 171–206 (2007)

7. Fletcher, G.H.L., Van Den Bussche, J., Van Gucht, D., Vansummeren, S.: Towards
a theory of search queries. ACM Trans. Database Syst. 35(4), 28:1–28:33 (2010)

8. Goethals, B.: Survey on frequent pattern mining. Tech. Rep., Univ. of Helsinki
(2003)

9. Grädel, E., Otto, M.: On logics with two variables. Theor. Comput. Sci. 224(1–2),
73–113 (1999)

10. Grohe, M.: Finite variable logics in descriptive complexity theory. Bulletin of Sym-
bolic Logic 4, 345–398 (1998)

11. Gyssens, M., Paredaens, J., Van Gucht, D., Wijsen, J., Wu, Y.: An approach
towards the study of symmetric queries. Proc. VLDB Endow. 7(1), 25–36 (2013)

12. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Min. and Knowl. Discov. 8(1),
53–87 (2004)

13. Kuske, D., Schweikardt, N.: First-order logic with counting. In: 32nd Ann.
ACM/IEEE Symp. on Logic in Computer Science. pp. 1–12 (2017)

14. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

15. Libkin, L.: Elements of Finite Model Theory. Springer Berlin Heidelberg (2004)
16. Quine, W.V.: Selected Logic Papers. Harvard University Press (1995)
17. Sayrafi, B., Van Gucht, D.: Differential constraints. In: Proc. 24th Symp. on Prin-

ciples of Database Systems. pp. 348–357. ACM (2005)
18. Sayrafi, B., Van Gucht, D., Gyssens, M.: Measures in databases and data min-

ing. Tech. Rep. TR602, Indiana Univ. (2004), https://www.cs.indiana.edu/cgi-
bin/techreports/TRNNN.cgi?trnum=TR602

19. Väänänen, J.: Generalized quantifiers, an introduction. In: Generalized Quanti-
fiers and Computation: 9th European Summer School in Logic, Language, and
Information. pp. 1–17. Springer Berlin Heidelberg (1999)

