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Abstract. Computing the bisimulation partition of a graph is a fun-
damental problem which plays a key role in a wide range of basic ap-
plications. Intuitively, two nodes in a graph are bisimilar if they share
basic structural properties such as labeling and neighborhood topology.
In data management, reducing a graph under bisimulation equivalence is
a crucial step, e.g., for indexing the graph for efficient query processing.
Often, graphs of interest in the real world are massive; examples include
social networks and linked open data. For analytics on such graphs, it
is becoming increasingly infeasible to rely on in-memory or even I/O-
efficient solutions. Hence, a trend in Big Data analytics is the use of
distributed computing frameworks such as MapReduce. While there are
both internal and external memory solutions for efficiently computing
bisimulation, there is, to our knowledge, no effective MapReduce-based
solution for bisimulation. Motivated by these observations we propose in
this paper the first efficient MapReduce-based algorithm for computing
the bisimulation partition of massive graphs. We also detail several op-
timizations for handling the data skew which often arises in real-world
graphs. The results of an extensive empirical study are presented which
demonstrate the effectiveness and scalability of our solution.

1 Introduction

Recently, graph analytics has drawn increasing attention from the data man-
agement, semantic web, and many other research communities. Graphs of inter-
est, such as social networks, the web graph, and linked open data, are typically on
the order of billions of nodes and edges. In such cases, single-machine in-memory
solutions for reasoning over graphs are often infeasible. Naturally, research has
turned to external memory and distributed solutions for graph reasoning. Ex-
ternal memory algorithms often suffice, but their performance typically scales
(almost) linearly with graph size (usually the number of graph edges), which
is then limited by the throughput of the I/O devices attached to the system.
In this respect, distributed and parallel algorithms become attractive. Ideally, a



well-designed distributed algorithm would scale (roughly) linearly with the size
of the computing resources it has, making use of the parallelism of the infrastruc-
ture. Though there are many alternatives, recently the MapReduce platform [8]
has become a de-facto parallel processing platform for reasoning over Big Data
such as real-world graphs, with wide adoption in both industry and research.

Among fundamental graph problems, the bisimulation partition problem
plays a key role in a surprising range of basic applications [24]. Informally, the
bisimulation partition of a graph is an assignment of each node n of the graph to
a unique block consisting of all nodes having the same structural properties as n
(e.g., node label and neighborhood topology). In data management, variations of
bisimulation play a fundamental role in constructing structural indexes for XML
and RDF databases [21, 23], and many other applications for general graph data
such as compression [4, 11], query processing [16], and data analytics [10]. Be-
ing well studied for decades, many main-memory efficient algorithms have been
developed for bisimulation partitioning (e.g., [9, 22]). The state-of-the-art I/O
efficient algorithm takes just under one day to compute a standard “localized”
variant of bisimulation on a graph with 1.4 billion edges on commodity hard-
ware [20]. This cost can be a potential bottleneck since bisimulation partitioning
is typically one step in a larger workflow (e.g., preparing the graph for indexing
and query processing).

Contributions. Motivated by these observations, we have studied the effective
use of the MapReduce framework for accelerating the computation of bisimula-
tion partitions of massive graphs. In this paper we present, to our knowledge, the
first efficient MapReduce-based algorithm for localized bisimulation partitioning.
We further present strategies for dealing with various types of skew which occur
in real-world graphs. We discuss the results of extensive experiments which show
that our approach is effective and scalable, being up to an order of magnitude
faster than the state of the art. As a prototypical graph problem, we hope that
sharing our experiences with graph bisimulation will stimulate further progress
in the community on MapReduce-based solutions for reasoning and analytics
over massive graphs.

Related work. While there has been work on distributed computation of
bisimulation partitions, existing approaches (e.g., [3]) are not developed for the
MapReduce platform, and hence are not directly applicable to our problem.
Research has been conducted to investigate using the MapReduce framework
to solve graph problems [6, 18] right after the framework was proposed. A ma-
jor issue here is dealing with data skew in graphs. Indeed, skew is ubiquitous
in real-world graphs [5]. During our investigation, we also experienced various
types of skew from graph bisimulation, as we discuss below. There has been
much progress done from the system side to tackle this problem. The main ap-
proach in this literature is to devise mechanisms to estimate costs of MapReduce
systems (e.g., [13]) and modify the system to mitigate the skew effects, both stat-
ically [12, 15, 17] and dynamically [17, 25], so that the modification is transparent
to the users. However, it is still possible to gain much efficiency by dealing with



skew from the algorithm design perspective [19], as we do in the novel work we
present in this paper.

Paper organization. In the next section we give a brief description of localized
bisimulation and MapReduce. We then describe in Section 3 our base algorithm
for computing localized bisimulation partitions using MapReduce. Next, Section
4 presents optimizations of the base algorithm, to deal with the common problem
of skewed data. Section 5 presents the results of our empirical study. We then
conclude in Section 6 with a discussion of future directions for research.

2 Preliminaries

2.1 Localized bisimulation partitions

Our data model is that of finite directed node- and edge-labeled graphs 〈N,E,
λN , λE〉, where N is a finite set of nodes, E ⊆ N ×N is a set of edges, λN is a
function from N to a set of node labels LN , and λE is a function from E to a
set of edge labels LE .

The localized bisimulation partition of graph G = 〈N,E, λN , λE〉 is based on
the k-bisimilar equivalence relation.

Definition 1. Let G = 〈N,E, λN , λE〉 be a graph and k ≥ 0. Nodes u, v ∈ N
are called k-bisimilar (denoted as u ≈k v), iff the following holds:

1. λN (u) = λN (v),
2. if k > 0, then for any edge (u, u′) ∈ E, there exists an edge (v, v′) ∈ E, such

that u′ ≈k−1 v′ and λE(u, u′) = λE(v, v′), and
3. if k > 0, then for any edge (v, v′) ∈ E, there exists an edge (u, u′) ∈ E, such

that v′ ≈k−1 u′ and λE(v, v′) = λE(u, u′).

Given the k-bisimulation relation on a graph G, we can assign a unique partition
identifier (e.g., an integer) to each set of k-bisimilar nodes in G. For node u ∈ N
and relation ≈k, we write pIdk(u) to denote u’s k-partition identifier, and we
call pIdk a k-partition identifier function.

Definition 2. Let G = 〈N,E, λN , λE〉 be a graph, k ≥ 0, and {pId0, . . . , pIdk}
be a set of i-partition identifier functions for G, for 0 ≤ i ≤ k. The k bisimulation
signature of node u ∈ N is the pair sigk(u) = (pId0(u), L) where:

L =

{
∅ if k = 0,

{(λE(u, u′), pIdk−1(u ′)) | (u, u′) ∈ E} if k > 0.

We then have the following fact.

Proposition 1 ([20]). pIdk(u) = pIdk(v) iff sigk(u) = sigk(v), k ≥ 0.

Since there is a one-to-one mapping between a node’s signature and its parti-
tion identifier, we can construct sigk(u) (∀u ∈ N, k ≥ 0), assign pIdk(u) accord-
ing to sigk(u), and then use pIdk(u) to construct sigk+1(u), and so on. We call



each such construct-assign computing cycle an iteration. This signature-based
approach is robust, with effective application in non-MapReduce environments
(e.g., [3, 20]). We refer for a more detailed discussion of localized bisimulation to
Luo et al. [20].

1 2

5 643

w w
l

l

l

A A

B BB B

l l

P1

P2
Fig. 1. Example graph

Example. Consider the graph in Fig-
ure 1. In iteration 0, nodes are par-
titioned into blocks P1 and P2 (in-
dicated by different colors), based on
the node label A and B (Def. 1).
Then in iteration 1, from Def. 2, we
have sig1(1 ) = (1, {(w,P1), (l, P2)}) and
sig1(2 ) = (1, {(w,P1), (l, P2)}), which in-
dicates that pId1(1 ) = pId1(2 ) (Prop. 1).
If we further compute 2-bisimulation, we see that sig2(1 ) 6= sig2(2 ), and we
conclude that nodes 1 and 2 are not 2-bisimilar, and block P1 will split.

The partition blocks and their relations (i.e., a “structural index”) can be seen
as an abstraction of the real graph, to be used, for example, to filter unnecessary
graph matching during query processing [11, 23]. A larger k leads to a more
refined partition, which results in a larger structural index. So there is a trade-
off between k and the space we have for holding the structural index. In practice,
though, we see that a small k value (e.g., k ≤ 5) is already sufficient for query
processing. In our analysis below, we compute the k-bisimulation result up to
k = 10, which is enough to show all the behaviors of interest for structural
indexes.

2.2 MapReduce framework

The MapReduce programming model [8] is designed to process large datasets in
parallel. A MapReduce job takes a set of key/value pairs as input and outputs
another set of key/value pairs. A MapReduce program consists of a series of
MapReduce jobs, where each MapReduce job implements a map and a reduce
function (“[ ]” means a list of elements):

map (k1, v1) → [(k2, v2)]
reduce (k2, [v2]) → [(k3, v3)].

The map function takes key/value pair (k1, v1) as the input, emits a list of
key/value pairs (k2, v2). In the reduce function, all values with the same key are
grouped together as a list of values v2 and are processed to emit another list of
key/value pairs (k3, v3). Users define the map and reduce functions, letting the
framework take care of all other aspects of the computation (synchronization,
I/O, fault tolerance, etc.).

The open source Hadoop implementation of the MapReduce framework is
considered to have production quality and is widely used in industry and research
[14]. Hadoop is often used together with the Hadoop Distributed File System
(HDFS), which is designed to provide high-throughput access to application
data. Besides map and reduce functions, in Hadoop a user can also write a



custom partition function, which is applied after the map function to specify to
which reducer each key/value pair should go. In our work we use Hadoop for
validating our solutions, making use of the partition function as well.

3 Bisimulation partitioning with MapReduce

For a graph G = 〈N,E, λN , λE〉, we arbitrarily assign unique (integer) identi-
fiers to each node of N . Our algorithm for computing the k-bisimulation partition
of G has two input tables: a node table (denoted as Nt) and an edge table (de-
noted as Et). Both tables are plain files of sequential records of nodes and edges
of G, resp., stored on HDFS. The schema of table Nt is as follows:

nId node identifier
pId0 nId 0 bisimulation partition identifier for the given nId
pIdnew nId bisimulation partition identifier for the given nId from the

current computation iteration

The schema of table Et is as follows:

sId source node identifier
tId target node identifier
eLabel edge label
pIdold tId bisimulation partition identifier for the given tId from the

last computation iteration

By combining the idea of Proposition 1 and the MapReduce programming
model, we can sketch an algorithm for k-bisimulation using MapReduce, with
the following workflow: for each iteration i (0 ≤ i ≤ k), we first construct the
signatures for all nodes, then assign partition identifiers for all unique signatures,
and pass the information to the next iteration. In our algorithm, each iteration
then consists of three MapReduce tasks:

1. task Signature performs a merge join of Nt and Et, and create signatures;
2. task Identifier distributes signatures to reducers and assigns partition

identifiers; and,
3. task RePartition sorts Nt to prepare it for the next iteration.

Note that a preprocessing step is executed to guarantee the correctness of the
map-side join in task Signature. We next explain each task in details.

3.1 Task Signature

Task Signature (Algorithm 1) first performs a sort merge join of Nt and Et,
filling in the pIdold tId column of Et with pIdnew nId of Nt. This is achieved in
the map function using a map-side join [18]. Then records are emitted grouping
by nId in Nt and sId in Et. In the reduce function, all information to construct a
signature resides in [value]. So the major part of the function is to iterate through
[value] and construct the signature according to Definition 2. After doing so, the
node identifier along with its pId0 nId value and signature are emitted to the
next task. Note that the key/value pair input of SignatureMapper indicates



the fragments of Nt and Et that need to be joined. The fragments need to be
preprocessed before the algorithm runs.

Algorithm 1 task Signature

1: procedure SignatureMapper(key, value)
2: perform map-side equi-join of Nt and Et on nId and tId, fill in pIdold tId with

pIdnew nId , put all rows of Nt and Et into records
3: for row in records do
4: if row is from Et then
5: emit (sId, the rest of the row)
6: else if row is from Nt then
7: emit (nId, the rest of the row)

1: procedure SignatureReducer(key, [value]) . key is nId or sId
2: pairset ← {}
3: for value in [value] do
4: if (key,value) is from Nt then
5: pId0 nId ← value.pId0 nId . record pId0 nId

6: else if (key,value) is from Et then
7: pairset ← pairset ∪ {(eLabel, pIdold tId)}
8: sort elements in pairset lexicographically, first on eLabel then on pIdold tId

9: signature ← (pId0 nId , pairset)
10: emit (key, (pId0 nId , signature))

3.2 Task Identifier

On a single machine, in order to assign distinct values for signatures, we only
need a dictionary-like data structure. In a distributed environment, on the other
hand, some extra work has to be done. The Identifier task (Algorithm 2)
is designed for this purpose. The map function distributes nodes of the same
signature to the same reducer, so that in the reduce function, each reducer only
needs to check locally whether the given signature is assigned an identifier or
not; if not, then a new identifier is generated and assigned to the signature. To
assign identifiers without collisions across reducers, we specify a non-overlapping
identifier range each reducer can use beforehand. For instance, reducer i can
generate identifiers in the range of [i× |N |, (i+ 1)× |N |).
Algorithm 2 task Identifier

1: procedure IdentifierMapper(nId, (pId0 nId , signature))
2: emit (signature, (nId,pId0 nId))

1: procedure IdentifierReducer(signature, [(nId, pId0 nId)])
2: pIdnew nId ← get unique identifier for signature
3: for (nId, pId0 nId) in [(nId, pId0 nId)] do
4: emit (nId, (pId0 nId , pIdnew nId))

3.3 Task RePartition

The output of task Identifier is Nt filled with partition identifiers from the
current iteration, but consists of file fragments partitioned by signature. In order
to perform a map-side join with Et in task Signature in the next iteration,



Nt needs to be sorted and partitioned on nId, which is the main job of task
RePartition (Algorithm 3). This task makes use of the MapReduce framework
to do the sorting and grouping.

Algorithm 3 task RePartition

1: procedure RePartitionMapper(nId, (pId0 nId , pIdnew nId))
2: emit (nId, (pId0 nId , pIdnew nId)) . do nothing

1: procedure RePartitionReducer(nId, [(pId0 nId , pIdnew nId)])
2: for (pId0 nId , pIdnew nId) in [(pId0 nId , pIdnew nId)] do
3: emit (nId, (pId0 nId , pIdnew nId))

3.4 Running example

We illustrate our algorithm on the example graph of Figure 1. In Figures 2(a),
2(b) and 2(c), we show the input and output of the map and reduce phases
of tasks Signature, Identifier and RePartition, respectively, for the first
iteration (i = 0), with two reducers (bounded with gray boxes) in use.

4 Strategies for dealing with skew in graphs

4.1 Data and skew

In our investigations, we used a variety of graph datasets to validate the results of
our algorithm, namely: Twitter (41.65M, 1468.37M), Jamendo (0.48M, 1.05M),
LinkedMDB (2.33M, 6.15M), DBLP (23M, 50.2M), WikiLinks (5.71M, 130.16M),
DBPedia (38.62M, 115.3M), Power (8.39M, 200M), and Random (10M, 200M);
the numbers in the parenthesis indicates the node count and edge count of the
graph, resp.. Among these, Jamendo, LinkedMDB, DBLP, WikiLinks, DBPedia,
and Twitter are real-world graphs described further in Luo et al. [20]. Random
and Power are synthetic graphs generated using GTgraph [2], where Random is
generated by adding edges between nodes randomly, and Power is generated
following the power-law degree distribution and small-world property.

During investigation of our base algorithm (further details below in Section
5), we witnessed a highly skewed workload among mappers and reducers. Fig-
ure 4(a) illustrates this on the various datasets, showing the running time for
different reducers for the three tasks in the algorithm. Each spike is a time mea-
surement for one reducer. The running time in each task is sorted in a descending
order. We see that indeed some reducers carry a significantly disproportionate
workload. This skew slows down the whole process since the task is only complete
when the slowest worker finishes.

From this empirical observation, we trace back the behavior to the data.
Indeed, the partition result is skewed in many ways. For example, in Figure 3,
we show the cumulative distribution of partition block size, i.e., number of nodes
assigned to the block, to the number of partition blocks having the given size,
for the real-world graphs described above. We see that for all of the datasets,
block size shows a power-law distribution property.

This indicates the need to rethink the design of our base algorithm. Recall
that at the end of the map function of Algorithm 2, nodes are distributed to
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Fig. 2. Input and output of the three tasks of our algorithm for the example graph of
Figure 1 (iteration i = 0).

reducers based on their signatures. Since some of the signatures are associated
with many nodes (as we see in Figure 3), the workload is inevitably unbalanced.
This explains the reducers’ behavior in Figure 4(a) as well. In the following, we
propose several strategies to handle such circumstances.

4.2 Strategy 1: Introduce another task Merge

Recall from Section 3.2 that nodes with the same signature must be distributed
to the same reducer, for otherwise the assignment of partition block identifiers
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cannot be guaranteed to be correct. This could be relaxed, however, if we in-
troduce another task, which we call Merge. Suppose that when we output the
partition result (without the guarantee that nodes with the same signature go to
the same reducer), for each reducer, we also output a mapping of signatures to
partition identifiers. Then in task Merge, we could merge the partition IDs based
on the signature value, and output a local pid to global pid mapping. Then in
the task RePartition, another map-side join is introduced to replace the lo-
cal pid with the global pid. Because the signature itself is not correlated with
the partition block size, the skew on partition block size should be eliminated.
We discuss the implementation details in the following.

In Nt assume we have an additional field holding the partition size of the node

from the previous iteration, named pSizeold , and letMRLoad = |N |
number of reducers .

We define rand(x) to return a random integer from 0 to x, and % as the modulo
operator.

Algorithm 4 modified partition function for task Identifier

1: procedure Identifier getPartition . for each key/value pair
2: if pSizeold > threshold then
3: n = pSizeold/MRLoad . numbers of reducers we need
4: return (signature.hashcode()+rand(n)) % number of reducers
5: else
6: return signature.hashcode() % number of reducers

We first change the partition function for Identifier (Algorithm 4). In
this case, for nodes whose associated pSizeold are above the threshold, we do
not guarantee that they end up in the same reducer, but make sure that they
are distributed to at most n reducers. Then we come to the reduce phase for
Identifier (Algorithm 5). Here we also output the local partition size (named
pSizenew ) for each node.

Then the task Merge (Algorithm 6) will create the mapping between the
locally assigned pIdnew nId and global pid.



Algorithm 5 modified reduce function for task Identifier

1: procedure IdentifierReducer(signature, [(nId,pId0 nId ,pSizeold)])
2: pIdnew nId ← get unique identifier for signature
3: pSizenew← size of [(nId,pId0 nId , pSizeold)]
4: for (nId, pId0 nId , pSizeold) in [(nId, pId0 nId , pSizeold)] do
5: emit (nId, (pId0 nId , pIdnew nId))
6: emit (signature, (pIdnew nId , pSizenew ))

Algorithm 6 task Merge

1: procedure MergeMapper(signature, (pIdnew nId , pSizenew ))
2: emit (signature, (pIdnew nId , pSizenew )) . do nothing

1: procedure MergeReducer(signature, [(pIdnew nId , pSizenew )])
2: global pid count ← 0
3: global pid ← get unique identifier for signature
4: for (pIdnew nId , pSizenew ) in [(pIdnew nId , pSizenew )] do
5: global pid count ← global pid count + pSizenew
6: emit (global pid, (pIdnew nId)) . the local - global mapping

7: emit (global pid, global pid count)

Finally at the beginning of task RePartition, the partition identifiers are
unified by a merge join of the local pid - global pid mapping table and Nt.
We achieve this by distributing the local pid - global pid table to all map-
pers before the task begins, with the help of Hadoop’s distributed cache. Also,
global pid count is updated in Nt.

While this is a general solution for dealing with skew, the extra Merge task
introduces additional overhead. In the case of heavy skew, some signatures will
produce large map files and performing merging might become a bottleneck.
This indicates the need for a more specialized solution to deal with heavy skew.

4.3 Strategy 2: Top-K signature-partition identifier mapping

One observation of Figure 3 is that only a few partition blocks are heavily skewed.
To handle these outliers, at the end of task Signature, besides emitting Nt, we
can also emit, for each reducer, an aggregation count of signature appearances.
Then a merge is performed among all the counts, to identify the most frequent
K signatures and fix signature-partition identifier mappings for these popular
partition blocks. This mapping is small enough to be distributed to all cluster
nodes as a global variable by Hadoop, so that when dealing with these signatures,
processing time becomes constant. As a result, in task Identifier, nodes with
such signatures can be distributed randomly across reducers.

There are certain drawbacks to this method. First, the output top-K frequent
signatures are aggregated from local top-K frequent values (with respect to each
reducer), but globally we only use these values as an estimation of the real
counts. Second, the step where signature counts have to be output and merged
becomes a bottleneck of the whole workflow. Last but not least, users have to
specify K before processing, which may be either too high or too low.



However, in the case of extreme skew on the partition block sizes, for most
of the real world datasets, there are only a few partition blocks which delay
the whole process, even for very large datasets. So when we adopt this strat-
egy, we can choose a very small K value and still achieve good results, without
introducing another MapReduce task. This is validated in Section 5.1.

5 Empirical analysis

Our experiments are executed on the Hadoop cluster at SURFsara in Ams-
terdam, The Netherlands.4 This cluster consists of 72 Nodes (66 DataNodes &
TaskTrackers and 6 HeadNodes), with each node equipped with 4 x 2TB HDD, 8
core CPU 2.0 GHz and 64GB RAM. In total, there are 528 map and 528 reduce
processes, and 460 TB HDFS space. The cluster is running Cloudera CDH3 dis-
tribution with Apache Hadoop 0.20.205. All algorithms are written in Java 1.6.
The datasets we use are described in Section 4.1. A more detailed description of
the empirical study can be found in de Lange [7].

5.1 Impact on workload skew of the Top-K strategy

Figure 4(b) shows the cluster workload after we create a identifier mapping for
the top-2 signature-partitions from Section 4.3. We see that, when compared with
Figure 4(a), the skew in running time per reducer is eliminated by the strategy.
This means that workload is better distributed, thus lowering the running time
per iteration and, in turn, the whole algorithm.
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Fig. 4. Workload skewness for base algorithm (a) and for top-2 signature strategy (b)

5.2 Overall performance comparison

In Figure 5, we present an overall performance comparison for computing 10-
bisimulation on each graph with: our base algorithm (Base), the merge (Merge)
and top-K (Top-K Signature) skew strategies, and the state of the art single-
machine external memory algorithm (I/O Efficient) [20]. For the Top-K Signa-
ture strategy, we set K = 2 which, from our observation in Section 5.1, gives
excellent skew reduction with low additional cost. For the Merge optimization
we used a threshold of 1 ×MRload such that each partition block larger than

4 https://www.surfsara.nl



the optimal reducer block size is distributed among additional reducers. Fur-
thermore, for each dataset, we choose 3 × d edge table size

64 MB e number of reducers,
which has been tested to lead to the minimum elapsed time. We empirically
observed that increasing the number of reducers beyond this does not improve
performance. Indeed, adding further maps and reducers at this point negatively
impacts the running time due to framework overhead. Each experiment was re-
peated five times, and the data point reported is the average of the middle three
measurements.

0

2.5 · 103

5 · 103

7.5 · 103

1 · 104

Ja
m
en
do

Li
nk
ed
M
D
B

D
B
LP

W
ik
iL
in
ks

D
B
Pe
di
a

R
an
do
m

Po
we
r

T
w
itt
er

R
u
n
n
in
g
ti
m
e
(s
ec
)

I/O Efficient Algorithm

Base Algorithm

Top-K signatures algorithm

Merge algorithm

more than 6 · 105

* * Tests did not complete

Fig. 5. Overall performance comparison

We immediately observe from Figure 5 that for all datasets, among the Base
algorithm and its two optimizations, there are always at least two solutions
which perform better than the I/O efficient solution. For small datasets such
as Jamendo and LinkedMDB, this is obvious, since in these cases only 1 or 2
reducers are used, so that the algorithm turns into a single-machine in-memory
algorithm. When the size of the datasets increases, the value of MapReduce
becomes more visible, with up to an order of magnitude improvement in the
running time for the MapReduce-based solutions. We also observe that the skew
amelioration strategies give excellent overall performance on these big graphs,
with 2 or 3 times of improvement over our Base algorithm in the case of the
highly skewed graphs such as DBLP and DBPedia. Finally, we observe that,
relative to the top-K strategy, the merge skew-strategy is mostly placed at a
disadvantage due to its inherent overhead costs.
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To further study the different behaviors among the MapReduce-based solu-
tions, we plot the running time per iteration of the three solutions for DBPedia
and Twitter in Figure 6. We see that for the Twitter dataset, in the first four
iterations the skew is severe for the Base algorithm, while the two optimization
strategies handle it well. After iteration 5, the overhead of the Merge strategy
becomes non-negligible, which is due to the bigger mapping files the Identifier
produces. For the DBPedia dataset, on the other hand, the two strategies per-
form consistently better than the Base algorithm.

Over all, based on our experiments, we note that our algorithm’s performance
is stable, i.e., essentially constant in running time as the number of maps and
reducers is scaled with the input graph size.

6 Concluding remarks

In this paper, we have presented, to our knowledge, the first general-purpose
algorithm for effectively computing localized bisimulation partitions of big graphs
using the MapReduce programming model. We witnessed a skewed workload dur-
ing algorithm execution, and proposed two strategies to eliminate such skew from
an algorithm design perspective. An extensive empirical study confirmed that
our algorithm not only efficiently produces the bisimulation partition result, but
also scales well with the MapReduce infrastructure, with an order of magnitude
performance improvement over the state of the art on real-world graphs.

We close by indicating several interesting avenues for further investigation.
First, there are additional basic sources of skew which may impact performance
of our algorithm, such as skew on signature sizes and skew on the structure of
the bisimulation partition itself. Therefore, further optimizations should be in-
vestigated to handle these additional forms of skew. Second, in Section 5.2 we see
that all three proposed solutions have their best performance for some dataset,
therefore it would be interesting to study the cost model of the MapReduce
framework and combine the information (e.g., statistics for data, cluster status)
within our algorithm to facilitate more intelligent selection of strategies to use
at runtime [1]. Last but not least, our algorithmic solutions for ameliorating
skew effects may find successful applications in related research problems (e.g.,
distributed graph query processing, graph generation, and graph indexing).
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