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Abstract— Whether it be data from ubiquitous devices such
as sensors or data generated from telescopes or other lab-
oratory instruments, technology apparent in many scientific
disciplines is generating data at rates never witnessed before.
Computational scientists are among the many who perform
inductive experiments and analyses on these data with the goal of
answering scientific questions. These computationally demanding
experiments and analyses have become a common occurrence,
resulting in a shift in scientific discovery, and thus leading to the
term eScience.

To perform eScience experiments and analysis at scale, one
must have an infrastructure with enough computing power
and storage space. The advent of cloud computing has allowed
infrastructures and platforms to be created with theoretical
limitless bounds, thus providing an attractive solution to this
need.

In this work, we create a reproducible process for the
construction of eScience computing environments on top of
cloud computing infrastructures. Our solution separates the
construction of these environments into two distinct layers: (1)
the infrastructure layer and (2) the software layer. We provide
results of running our framework on two different computational
clusters within two separate cloud computing environments to
demonstrate that our framework can facilitate the replication or
extension of an eScience experiment.

I. INTRODUCTION & MOTIVATION

Data-intensive science is considered part of a relatively new
paradigm in the scientific discovery process [1]. The term
eScience [2] has been coined to help explain the common
themes and processes found in this new shift in scientific
thought. One common need across all eScience is to have an
infrastructure available to be able to store and manage the data
as well as have the computational power necessary to process
the data into scientific insight.

Cloud computing [3] has emerged in recent years because of
advances in virtualization software. Users of cloud computing
environments can now take advantage of seemingly endless
amount of virtual resources such as computers and storage.
By providing a scalable and elastic computing infrastructure,
cloud computing is an attractive solution for the demanding
experiments run in eScience research disciplines. The cloud
has also opened up opportunities for researchers in all of
the eScience fields to move experiments to a more common
ground, thus enabling greater reproducibility.

As a researcher reading a scientific paper on a new algo-
rithm within a particular eScience domain, it can be chal-
lenging to replicate the authors’ computationally intensive
experiments. To fully reproduce the experiments in the paper,
one must have both the infrastructure and software configured
in the same manner, as well as have access to the data used
within the original experiment. In many cases, having access to
all these items is not possible [4]. Even if the original data are
not available, it should be reasonable to expect experimental
setup to be reproducible. Specifically, if the infrastructure
setup and the software installation and configuration can be
performed in a reproducible manner then scientists are much
more enabled at replicating or extending the experiment in
question.

Therefore, in this work, we demonstrate through the use of
infrastructure automation and cloud computing the concept of
reproducible eScience is an achievable goal. To this end, this
work enables eScience researchers to spend less time on the
process of recreating a previous experiment and more time on
enabling and advancing scientific work. Towards the goal of
performing reproducible eScience experiments in the cloud,
we demonstrate the following:

• The construction of scalable computing environments into
two distinct layers: (1) the infrastructure layer and (2) the
software layer.

• A demonstration through this separation of concerns that
the installation and configuration operations performed
within the software layer can be re-used in separate
clouds.

• The creation of two distinct types of computational
clusters, utilizing the framework.

• Two fully reproducible eScience experiments built on top
of the framework.

II. BACKGROUND & RELATED WORK

Virtualization technology has opened the door to many
advances in computing. A virtual machine (VM) [5] is a
running instance of a computer where resources such as
memory and central processing units (CPUs) are allocated
through virtualization software. A virtual cluster (VC) [6] is
a set of VMs and any corresponding storage, which operate
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as a whole to create the presence of a single computational
entity.

Cloud computing has emerged in recent years because
of advances in virtualization software. Companies such as
Amazon, Google, and Microsoft provide services to customers
for use of the virtual resources owned by them. The definition
of cloud computing has taken many forms in the academic
community and industry. For this work, we will use the
definitions and terms discussed in [3].

Cloud computing refers to the software, platforms, and
infrastructure services provided over the Internet as well as
the data centers offering these services. The hardware and
virtualization software running on top of this hardware is
termed a cloud. The property of theoretical limitless bound
that has gained much of cloud computing’s attention.

Providers of cloud computing services offer application pro-
gramming interfaces (APIs) as means with which customers
subscribe and interact. The lowest level of service available
with a cloud is termed Infrastructure as a Service (IaaS). At
this level, users provision virtual resources such as a VM or a
virtual block storage device. We consider this the infrastructure
layer whereabouts our framework interacts with the cloud.

The use of cloud computing has been discussed as a means
to aid in the reproducibility of in silico experiments [7]. Our
approach to this problem achieves the same outcome of repro-
ducible computational experiments; however, we have made
the conscience decision to maintain only a generic machine
image within a cloud. Then utilizing a configuration man-
agement tool, we build fully configured VMs based through
software installation scripts. Through this approach, we are
able to use the same software installation and configuration
scripts within the software layer in separate clouds. Another
reason for using a software automation approach is that when
building a VC there are configurations that are needed at time
of construction, such as a worker knowing who the master is or
alternatively the master knowing all of the available workers.

The ability to quickly provision a VC within a cloud
computing environment is useful in many scenarios within
eScience experiments. For example, a researcher can build
the necessary environment closer to the data. Both [8], [9]
discuss the fact that as the size of data sets grow, and if the
construction of a VC can be performed in a straightforward
manner, then it is possible to move the computing infrastruc-
ture to the data. This realization is in contrast to the traditional
mechanism of moving the data to the location of a dedicated
HPC cluster, such as a research university’s supercomputer.

Eucalyptus [10] is an open-source cloud computing toolkit
that provides IaaS capabilities. Using the Eucalyptus toolkit,
one can create a cloud with a compatible API to that of
Amazon’s EC2 and S3. During this research work, we both
implemented and tested much of our effort on Amazon as well
as FutureGrid’s Eucalyptus cloud.

There are several configuration management tools available
for use in automating software configurations and installations.
Tools such as CFEngine [11] and Puppet [12] have been
created to manage and configure infrastructures and systems.

In this work we have chosen to use Chef [13] as the tool for
the construction of our virtual clusters.

III. DESIGN & IMPLEMENTATION

A. Overall Design

The solution we propose in this work is built in two layers.
The first layer, which we call the infrastructure layer, is the
layer that interacts with API provided by a cloud computing
IaaS offering. Typical tasks performed at this layer include
instantiating a VM; configuring networking ingress rules; and
creating and allocating block storage, among other tasks.

The second layer, which we call the software layer, deals
with interactions on a running VM. This layer has been sepa-
rated from the infrastructure layer because interactions at this
layer can be performed in a repeatable manner regardless of
where the VM resides. Therefore, this separation of concerns
allows one to utilize a configuration management tool to build
and maintain VCs as well as install and configure eScience
applications. Figure 1 exhibits how a client machine interacts
with these two layers. For the infrastructure layer, the client
interacts with the IaaS cloud provider API whereas within the
software layer the client is executing commands directly on
the running virtual machine.
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Fig. 1. Client interactions between the infrastructure and software layers.

To provide context to what is performed within these layers,
Figure 2 demonstrates the common steps needed to create
a fully functioning running instance of a VM in the IaaS
cloud. The layer of interaction (infrastructure or software)
needed to complete the tasks is also included in this figure.
By recognizing the interactions between these two layers, it
is possible to separate concerns, which leads to creating a
repeatable installation and configuration processes for items
within the software layer.

B. Implementation

To implement our design, we built equivalent machine
images within Amazon’s EC2 and FutureGrid’s Eucalyptus
cloud. The following steps were performed in each cloud:

• Instantiated a base CentOS 5.6 machine image (MI).
• Installed the configuration management software Chef

(specifically, the chef-client application).
• Built a new machine image.
• Registered the new machine image.
Figure 3 displays the final result of the equivalent machine

images, called an Amazon Machine Image (AMI) within
Amazon EC2 and Eucalyptus Machine Image (EMI) within
the Eucalyptus cloud.

The fundamental outcome to the tasks described above
is that equivalent base MIs were created in separate IaaS
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Fig. 2. Example of steps needed to create a running instance with storage
and software. * = Infrastructure layer task. # = Software layer task.
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Fig. 3. Equivalent machine images (MI) were built in separate clouds.

environments. From a software installation and configuration
perspective, this equivalent infrastructure layer establishes a
common underpinning in separate clouds. As a result, one
is able to replicate VCs in separate clouds using a common
software layer.

C. Chef

Chef [13] is the configuration management tool chosen
for automating the construction of our VCs as well as the
installation and configuration of software within the clusters.
Additional information regarding the Chef architecture is
presented online [13]. Below, we provide information on Chef
to establish a base understanding of how this configuration
management tool is used to construct VCs and reproducible
eScience experiments.

• Cookbook - A cookbook is a grouping of Chef artifacts
(e.g., recipes) typically related to each other.

• Recipe - A recipe is the basic unit for configuration
in Chef. There can be more than one recipe within
a cookbook, and recipes can interact with other Chef
recipes and artifacts.

• Resource - A resource is used within a recipe to perform
an action in an abstracted manner.

• Chef server - The central location where all of the Chef
artifacts are stored.

• Chef client - Machine(s) where the Chef server adminis-
ters recipes to install and configure software. The client
executes the chef-client application.

• Knife - A command line tool provided with Chef for

administrative use. It is possible to create plug-ins into
Knife, which was performed in this work. Knife com-
mands are discussed further below, and examples are
provided in Tables I and II.

Figure 4 presents the steps necessary to create a virtual
cluster in the cloud using our solution. The Chef Server
VM, hosting all of our software installation and configuration
information, ran within the FutureGrid Eucalyptus cloud.
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Fig. 4. Overall steps to create a cluster and setup eScience experiment.

IV. APPLICATIONS & EXPERIMENTS

A. Hadoop Cluster

Hadoop [14] is an open-source software project sponsored
by the Apache Software Foundation [15]. The base con-
tribution of the project is a framework, which implements
the MapReduce programming paradigm introduced in [16].
The Hadoop framework provides a distributed, scalable, and
reliable mechanism for users to process large amounts of data.

The use of Hadoop and MapReduce has gathered atten-
tion in recent eScience work [17], [18], [19] because many
eScience algorithms exhibit pleasingly parallel properties [20].
Therefore, the ability to create a Hadoop cluster in a repro-
ducible manner is valuable in itself.

The first step to creating the fully reproducible eScience
experiment using Hadoop is to automate the construction of a
Hadoop VC. For this process, we modeled our command line
interface off of the hadoop-ec2 command line tool provided
in the base Hadoop distribution [21]. We created hadoop
recipes for performing the set of installation and configuration
tasks to create a working Hadoop Cluster.

Within the Knife client machine, we created a plug-in
to execute the commands necessary to provision the cloud
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knife hadoop launch {name} {slave count}
knife hadoop terminate {name}

TABLE I

EXAMPLE COMMANDS TO MANAGE A HADOOP CLUSTER.

resources, such as a security groups and VMs, as well as install
and configure the Hadoop cluster. Configuration and status
information related to the two layers was stored in a database
on the client machine. Table I provides example commands
executed on the Knife client to launch and terminate a Hadoop
cluster, respectively.

After getting a Hadoop cluster working with our design,
we extended this capability by automating the installation and
testing of the CloudBurst [17] algorithm. CloudBurst is a
parallel read-mapping algorithm used to map DNA sequencing
data to a reference genome. CloudBurst has been designed to
run linearly as the Hadoop cluster scales. The CloudBurst web
site provides a sample data set. To execute the CloudBurst
sample experiment, the following steps are needed :

1) Download and install CloudBurst
2) Download and extract the sample data
3) Load data into Hadoop’s distributed file system (HDFS)
4) Execute the Hadoop run
5) Extract generated results from HDFS
6) Execute diff on the generated vs. expected results

To perform these steps in a repeatable manner, we cre-
ated a default receipe within Chef cookbook named
cloudburst. Once the Hadoop cluster is running, the
Hadoop Master node executes the chef-client command
to perform the CloudBurst experiment steps. By creating these
sets of installation and configuration Chef recipes, we were
able to perform the CloudBurst experiment by executing the
following three steps. Step 1. is run on the Knife client
machine. All other steps are run on the Hadoop Master.

1) knife hadoop launch cloudburst 9
2) echo '{''run list'': ''recipe[cloudburst]''}' > cloudburst.json
3) chef-client -j cloudburst.json

Step 1 launches the Hadoop cluster with nine slave machines.
Step 2 creates a JavaScript Object Notation (JSON) [22]
configuration file, which contains a list of items to download
and run from the Chef Server. In this case, the steps to perform
the CloudBurst sample data experiment. Step 3 runs the Chef
cloudburst default recipe, which in turns performs all the
steps to recreate the entire sample data experiment.

The CloudBurst sample data example executes two separate
MapReduce tasks named within the code as CloudBurst and
FilterAlignments. Figure 5 displays the total run-time for these
two tasks, executed on the three separate clusters. To reproduce
the results displayed in Figure 5, the number of slaves in Step 1
was modified from 9, 19, to 49, which in turn created a Hadoop
cluster size 10, 20, and 50, respectively. This experiment
confirmed the ability to configure a running Hadoop cluster
and run a sample experiment using a handful of commands. It
was possible to automate Step 2 and 3, but for sake of clarity

we explicitly stated these tasks.

Fig. 5. Run-time results of running CloudBurst sample

B. Condor Pool with a Distributed File System

Condor [23] is a high performance computing workload
management system. A Condor pool is collection of machines
that process resource requests. Within a pool, there is one ma-
chine called a Central Manager. The Central Manager collects
information on machines within the pool and intermediates
the match-making between resources and resource requests.
The Execute and Submit roles are two other possible roles for
machines within a Condor pool. Each machine implementing
the Execute role will advertise its available resources (CPU,
memory, etc.) so that tasks can be executed on it. The Submit
role allows a machine to submit Condor jobs within the pool.
To create a working Condor pool at least one machine needs
to implement each of these roles.

We created a condor Chef cookbook that installs Condor
on each of the machines in a pool. A node is configured at run-
time with one or more of the Condor roles described above,
which starts the appropriate Condor daemons. Additionally,
the recipes populate Condor configuration files, including
setting the Central Manager on each of the Execute machines.

Many IaaS clouds have a limitation where a block storage
volume can only be attached to a single running instances. This
is true for Amazon EC2 and FutureGrid’s Eucalyptus, the two
clouds used in this work. Therefore, to have separate nodes
within the pool access the same block storage, a distributed
file system must be created. For the implementation of the
Condor pool, the open source GlusterFS [24] distributed file
system was used.

To use GlusterFS, a gluster Chef recipes were created for
installing and configuring GlusterFS servers and clients. The
Condor Central Manager was configured to be a GlusterFS
server. Consequently, the Central Manager was the only node
in the Condor Pool that had block storage attached to it.
All nodes within the pool, including the Central Manager,
were configured to be GlusterFS clients. Figure 6 provides
a graphical display of the Condor Pool configuration. Further,
Table II provides example commands executed on the Knife
client to launch, terminate, and add nodes to the Condor pool,
respectively.

After building a base Condor pool with a distributed file
system, we installed the Pegasus [25] eScience workflow
framework. A Chef recipe was created within a pegagus
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Fig. 6. Condor pool with Pegasus and a Gluster distributed file system.

knife cluster launch {name} {exec. host count}
knife cluster terminate {name}
knife cluster node add {name} {node count}

TABLE II

EXAMPLE COMMANDS TO MANAGE A CONDOR POOL.

cookbook to install Pegasus on each of the nodes within the
Condor pool.

Within the Pegasus distribution, an example workflow
named condor-blackdiamond is included. The Black Diamond
workflow creates a simple directed acyclic graph (DAG) using
Condor’s Directed Acyclic Graph Manager (DAGMan) meta-
scheduler. A black diamond recipe was created in the
pegagus cookbook to install the condor-blackdiamond ex-
ample within the /mnt/gluster directory of the distributed
file system. By creating these Chef recipes, we were able to
perform the Pegasus Black Diamond example by executing the
following steps. Step 1. is run on the Knife client machine.
The remaining steps are run on the Condor Central Manager.

1) knife cluster launch pegasus 1
2) echo '{''run list'': ''recipe[pegasus::black diamond]''}' \

> black diamond.json
3) chef-client -j black diamond.json
4) su - cluster
5) cd /mnt/gluster/condor-blackdiamond
6) ./submit condorpool

V. CONCLUSIONS & FUTURE WORK

We made evident in this work that cloud computing can be
used for researchers to reproduce eScience experiments and
applications in a straightforward manner. Two distinct types
of computational clusters, a Hadoop cluster and a Condor
pool, were created utilizing the methodology of separating
the infrastructure layer, which interacts with a cloud IaaS
API from the the software layer, which interacts with a
running virtual machine. Finally, we demonstrated our work
by running two fully reproducible eScience examples within
our framework.

In the future we plan to extend this work by providing
additional configuration and management capabilities to the
virtual clusters. These additional capabilities, in turn, provide
more flexibility for the creation and management of virtual
clusters. Next, is to further investigate ability to have virtual
clusters adapt to infrastructure and workflow demands by
utilizing cloud APIs and monitoring capabilities.
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