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ABSTRACT

In many domains, such as bioinformatics, cheminformatieslth
informatics and social networks, data can be representiedatis
as labeled graphs. To address the increasing needs in eigupv
interesting associations between entities in such daghgraspe-
cially under complicated keyword-based and structurastramts,
we introduce ConkaiGonstraineK eyword-baseéssociation Dis-
coveRy) System. Conkar is the first system for discoveraop-
strained acyclic paths (CAHh graph data under keyword-based
constraints, with the highlight being the set of quanti@tcon-
straint metrics that we proposed, includitmyverageandrelevance
We will demonstrate the key features of Conkar: powerful aset-
friendly query specification, efficient query evaluatioexfble and
on-demand result ranking, visual result display, as wekh@sn-
sight tour on our novel CAP query evaluation algorithms.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval (Search process)

General Terms
Algorithms

Keywords

Keyword-based Association Discovery, Search Algorithrayes-
age, Relevance, Drug Discovery

1. INTRODUCTION

In many domains, such as social networks, cheminformatics,
bioinformatics, and health informatics, data can be repres nat-
urally in graph model, with nodes being data entities andksdige
relationships between them. RDF (Resource Descriptiomé&ra
work) [11] is a W3C recommended language which describ&edin
data of the Semantic Web in the form of triples. Both RDF dath a

RDF schema can be represented by node and edge labeled.graphs

The graph nature of these data brings opportunities and chal
lenges to data storage and retrieval. In particular, it sjtlee doors
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to search problems such as semantic association disca¥edy [
and keyword search [7].

We study the application requirements in various domainrs in
cluding cheminformatics and social networks and find thaptiob-
lem of discovering acyclic paths between data entities unde-
straints such as appearance of nodes, edges and/or pattertise
length of paths is at the core of these applications.

One of the core research directions in cheminformaticssgudy
drugs’ affect on diseases via the interaction between jmotnd
genes [10]. To facilitate such study, drugs, diseasesimtgenes,
etc. are represented in an RDF graph [5]. To assess theieffect
ness of a drug before conducting chemical experiments, iloma
experts would like to first find and analyse paths from the doug
the target disease under constraints, e.g. the (partipfaapnce of
certain proteins/genes.

In social networks and research networks, such as VIVO [6],
one of the most important functionalities is to find connaasi be-
tween people that satisfy certain constraints [1, 8], famegle, to
find possible collaborations based on common interest, detiect
conflict of interest between authors and PCs based on theappe
ance of certain entities, such as professional institstibiat both
are affiliated with, and/or relationships, e.g. adviseaathor and
co-Pl. It is also critical to determine the degree of suchfladrof
interest further based on how frequent certain relatignahd en-
tities appear in the connection [1].

How to express and measure constraints and how to answer such
constrained path discovery queries efficiently are cilipcablems,
but are not yet fully studied in the literature. There are podgic
systems that fulfill the demands. First, allow us to take afrei-
search networks as example, to illustrate such demands.

A: Azriel
B: Ben
C: Chris
D: Dan
F: Frank
H: Helen
I: Ida

Figure 1: Graph representation of a sample RDF data

ExampPLE 1.1. Figure 1 shows the graph representation of a
sample RDF data representing the relationships among peiopl
the social networks. Let’s consider the following searajuests:
casel. Find howAzriel connects tdBen
case2. Find the close ties (within 3 steps) betweeariel and Ben
case3. Find howAzriel connects tBenthroughChrisor Dan
cased. Find howAzriel connects t@®enthrough at least two people
from Chris Danand Ida within four steps.
caseb. Find Azriel’s close (within 4 steps) professional connections
(e.g. relationships such agorkfor, coworker coauthoy to Ben
caseb. Find Azriel's close (within 4 steps) semi-professional con-



nections toBen (i.e. half of the relationships in any tie should be
professional);

Query languages have been proposed to query data on the Se

mantic Web. SPARQL [12], the de facto standard query languag
for RDF, relies on graph patterns to identify data entities eela-
tionships of interest. However, it lacks the ability to eags arbi-
trary paths between data entities, such as those shown ih. Ex.
The notion of label-constraint reachability (LCR) [8] wa®sposed

to describe the problem of finding tlennectivitybetween two
given nodes in a labeled graph under the constraint thatakdge

The important innovations of Conkar are to formally define th
Constrained Acyclic Path Discovepyoblem and to provide a friendly
interface for users to express CAP queries.

2.1 Preliminary

Let £ be an infinite set of literals antd be an infinite set of
URIs disjoint with£. We represent RDF data as a node and edge
labeled directed grapt’ = (V, E, \) whereV is a set of nodes,

E C V xV isaset of edges, andis a labeling function that maps
items inV U E into a finite set of labels and literals.

We call a sequence of interleaving nodes and edges of graph

labels along the path are in a given set. The semantic keyword path fragmen{or fragmen}, represented by, if

search problem was defined to find trees in a labeled direcéguhg

where the tree nodes and edges cover all the keywords [7].- Com

bining these notions, several SPARQL extensions, with ntr@-
duction of path variables, were proposed [4, 9]. Such eitess
are capable of expressing the search queries in cases Dx21nlE
but not the other cases. There were also proposals for emtend
SPARQL with regular expressions [2] to express complexepadgt
that satisfy strictly defined constraints such as case8,5,2-How-
ever, such SPARQL extensions still cannot express moraeaela
constraints such as those in cases 4,6.

To support the searches in Ex. 1.1, the two major challenges a
how to express these association discovery problems anddow
answer them efficiently.

We introduce Conkar [14], the first system that can expreds an
answer all these search quetieln Conkar, whose architecture is
shown in Figure 2, we abstract the association discoverlgl@no
as the problem ofinding constrained acyclic paths (CAP) in di-
rected labeled graphd/NVe define a set of quantitative metrics, at the
core of which are the notions ebverageandrelevanceof a path
with respect to a set of keywords. Via the easy-to-use iaterbf
Conkar, users can express CAP search queries by specifging k
word sets, the desirembverageandrelevanceof the resultant paths
with respect to these keyword sets, as well as other contrai
such as path length. Users can also specify the relativertampme
of quantitative metrics. Then Conkar will rank the resukiséd on
their preference. Upon viewing the results, users can a@xtend
or refine) the constraints and ranking criteria to obtainrdgsilts
that suit their needs.
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Figure 2: Conkar architecture

YConkar overview: http://www.cs.indiana.egatozhou/conkar.html

o for every adjacentn,e,n’) in f, it is the case that,n’ €
VAe=(nn)€E;
e if (e,n) is a prefix of £, then there must exist’ € V, such
thate = (n’,n) € E; and
e if (n,e) is a suffix of f, then there must exist’ € V, such
thate = (n,n’) € E.
We usenodes(f) (edges(f))torepresent the set of nodes (edges)
in f,andLength(f) (or|f]) the length off, defined asedges(f)|.
We overload the mapping functionto map a set of nodes (edges)
to their corresponding labels.
Given two nodesns,nq € V as the source and destination
nodes, the paths that link to ng in G are fragments in the form
f = (ns,e1,n1...,nk_1,ex,nq). In search queries that look
for the paths between two nodes, frequently only acyclibpate
of interest to users. Therefore, ag andn, are given, we are
particularly interested in a special type of path fragmeatyclic
e-fragment (denoted by.), which starts and ends with an edge,
and no two nodes, including the end nodes, are the same. We use
Fe(ns,ng) to represent all acyclie-fragments between; andng
inG.

2.2 Specifying Constraints

Length Constraint: Among a possibly large number of resultant
e-fragments of a search query, shorgéefragments tend to express
stronger and more meaningful relationship between the twb e
nodes than the longer ones do [3, 7]. Involving thegth con-
straint which restricts the length of the resultarfragments has
been studied in [2, 4], and Conkar supports it as well.

Set-based Constraints When users search for paths between a
pair of nodes, they are frequently interested in paths thatain
certain keywords. Such constraints can be given in the fdrm o
keyword sef{denotedS), where a keyword is a label iH.

Certain constraints, such as presence constraints [4] dasno
and tight constraints on edges [8] were discussed in theimxis
works, but they are quite limited in terms of what can be inkig-
word set and how the results are regulated by it, hence caer®xp
only some search queries, but not many others, such as céses 3
Ex. 1.1.

We generalize the keyword-based constraints defined iff |4, 8
two directions: (1) we allow the keyword set to include keyds
that can be mapped to labels of both nodes and edges; and (2) we
extend how the results are confined by a keyword set.

DEFINITION 2.1. Given a finite keyword s&& C U/ and ane-
fragmentf. € Fe(ns,na),

1. ifS C (A(nodes(fe)) U A(edges(fe))), we sayf. satisfies
presence constraimtr.t. S;

2. if§ O (A(nodes(fe)) U A(edges(fe))), we sayf. satisfies
context constrainiv.r.t. S;

3. if SN (A(nodes(fe)) U X(edges(fe))) # 0, we sayf. sat-
isfiesintersection constraim.r.t. S.



Based on the definition above, we can express the searctsteque
in Ex. 1.1 case3 as "fine-fragments fronAzrielto Benthat satisfy
theintersection constraintv.r.t. keyword se{ Chris, Dan}".

Quantitative Metrics: To express the search requests in Ex. 1.1
cases 4-6, a more subtle description of the relationshipesst
ane-fragment and a keyword set than thi&or-nothing set-based
constraints described in Def. 2.1 is needed. For this pe;pas
introduce quantitative metriecoverageandrelevance

Intuitively, coveragedescribes the fraction of the keyword set
that appears in the label set of affragment, whilerelevancede-
scribes the fraction of the labels of affragment that are in the
keyword set. In an RDF graph, each node haaiit&ue label,
while more than one edge may have the same label. Therefore,
we refinecoverageand relevancefurther into node-coveragand
node-relevancéor keyword sets to be applied only on nodedge-
coverageandedge-relevancéor edges, and ussverageandrele-
vancefor the constraints in which keywords can be mapped to both
nodes and edges. We usetE(l, f.) to represent the number of
appearance of a keywofdamong the edges in anfragmentf..

We present the formula to calculate the coverage and ratevan
in Def. 2.2 while the formula to calculate node (edge) cogerand
relevance can be easily deduced.

DEFINITION 2.2. Given a graph, two nodesis, ng € V and
a finite keyword sef C U, for ane-fragmentf. € F.(ns,naq),
_ IS N (A(nodes(fe)) U A(edges(fe)))|

S|
IS N A(nodes(fe))| + Ziesent E(L, fe)
Inodes(fe)| + |edges(fe)l

Coverage(fe,S) «h)

Relevance(fe,S)

@)

Taking advantage of the quantitative metrics, the seamphe®s
in Ex. 1.1 cases 4-6 can be expressed easily. For exampk&6cas
can be expressed as "find alfragments,f., from Azriel to Ben
such that EdgeRelevange( {coworker workfor, coautho}) >
0.5and|f.| < 4"

All the constraints we defined in Def. 2.1 are special casas th
can be expressed using the quantitative metrics definedfire2e

Presence(fe,S) <= Coverage(fe,S) =1 3)
Context(fe,S) <= Relevance(fe,S) =1 4)
Intersection(fe,S) <= Relevance(fe,S) >0 (5)

Similarly, we can define the node/edge version of these ifumst

2.3 CAP Query Specification

Formally, a CAP search que€yAP(ns, nq, 7) on RDF graphG
involves source and destination nodesngy € V, and constraint
T expressed using zero to many quantitative metrics funstibat
involve zero or many keyword sets, and returns difeagment(s)
from ns to n4 that satisfyr. Our Conkar provides a user-friendly
interface for specifying a CAP query by composing the ingrets
of the search, i.eG, ns, nqg and an optional, potentially arbitrarily
complicatedr.

3. ANSWERING CAP QUERIES

As the data grapti’ and constraint can both be large in size and
complex in nature, designing algorithms that can efficieatiswer
CAP queries is at the heart of the design and implementation o
Conkar.

Many graph searching algorithms [7] were proposed for answe
ing keyword searches in graph data. But they can not be applie
directly to answer CAP queries, as they are designed to fewl tr
instances covering all keywords in the graph. Traversaetap-

adapted with a post-search filter to answer CAP queries. kenve
such Search-Filter approaches don't scale well when tleasiz
complexity of the graph increase. Algorithms [3, 4] with &ftghal
help from schema or indices were later proposed, but thedé fa
tating data and structures lack of either availability alability.

In Conkar, we implemented three algorithms to answer CAP
queries:

Search-Filter approachutilizes algorithms proposed in the litera-
ture to find all acyclice-fragments inF.(ns, nq) (in fact, to find
CAP(ns,ng,0)(G)), and then eliminates those not satisfying the
constraints specified in. This approach is most generic and can
be easily adapted for all constraints introduced above. d¥ew
itis not practically efficient because generatifg(n,, nq) is very
time and space consuming, renderingsbarchphase costly, while
frequently| CAP(ns,ng, 7)(G)| < |CAP(ns, ng, 0)(G)|, rendering
the high cost of theearchphase mostly wasted.

In Conkar, to answer CAP queries efficiently, we proposeke ta
advantage of the constraints on length and keywords andnedsh
sult validation into the path discovery process, to prungroimis-
ing intermediate results as early as possible. In particula de-
sign and implement the following two families of algorithfidis].

ConstraintDFS(cDFS) andEnhanced ConstraintDF&cDFS) al-
gorithms are based dbepth First Searci{DFS). To minimize the
DFS search space in computing a CAP quety P (ns, nq, 7), We
minimize the total number of intermediate results, i.e gfnants,
generated in the process by terminating expansion fronmfeads
generated at search steps when we are certain that the pans
will not lead to any results. In order to do so, we introduce th
notion of projected value rangef the quantative metrics, and we
design a set of formula to compute the projected value raoigbe
constraint metrics in the CAP query in question, based ariné-
tion, such as the length and keyword appearances, of the &g
generated so far in the DFS process. In the cDFS algorithm, at
each DFS step, when the projected value ranges of a fragment d
not overlap with the constraints in, we can safely terminate the
expansion of this fragment. The ecDFS algorithm furtherimaps

the performance by saving the validation of the fragmentindu
the search steps of which we foresee the fragments guadarttee
be promising.

Search-and-Joil{S&J) algorithm specifically targets at the set-based,
rather than list-based, keyword constraint specificatibhe S&J
algorithm takes the local information around the nodes \kéj+
words into consideration to calculate more precise pregtwalue
ranges, and thus conduct more efficient pruning. The S&J algo
rithm issues mini-searches to find exclusive path fragméres
paths that do not pass through any keyword nodes) between pai
of nodes that contain keywords, then gsastrained sequence join
to concatenate the fragments to produce the final resultsfi@a
bookkeeping allows us to use the partial results in one seairch

to limit the search space of many other mini-searches, ded-ef
tively reduces the overall search cost.

4. DEMONSTRATION PROPOSAL

We propose the demonstrational plan to welcome users to have
a hand-on experience with Conkar. Especially users cars¢iipi
CAP queries, simple or complicated, via our user-friendtgiface
and view the resultant paths instantly; and (2) have an finsopk
at how our algorithms efficiently evaluate CAP queries. W# wi
demonstrate Conkar on two applications: the drug discoagry

proaches such as DFS, BFS and bidirectional search [2] can beplication for chemical informatics and the application ocial/re-



search networks. Following the running examples in Sec.€, w box for users to inspect. Figure 4 shows a CAP query under con-
will again use social/research networks data as our exanepée

4.1 CAP Query Specification and Answerin

Users are welcome to use the CAP query interface of Conkar

g

struction using the advanced search of Conkar.

4.2 Query Evaluation Behind-the-Scene

Besides demonstrating the key features of Conkar, e.g. CAP

to specify and evaluate CAP queries. The required fieldsBre ( query specification and execution, we also provide a betfiad-
the data graph, which can be selected from our demo datgbasesscene tour for audiences who are interested in our CAP quaty e

and (2) the source and destination nodes, which can be gukcifi

by typing keyword(s) in a textbox, and selecting URIs thahkor

pulls from the database matching the keyword(s). The caimsr
are optional. Using the simple CAP query interface of Conkar
users can construct a set of keywords, and use scroll baes tioes
desired values ranges of the quantitative metrics witheetsp the
keyword set. Users can also specify the importance of each co
straint, which Conkar will take into consideration whileepenting
the ranked results to reflect users’ preferences. ConkaahNiges
the ranked results in list view as well as graph view. The &mp

search interface and result display are shown in Figure 3.
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Figure 3: Simple search
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Figure 4: Advanced search
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uation algorithms. Here, after composing a CAP query, wé wil
welcome the audience to choose an algorithm to evaluateigry.q
Conkar will then illustrate how nodes/edges in the data yie
explored, the intermediate results, as well as our sophistil book-
keeping that facilitates the search. At the end, besidesisigahe
query results, Conkar will also report the execution profitelud-
ing how many node/edges are explored, using which the users c
compare the performance of different algorithms. Figurdus-
trates an intermediate step of using the S&J algorithm tavana
CAP query. Here, nodes are color coded to distinguish stiese
tination nodes, query nodes, search frontiers, prunec:hes etc.
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Figure 5: Behind the scene
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