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ABSTRACT
In many domains, such as bioinformatics, cheminformatics,health
informatics and social networks, data can be represented naturally
as labeled graphs. To address the increasing needs in discovering
interesting associations between entities in such data graphs, espe-
cially under complicated keyword-based and structural constraints,
we introduce Conkar (ConstrainedKeyword-basedAssociation Dis-
coveRy) System. Conkar is the first system for discoveringcon-
strained acyclic paths (CAP)in graph data under keyword-based
constraints, with the highlight being the set of quantitative con-
straint metrics that we proposed, includingcoverageandrelevance.
We will demonstrate the key features of Conkar: powerful anduser-
friendly query specification, efficient query evaluation, flexible and
on-demand result ranking, visual result display, as well asan in-
sight tour on our novel CAP query evaluation algorithms.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval (Search process)

General Terms
Algorithms

Keywords
Keyword-based Association Discovery, Search Algorithm, Cover-
age, Relevance, Drug Discovery

1. INTRODUCTION
In many domains, such as social networks, cheminformatics,

bioinformatics, and health informatics, data can be represented nat-
urally in graph model, with nodes being data entities and edges the
relationships between them. RDF (Resource Description Frame-
work) [11] is a W3C recommended language which describes linked
data of the Semantic Web in the form of triples. Both RDF data and
RDF schema can be represented by node and edge labeled graphs.

The graph nature of these data brings opportunities and chal-
lenges to data storage and retrieval. In particular, it opens the doors
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to search problems such as semantic association discovery [3, 4]
and keyword search [7].

We study the application requirements in various domains in-
cluding cheminformatics and social networks and find that the prob-
lem of discovering acyclic paths between data entities under con-
straints such as appearance of nodes, edges and/or patternsand the
length of paths is at the core of these applications.

One of the core research directions in cheminformatics is tostudy
drugs’ affect on diseases via the interaction between proteins and
genes [10]. To facilitate such study, drugs, diseases, proteins, genes,
etc. are represented in an RDF graph [5]. To assess the effective-
ness of a drug before conducting chemical experiments, domain
experts would like to first find and analyse paths from the drugto
the target disease under constraints, e.g. the (partial) appearance of
certain proteins/genes.

In social networks and research networks, such as VIVO [6],
one of the most important functionalities is to find connections be-
tween people that satisfy certain constraints [1, 8], for example, to
find possible collaborations based on common interest, or todetect
conflict of interest between authors and PCs based on the appear-
ance of certain entities, such as professional institutions that both
are affiliated with, and/or relationships, e.g. advise, co-author and
co-PI. It is also critical to determine the degree of such conflict of
interest further based on how frequent certain relationship and en-
tities appear in the connection [1].

How to express and measure constraints and how to answer such
constrained path discovery queries efficiently are critical problems,
but are not yet fully studied in the literature. There are no generic
systems that fulfill the demands. First, allow us to take social/re-
search networks as example, to illustrate such demands.
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Figure 1: Graph representation of a sample RDF data

EXAMPLE 1.1. Figure 1 shows the graph representation of a
sample RDF data representing the relationships among people in
the social networks. Let’s consider the following search requests:
case1. Find howAzriel connects toBen;
case2. Find the close ties (within 3 steps) betweenAzriel andBen;
case3. Find howAzriel connects toBenthroughChrisor Dan;
case4. Find howAzriel connects toBenthrough at least two people
from Chris, Danand Idawithin four steps.
case5. Find Azriel’s close (within 4 steps) professional connections
(e.g. relationships such asworkfor, coworker, coauthor) to Ben;
case6. Find Azriel’s close (within 4 steps) semi-professional con-
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nections toBen (i.e. half of the relationships in any tie should be
professional);

Query languages have been proposed to query data on the Se-
mantic Web. SPARQL [12], the de facto standard query language
for RDF, relies on graph patterns to identify data entities and rela-
tionships of interest. However, it lacks the ability to express arbi-
trary paths between data entities, such as those shown in Ex.1.1.
The notion of label-constraint reachability (LCR) [8] was proposed
to describe the problem of finding theconnectivitybetween two
given nodes in a labeled graph under the constraint that all the edge
labels along the path are in a given set. The semantic keyword
search problem was defined to find trees in a labeled directed graph
where the tree nodes and edges cover all the keywords [7]. Com-
bining these notions, several SPARQL extensions, with the intro-
duction of path variables, were proposed [4, 9]. Such extensions
are capable of expressing the search queries in cases 1-2 in Ex. 1.1,
but not the other cases. There were also proposals for extending
SPARQL with regular expressions [2] to express complex patterns
that satisfy strictly defined constraints such as cases 1,2,3,5. How-
ever, such SPARQL extensions still cannot express more relaxed
constraints such as those in cases 4,6.

To support the searches in Ex. 1.1, the two major challenges are:
how to express these association discovery problems and howto
answer them efficiently.

We introduce Conkar [14], the first system that can express and
answer all these search queries1. In Conkar, whose architecture is
shown in Figure 2, we abstract the association discovery problem
as the problem offinding constrained acyclic paths (CAP) in di-
rected labeled graphs. We define a set of quantitative metrics, at the
core of which are the notions ofcoverageandrelevanceof a path
with respect to a set of keywords. Via the easy-to-use interface of
Conkar, users can express CAP search queries by specifying key-
word sets, the desiredcoverageandrelevanceof the resultant paths
with respect to these keyword sets, as well as other constraints,
such as path length. Users can also specify the relative importance
of quantitative metrics. Then Conkar will rank the results based on
their preference. Upon viewing the results, users can adjust (extend
or refine) the constraints and ranking criteria to obtain theresults
that suit their needs.
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Figure 2: Conkar architecture

To address the chal-
lenges in answer-
ing the CAP queries
efficiently on large
graph data, we in-
troduce a family of
CAP discovery al-
gorithms, including
DFS-base algorithms
constraint-DFS (cDFS)
and enhanced cDFS
(ecDFS), and a lo-
calized search-and-
join (S&J) algorithm.
All of them are de-
signed to minimize
the search space by
taking advantage of

the constraints to eliminate unpromising search branches as early
as possible.

2. EXPRESSING CAP SEARCH QUERIES
1Conkar overview: http://www.cs.indiana.edu/~mozhou/conkar.html

The important innovations of Conkar are to formally define the
Constrained Acyclic Path Discoveryproblem and to provide a friendly
interface for users to express CAP queries.

2.1 Preliminary
Let L be an infinite set of literals andU be an infinite set of

URIs disjoint withL. We represent RDF data as a node and edge
labeled directed graphG = (V,E, λ) whereV is a set of nodes,
E ⊂ V ×V is a set of edges, andλ is a labeling function that maps
items inV ∪ E into a finite set of labels and literals.

We call a sequence of interleaving nodes and edges of graphG a
path fragment(or fragment), represented byf , if

• for every adjacent(n, e, n′) in f , it is the case thatn, n′ ∈
V ∧ e = (n, n′) ∈ E;

• if (e, n) is a prefix off , then there must existn′ ∈ V , such
thate = (n′, n) ∈ E; and

• if (n, e) is a suffix off , then there must existn′ ∈ V , such
thate = (n, n′) ∈ E.

We usenodes(f) (edges(f)) to represent the set of nodes (edges)
in f , andLength(f) (or |f |) the length off , defined as|edges(f)|.
We overload the mapping functionλ to map a set of nodes (edges)
to their corresponding labels.

Given two nodesns, nd ∈ V as the source and destination
nodes, the paths that linkns to nd in G are fragments in the form
f = (ns, e1, n1 . . . , nk−1, ek, nd). In search queries that look
for the paths between two nodes, frequently only acyclic paths are
of interest to users. Therefore, asns andnd are given, we are
particularly interested in a special type of path fragment -acyclic
e-fragment (denoted byfe), which starts and ends with an edge,
and no two nodes, including the end nodes, are the same. We use
Fe(ns, nd) to represent all acyclice-fragments betweenns andnd

in G.

2.2 Specifying Constraints
Length Constraint: Among a possibly large number of resultant
e-fragments of a search query, shortere-fragments tend to express
stronger and more meaningful relationship between the two end
nodes than the longer ones do [3, 7]. Involving thelength con-
straint which restricts the length of the resultante-fragments has
been studied in [2, 4], and Conkar supports it as well.

Set-based Constraints: When users search for paths between a
pair of nodes, they are frequently interested in paths that contain
certain keywords. Such constraints can be given in the form of a
keyword set(denotedS), where a keyword is a label inU .

Certain constraints, such as presence constraints [4] on nodes
and tight constraints on edges [8] were discussed in the existing
works, but they are quite limited in terms of what can be in thekey-
word set and how the results are regulated by it, hence can express
only some search queries, but not many others, such as cases 3-6 in
Ex. 1.1.

We generalize the keyword-based constraints defined in [4, 8] in
two directions: (1) we allow the keyword set to include keywords
that can be mapped to labels of both nodes and edges; and (2) we
extend how the results are confined by a keyword set.

DEFINITION 2.1. Given a finite keyword setS ⊆ U and ane-
fragmentfe ∈ Fe(ns, nd),

1. if S ⊆ (λ(nodes(fe)) ∪ λ(edges(fe))), we sayfe satisfies
presence constraintw.r.t. S ;

2. if S ⊇ (λ(nodes(fe)) ∪ λ(edges(fe))), we sayfe satisfies
context constraintw.r.t. S ;

3. if S ∩ (λ(nodes(fe)) ∪ λ(edges(fe))) 6= ∅, we sayfe sat-
isfiesintersection constraintw.r.t. S .
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Based on the definition above, we can express the search request
in Ex. 1.1 case3 as "finde-fragments fromAzriel to Benthat satisfy
the intersection constraintw.r.t. keyword set{Chris,Dan}".

Quantitative Metrics : To express the search requests in Ex. 1.1
cases 4-6, a more subtle description of the relationship between
ane-fragment and a keyword set than theall-or-nothingset-based
constraints described in Def. 2.1 is needed. For this purpose, we
introduce quantitative metricscoverageandrelevance.

Intuitively, coveragedescribes the fraction of the keyword set
that appears in the label set of ane-fragment, whilerelevancede-
scribes the fraction of the labels of ane-fragment that are in the
keyword set. In an RDF graph, each node has itsunique label,
while more than one edge may have the same label. Therefore,
we refinecoverageand relevancefurther intonode-coverageand
node-relevancefor keyword sets to be applied only on nodes,edge-
coverageandedge-relevancefor edges, and usecoverageandrele-
vancefor the constraints in which keywords can be mapped to both
nodes and edges. We usecntE(l, fe) to represent the number of
appearance of a keywordl among the edges in ane-fragmentfe.

We present the formula to calculate the coverage and relevance
in Def. 2.2 while the formula to calculate node (edge) coverage and
relevance can be easily deduced.

DEFINITION 2.2. Given a graphG, two nodesns, nd ∈ V and
a finite keyword setS ⊆ U , for ane-fragmentfe ∈ Fe(ns, nd),

Coverage(fe,S) =
|S ∩ (λ(nodes(fe)) ∪ λ(edges(fe)))|

|S|
(1)

Relevance(fe,S) =
|S ∩ λ(nodes(fe))|+Σl∈ScntE(l, fe)

|nodes(fe)|+ |edges(fe)|
(2)

Taking advantage of the quantitative metrics, the search requests
in Ex. 1.1 cases 4-6 can be expressed easily. For example, case 6
can be expressed as "find alle-fragments,fe, from Azriel to Ben
such that EdgeRelevance(fe , {coworker, workfor, coauthor}) ≥
0.5 and|fe| ≤ 4".

All the constraints we defined in Def. 2.1 are special cases that
can be expressed using the quantitative metrics defined in Def. 2.2.

Presence(fe,S) ⇐⇒ Coverage(fe,S) = 1 (3)

Context(fe,S) ⇐⇒ Relevance(fe,S) = 1 (4)

Intersection(fe,S) ⇐⇒ Relevance(fe,S) > 0 (5)

Similarly, we can define the node/edge version of these functions.

2.3 CAP Query Specification
Formally, a CAP search queryCAP (ns, nd, τ ) on RDF graphG

involves source and destination nodesns, nd ∈ V , and constraint
τ expressed using zero to many quantitative metrics functions that
involve zero or many keyword sets, and returns thee-fragment(s)
from ns to nd that satisfyτ . Our Conkar provides a user-friendly
interface for specifying a CAP query by composing the ingredients
of the search, i.e.G,ns, nd and an optional, potentially arbitrarily
complicatedτ .

3. ANSWERING CAP QUERIES
As the data graphG and constraintτ can both be large in size and

complex in nature, designing algorithms that can efficiently answer
CAP queries is at the heart of the design and implementation of
Conkar.

Many graph searching algorithms [7] were proposed for answer-
ing keyword searches in graph data. But they can not be applied
directly to answer CAP queries, as they are designed to find tree
instances covering all keywords in the graph. Traversal-based ap-
proaches such as DFS, BFS and bidirectional search [2] can be

adapted with a post-search filter to answer CAP queries. However,
such Search-Filter approaches don’t scale well when the size and
complexity of the graph increase. Algorithms [3, 4] with additional
help from schema or indices were later proposed, but these facili-
tating data and structures lack of either availability or scalability.

In Conkar, we implemented three algorithms to answer CAP
queries:

Search-Filter approachutilizes algorithms proposed in the litera-
ture to find all acyclice-fragments inFe(ns, nd) (in fact, to find
CAP (ns, nd, ∅)(G)), and then eliminates those not satisfying the
constraints specified inτ . This approach is most generic and can
be easily adapted for all constraints introduced above. However
it is not practically efficient because generatingFe(ns, nd) is very
time and space consuming, rendering thesearchphase costly, while
frequently|CAP (ns, nd, τ)(G)| ≪ |CAP (ns, nd, ∅)(G)|, rendering
the high cost of thesearchphase mostly wasted.

In Conkar, to answer CAP queries efficiently, we propose to take
advantage of the constraints on length and keywords and pushre-
sult validation into the path discovery process, to prune unpromis-
ing intermediate results as early as possible. In particular, we de-
sign and implement the following two families of algorithms[13].

ConstraintDFS(cDFS) andEnhanced ConstraintDFS(ecDFS) al-
gorithms are based onDepth First Search(DFS). To minimize the
DFS search space in computing a CAP queryCAP (ns, nd, τ ), we
minimize the total number of intermediate results, i.e. fragments,
generated in the process by terminating expansion from fragments
generated at search steps when we are certain that the expansion
will not lead to any results. In order to do so, we introduce the
notion of projected value rangeof the quantative metrics, and we
design a set of formula to compute the projected value rangesof the
constraint metrics in the CAP query in question, based on informa-
tion, such as the length and keyword appearances, of the fragments
generated so far in the DFS process. In the cDFS algorithm, at
each DFS step, when the projected value ranges of a fragment do
not overlap with the constraints inτ , we can safely terminate the
expansion of this fragment. The ecDFS algorithm further improves
the performance by saving the validation of the fragments during
the search steps of which we foresee the fragments guaranteed to
be promising.

Search-and-Join(S&J)algorithm specifically targets at the set-based,
rather than list-based, keyword constraint specification.The S&J
algorithm takes the local information around the nodes withkey-
words into consideration to calculate more precise projected value
ranges, and thus conduct more efficient pruning. The S&J algo-
rithm issues mini-searches to find exclusive path fragments(i.e.
paths that do not pass through any keyword nodes) between pairs
of nodes that contain keywords, then useconstrained sequence join
to concatenate the fragments to produce the final results. Careful
bookkeeping allows us to use the partial results in one mini-search
to limit the search space of many other mini-searches, and effec-
tively reduces the overall search cost.

4. DEMONSTRATION PROPOSAL
We propose the demonstrational plan to welcome users to have

a hand-on experience with Conkar. Especially users can (1) issue
CAP queries, simple or complicated, via our user-friendly interface
and view the resultant paths instantly; and (2) have an insight look
at how our algorithms efficiently evaluate CAP queries. We will
demonstrate Conkar on two applications: the drug discoveryap-
plication for chemical informatics and the application on social/re-
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search networks. Following the running examples in Sec. 1, we
will again use social/research networks data as our examplehere.

4.1 CAP Query Specification and Answering
Users are welcome to use the CAP query interface of Conkar

to specify and evaluate CAP queries. The required fields are (1)
the data graph, which can be selected from our demo databases;
and (2) the source and destination nodes, which can be specified
by typing keyword(s) in a textbox, and selecting URIs that Conkar
pulls from the database matching the keyword(s). The constraints
are optional. Using the simple CAP query interface of Conkar,
users can construct a set of keywords, and use scroll bars to set the
desired values ranges of the quantitative metrics with respect to the
keyword set. Users can also specify the importance of each con-
straint, which Conkar will take into consideration while presenting
the ranked results to reflect users’ preferences. Conkar visualizes
the ranked results in list view as well as graph view. The simple
search interface and result display are shown in Figure 3.

Figure 3: Simple search

Figure 4: Advanced search

More sophisticated users are welcome to use the advanced CAP
query interface to specify complex CAP search queries, consist-
ing of constraints based on different keyword sets, linked via logi-
cal operators (AND and OR). Conkar also offers the resultantCAP
query generated from the click-and-drag interface in the CAP query

box for users to inspect. Figure 4 shows a CAP query under con-
struction using the advanced search of Conkar.

4.2 Query Evaluation Behind-the-Scene
Besides demonstrating the key features of Conkar, e.g. CAP

query specification and execution, we also provide a behind-the-
scene tour for audiences who are interested in our CAP query eval-
uation algorithms. Here, after composing a CAP query, we will
welcome the audience to choose an algorithm to evaluate the query.
Conkar will then illustrate how nodes/edges in the data graph are
explored, the intermediate results, as well as our sophisticated book-
keeping that facilitates the search. At the end, besides showing the
query results, Conkar will also report the execution profile, includ-
ing how many node/edges are explored, using which the users can
compare the performance of different algorithms. Figure 5 illus-
trates an intermediate step of using the S&J algorithm to answer a
CAP query. Here, nodes are color coded to distinguish source/des-
tination nodes, query nodes, search frontiers, pruned branches, etc.

Figure 5: Behind the scene
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