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ABSTRACT
In many domains, such as social networks and chem-informatics,
data can be represented naturally in graph model, with nodesbeing
data entries and edges the relationships between them. We study
the application requirements in these domains and find that dis-
coveringConstrained Acyclic Paths(CAP) is highly in demand. In
this paper, we define the CAP search problem and introduce a set of
quantitative metrics for describing keyword-based constraints. We
propose a series of algorithms to efficiently evaluate CAP queries
on large-scale graph data. Extensive experiments illustrate that our
algorithms are both efficient and scalable.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval (Search process)

General Terms
Algorithms

Keywords
Keyword-based Association Discovery, Search Algorithm, Cover-
age, Relevance

1. INTRODUCTION
RDF (Resource Description Framework) [13] is a W3C recom-

mended language for describing linked data of the Semantic Web in
the form of triples. RDF data can be represented by node and edge
labeled graphs. The simplicity and flexibility of the graph-based
data representation model facilitate the wide adoption of Semantic
Web technologies in domains such as social network and chemin-
formatics. Applications in these domains pose challenges and op-
portunities for managing and searching data on the SemanticWeb,
as witnessed by new technologies proposed in semantic association
discovery [4] and keyword search [11, 15].

The semantic association discovery problem aims to answer ques-
tions such as "what are possible relationships between X andY"
and the results are usually paths connecting the two nodes corre-
sponding to the two entities in the graph [4]. The keyword search
problem aims to answer questions such as "how do the data entities
that match keywords X, Y and Z relate to each other" and the re-
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sults are usually trees/sub-graphs with the labels of theirnodes and
edges covering all of the keywords [8, 11, 15].

Discovering acyclic paths between data entities under constraints,
such as appearance of nodes, edges and patterns, and the length of
paths, is at the core of many applications, such as drug discovery [7,
14] in cheminformatics and research/social networks [18].How
to express such search queries precisely and how to answer such
search queries efficiently are critical problems, but are yet fully
studied in the literature.
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Figure 1: Graph Representation of a Sample RDF Data

EXAMPLE 1. Figure 1 shows the graph representation of a sam-
ple RDF data representing the relationships among people inthe
social networks. Let’s consider the following search requests:
case1. Find howAzriel connects toBenthroughChrisor Dan;
case2. Find howAzriel connects toBenthrough at least two people
from Chris, Danand Idawithin four steps.
case3. Find Azriel’s close (within 4 steps) professional connections
(e.g. relationships such asworkfor, coworker, coauthor) to Ben;
case4. Find Azriel’s close semi-professional connections toBen
(i.e. half of the relationships in any tie should be professional);

Query languages, such as SPARQL [16], have been proposed
to query data on the Semantic Web. Later, the notions of seman-
tic association [4], label-constraint reachability [17],and semantic
keyword search [11, 15] were proposed. Extending SPARQL with
regular expressions [3] enhances it with the capability to express
complex patterns satisfying strictly defined constraints,e.g. cases
1 & 3. However, search requests as those in cases 2 & 4 cannot be
expressed by any existing language or language extension.

Significant amount of research has been done in RDF data stor-
age, indexing and query evaluation for answering SPARQL queries
efficiently [2, 10]; however, the focus was on accelerating graph
pattern matching, rather than finding arbitrary paths between data
entries. Many graph searching algorithms were proposed foran-
swering keyword searches in graph data [11, 15]; but they aresearch-
ing for trees whose node/edge labels cover all keywords and cannot
be applied to answering CAP queries efficiently. Traversal-based
approaches such as DFS, BFS, and bidirectional search [12] were
proposed for finding paths satisfying given regular expressions be-
tween two end nodes [3]. These algorithms, trailed by a filtering
process, can be used to answer CAP queries in Exp. 1, but inef-
ficiently, due to their poor scalability with respect to the size and
complexity of the graph data.

1



We study and tackle the problem of precisely specifying and ef-
ficiently answering CAP queries. Particularly,
• we introduce the notions ofcoverageandrelevancefor precisely
describing the correlation between a resultant path and a keyword
set in a CAP query (Sec. 2);
• we propose a set of efficient CAP query answering algorithms,
including a family of DFS-based algorithms, which takes advan-
tage of the keyword-based constraints to eliminate unpromising
search branches (Sec. 3.1), and a novelSearch-and-Joinalgorithm
in which a CAP search is broken into a sequence of mini-searches
and their results arejoined to answer the CAP query and its effi-
ciency is guaranteed by carefully designing bookkeeping and prun-
ing (Sec. 3.2);
• we conduct extensive empirical study to understand the strengths
and limits of our algorithms (Sec. 4); and
• we explore the application of CAP search queries, in stand-alone
domain-specific applications, and in a new SPARQL extension,
cSPARQL (Sec. 5).

2. CONSTRAINED ACYCLIC PATH DISCOV-
ERY PROBLEM

In this section, we formally define theConstrained Acyclic Path
Discoveryproblem whose applications have been illustrated in Sec. 1.

2.1 Preliminary
Let L be an infinite set of literals andU be an infinite set of

URIs disjoint withL. We represent RDF data as a node and edge
labeled directed graphG = (V,E, λ) whereV is a set of nodes,
E ⊂ V ×V is a set of edges, andλ is a labeling function that maps
items inV ∪E into a finite set of labels and literals.

We represent a path between two nodes of graphG as a sequence
of interleaving nodes and edges. Frequently, we are interested in
partial paths, which we callfragments. In particular, we are in-
terested in two types of fragments:e-fragment (denotedfe) which
starts and ends with an edge, anden-fragment (denotedfen) which
starts with an edge and ends with a node.

Given source and destination nodes,ns, nd ∈ V of G, in search
queries looking for paths fromns to nd, frequently only acyclic
paths are of interest to users. In the rest of the paper, we will focus
only on acyclic paths, and as the two end nodes are known, we fo-
cus on thee-fragments and useFe(ns, nd) to represent all acyclic
e-fragments fromns tond in G.

To facilitate the discussion of constraints on paths, we usenodes(f)
(edges(f)) to represent the set of nodes (edges) in fragmentf , and
|f | the length off , defined as|edges(f)|. We overload the map-
ping functionλ to map a set of nodes (edges) to their corresponding
labels.

2.2 Set-based Constraints
As shown in Exp. 1, when users search for paths between a pair

of nodes, it is frequently the case that the constraints are expressed
in the form of akeyword set(denotedS), where a keyword is a
label inU . Keyword-based constraints as discussed in [5, 17] are
quite limited in terms of what can be in the keyword set and how
the results are regulated by it. We generalize the keyword set to
include keywords that can be mapped to labels of both nodes and
edges and extend how the results are confined by the keyword set.

Definition 1. Given a finite keyword setS ⊆ U and ane-fragment
fe ∈ Fe(ns, nd),

1. if S ⊆ (λ(nodes(fe)) ∪ λ(edges(fe))), we sayfe satisfies
presence constraintw.r.t. S ;

2. if S ⊇ (λ(nodes(fe)) ∪ λ(edges(fe))), we sayfe satisfies
context constraintw.r.t. S ;

3. if S ∩ (λ(nodes(fe)) ∪ λ(edges(fe))) 6= ∅, we sayfe sat-
isfiesintersection constraintw.r.t. S .

Using this definition, we can express the search request in Exp. 1
case1 as "finde-fragments fromAzriel to Benthat satisfy theinter-
section constraintw.r.t. keyword set{Chris,Dan}".

2.3 Quantitative Metrics
Among a possible large number of resultante-fragments of a

search request, shorter ones tend to express stronger and more mean-
ingful relationship between the two end nodes than the longer ones
do [4, 11]. Thelength constraintwhich restricts the length of the
resultante-fragments has been studied in [3, 5], and can be used to
express the search request in Exp. 1 case 2 & 3. However cases 2
& 4 require a more subtle description of the relationship between
ane-fragment and a keyword set than theall-or-nothingset-based
constraints described in Def. 1. For this purpose, we introduce
quantitative metricscoverageandrelevance.

Intuitively, coveragedescribes the fraction of the keyword set
that appears in the label set of ane-fragment, whilerelevancede-
scribes the fraction of the labels of ane-fragment that are in the
keyword set. In an RDF graph, each node has its unique label,
while more than one edge may have the same label. Therefore,
we refinecoverageand relevancefurther intonode-coverageand
node-relevancefor keyword sets to be applied only on nodes,edge-
coverageandedge-relevancefor edges, and usecoverageandrele-
vancefor the constraints in which keywords can be mapped to both
nodes and edges.

Definition 2. Given a graphG, two nodesns, nd ∈ V and a
finite keyword setS ⊆ U , for ane-fragmentfe ∈ Fe(ns, nd)

1,

Coverage(fe,S) =
|S ∩ (λ(nodes(fe)) ∪ λ(edges(fe)))|

|S|
(1)

Relevance(fe,S) =
|S ∩ λ(nodes(fe))| +Σl∈ScntE(l, fe)

|nodes(fe)|+ |edges(fe)|
(2)

The coverage and relevance for only nodes or edges can be easily
inferred.

Now, taking advantage of the quantitative metrices defined above,
we are able to express all constrains in Exp. 1. For example, case
4: {fe | fe ∈ Fe(Azriel, Ben) ∧EdgeRelevance(fe, {workfor,
coworker,coauthor})≥ 0.5}.

All the constraints we defined in Def. 1 can be expressed using
the quantitative metrics defined in Def. 2.

Presence(fe,S) ⇐⇒ Coverage(fe,S) == 1 (3)

Context(fe,S) ⇐⇒ Relevance(fe,S) == 1 (4)

Intersection(fe,S) ⇐⇒ Relevance(fe,S) > 0 (5)

Similarly, we can define the node/edge version of these functions.

2.4 Problem Definition
We define the Constrained Acyclic Path (CAP) search query:

A CAP search queryCAP (ns, nd, τ ) on an RDF graph
G involves two end nodesns, nd ∈ V , and constraint
τ expressed using zero to many quantitative metrics
functions that involve zero or many keyword sets, and
returns thee-fragment(s) fromns to nd that satisfyτ .

In this paper, we tackle the problem of efficiently evaluating CAP
searches, and discuss the applications of CAP searches.

3. CAP DISCOVERY
We will first focus on the evaluation of a critical subset of CAP

queries,core CAPqueries, in whichτ contains conjunctive pred-
icates featuring only one keyword set. We useS to represent the
1cntE(l, fe) is the total numer of edges infe with labell
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single keyword set inτ , and useτl, τc, τr, τnc, τec, τnr andτer
to represent the length, coverage, relevance, node/edge coverage,
node/edge relevance constraints respectively, each of which is de-
fined as an interval, for example,τl = [τlmin

, τlmax
].

Certainly one solution, which we callSearch-and-Filter approach
(S&F), is to first find all acyclice-fragments inFe(ns, nd), then
eliminate those not satisfyingτ . However this approach is not prac-
tically efficient because generatingFe(ns, nd) is very time and
space consuming and the search cost is mostly wasted since the
CAP query results are usually a very small subset ofCAP (ns, nd, ∅).

3.1 Constrained DFS Algorithm
Depth First Search (DFS) is a commonly adopted approach for

generating paths between two nodes. In DFS, to generate ane-
fragment,en-fragments are generated one step at a time. To mini-
mize the DFS search space in answering core CAP query, we want
to stop the expansion of an intermediate resultfen if we are certain
that the expansion will not lead to any final results. The basic idea
is to calculate projected value ranges of the quantitative metrics’
values by considering the best and worst cases offe ∈ Fe(ns, nd)
which hasfen as prefix. If the projected value ranges of the quan-
titative metrics do not overlap with those inτ , we can safely stop
the expansion offen.

LEMMA 1. Given anen-fragmentfen generated in the DFS of
CAP (ns, nd, ∅) and a keyword setS , for any e-fragmentfe ∈
Fe(ns, nd) havingfen as prefix,

|S ∩ (λ(nodes(fen))|

|S|
≤ NodeCoverage(fe)

≤

{

|S∩(λ(nodes(fen))|+|fe|−|fen|−1
|S|

∗

1 Otherwise
(1)

|S ∩ (λ(nodes(fen))|

|fe| − 1
≤ NodeRelevance(fe)

≤

{ |S∩(λ(nodes(fen))|+|fe|−|fen|−1
|fe|−1

∗
|S|

|fe|−1
Otherwise

(2)

∗ |fe| ≤ |S|+ (|fen| − |S ∩ (λ(nodes(fen))|) + 1

We then propose two DFS-based algorithms: constraintDFS (cDFS)
and enhanced-cDFS (ecDFS).

constraintDFS (cDFS)is based on the non-recursive DFS. In cDFS,
we start a DFS from the source nodens. At each step of the DFS
process, we (1) identify a resultante-fragment when the destina-
tion nodend is reached; (2) detect loops in a fragment generated
and eliminate the fragment in question; and (3) calculate projected
value ranges of the quantitative metrics by applying the formulae
of Lemma 1 and eliminate a fragment if its projected value ranges
do not overlap with those specified inτ .

Enhanced-cDFS (ecDFS)overcomes the extra overhead brought
by the cDFS algorithm, in which the projected value ranges ofthe
quantitative metrics are computed and compared withτ for every
en-fragment generated. In ecDFS, at the time when the project
value ranges are estimated for anen-fragment, we also estimate,
under the worst-case scenario, for how many more steps the gen-
erateden-fragments can remain promising. This allows us to skip
the calculation and comparison for theen-fragments generated in
these search steps, hence further improve the performance.

3.2 Localized Search and Join
Targeting an important class of CAP queries, in which the keyword-

based constraints are specified on nodes, we propose theSearch&Join

(S&J) algorithm. It leverages the local information aroundthe
nodes containing the keywords to calculate more accurate projected
value ranges, and thus conducts more efficient pruning.

We first introduce a few notions that are critical for this algo-
rithm. We useSk to denote a set of nodes containing keywords in
S . We definequery nodesasSk∪{ns, nd}. A query node sequence
(QNS) is a sequence of query nodes which always starts withns,
ends withnd, and consists of a subset ofSk. We are interested in
a special type ofe-fragment,exclusivee-fragment (xe-fragments),
which links two query nodes but does not go through any query
node. Theconstrained sequence joinoperation takes as inputτ
from a CAP query, a set of QNSs based on the keywords inτ , and
sets of exclusivee-fragments between every pairs of query nodes,
and computes thee-fragments that satisfy the CAP query by con-
catenating thexe-fragments with the guidance from the QNSs and
validating the constraintsτ .

TheSearch & Join(S&J) algorithm has two phases: thesearch
phase takes as input the data graphG and the queryCAP (ns, nd, τ ),
computes the QNSs, and issues mini-searches on pairs of query
nodes to find the set ofxe-fragments for each pair of query nodes;
the join phase then produces the query results by conducting con-
strained sequence join on the QNSs andxe-fragment sets generated
in thesearchphase.

Clearly, not all QNSs lead to valide-fragments that satisfyτ . In
addition, given a QNSqns that yields non-empty results, not all
thexe-fragments between all pairs of adjacent query nodes inqns

contribute to the final results. Following the "selection-push-down"
scheme widely used in database system design, it is criticalto min-
imize the cardinality of the participants of constrained sequence
join. We accomplish so by
(1) identify and eliminate invalid QNSs, e.g. QNSs whose con-
strained sequence join result is empty; and
(2) for each QNS that may generate non-empty constrained se-
quence join results, identify and eliminate thexe-fragments that
have no chance contributing to the results.

Given a QNSqns, qns is guaranteed to be invalid if there is no
xe-fragment between a pair of adjacent nodes inqns, or the sum
of the minimum lengths of thexe-fragments of adjacent node pairs
in qns exceedsτlmax

, or the combined projected value ranges of
the node coverage or relevance are guaranteed to fall outside of the
ranges specified inτ . When a QNS is deemed invalid, it can be
pruned immediately.

Beside generating minimal QNSs andxe-fragment sets, we also
aim at exploiting minimum number of data nodes/edges in the search
phrase in order to limit the search space, hence improving the per-
formance. We accomplish this by carefully design the searchsteps
and bookkeeping mechanism:
(1) For all node pairs that share the same starting node, one single
BFS search is issued for generating thexe-fragments for all these
node pairs.
(2) After each BFS expansion, the QNSs are evaluated to have
the invalid ones pruned, and the newly generated intermediate e-
fragments are leveraged to tighten constraints for all mini-searches.
(3) Each time, one BFS is picked to expand its intermediatee-
fragments. The criteria is that we always pick the BFS searchsuch
that the expansion has the potential to prune the maximum number
of invalid QNSs and restricts the search ranges of the BFSs ofitself
and other query nodes most sharply.

4. EXPERIMENTAL EVALUATION
We conducted extensive experiments to study the performance

of our algorithms, constraintDFS (cDFS), enhanced-constraintDFS
(ecDFS), and Search-and-Join(S&J), as well as existing Search-
and-Filter algorithms based on Depth First Search (S&F-DFS) and
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Bi-directional Search (S&F-BIS[12]). The experiments were car-
ried out on a desktop PC running Red Hat 4.1.2 with dual Intel(R)
Core(TM)2 2.40GHz CPU and 4GB memory.

Our experiments were conducted on two RDF datasets:DBpedia
(1504K nodes, 5.4M edges) [1] andChem2Bio2RDF(139K nodes,
1.8M edges) [7]; both have been widely used in the literature. We
tested the algorithms on many randomly generated CAP queries,
varying source and destination nodes, keyword sets and constraints.
Same trends were observed. Due to space limitation, we will re-
port our experimental results only on the Chem2Bio2RDF dataset,
as the paths in this dataset are much longer, putting significantly
more stress on our algorithms and highlighting the impact ofvar-
ious parameters to the algorithms, and with only queries in which
the parameters on node coverage and node relevance vary2:

We compared the hot run of the algorithms and measured the
elapsed time inns. Please note that as our algorithms improve the
performance over the S&F algorithms by several orders of magni-
tude, to better illustrate the difference, we plot the results in loga-
rithmic scale.

Figure 2: Performance Comparison: Varying τnc and τnr

As shown in Fig. 2(a) and 2(b), keyword-based constraints have
no impact to the S&F algorithms. Our algorithms, which take
advantage of such constraints, significantly outperform them, es-
pecially when the constraint is strict, e.g.τncmin

(or τnrmin
) is

close to 1, as more intermediate results are pruned. Even when the
constraint is loose, the performance of the S&J algorithm issig-
nificantly better than others, as it has much smaller search scope,
thanks to the local information it takes into account. It is also worth
pointing out that our DFS-based algorithms and S&J algorithm re-
act differently whenτncmin

changes: when the node constraint be-
comes tighter, e.g. closer to 1, cDFS and ecDFS are very efficient,
due to their strong pruning power and small overhead; but when
the constraint is relatively relaxed, e.g.< 0.5, the S&J algorithm is
able to take advantage of local information around the querynodes
to limit the search space and thus is much more efficient (by two
orders of magnitude) than cDFS and ecDFS.
5. APPLICATIONS

CAP search can be used as a stand-alone search tool in domain-
specific applications, such as drug discovery, as well as integrated
into a high level query language to enhance its expressiveness.

In cheminformatics, a drug could affect a disease by affecting
proteins and genes in a treatment process. By examining the paths
from a drug to a disease, domain experts can assess the effective-
ness of the drug before conducting chemical experiments [7]. Ex-
isting path discovery tools on Chem2Bio2RDF [7] can only find
all paths between drug and disease, leaving the domain experts do-
ing the filtering manually or relying on other tools to do so, ren-
dering them impractical in dealing with the large data set and the
subtle constraints demanded by the domain experts. Based onthe
research presented in this paper, we developed a tool that features
CAP search queries [20], which enables the domain experts tocom-
pose CAP search queries, execute it, get results instantly,and adjust
the constraints to alter the results as the research leads them.
2queries in each category shares the sameτlmax

andS

If a drug is considered to be effective in treating certain disease,
its side-effect should also be considered [14]. As such dataentries
do not appear directly on the paths between drug and disease,more
complex pattern matching is required in addition to path finding to
integrate constraints about side-effects into the CAP search queries
for drug discovery. We propose cSPARQL to integrate the CAP
search into the structured search of SPARQL [16] by introducing
(1) path variablesfor expressing arbitrarye-fragments in a graph
pattern; and (2) a set of quantitative metrics functions as defined
in Sec. 2 for specifying the length and keyword-based constraints.
More details about cSPARQL can be found in [19].

6. SUMMARY AND FUTURE WORK
In this paper we identify the problem of discovering acyclicpaths

between two given nodes in a directed graph under keyword-based
constraints (CAP). We introduce the notions of coverage andrel-
evance for specifying subtle relationship between paths and the
keyword set. We propose algorithms, including cDFS, ecDFS and
S&J, to efficiently evaluate CAP queries. Our empirical evaluation
proved that our algorithms outperform existing Search-and-Filter
algorithms using both DFS and bidirectional search and improve
the performance by several orders of magnitude. We further dis-
cuss the applications of CAP queries and propose cSPARQL, an
extension of SPARQL, to integrate CAP queries and the structured
search on graph data.
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