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ABSTRACT

In many domains, such as social networks and chem-infocsati
data can be represented naturally in graph model, with noeieg
data entries and edges the relationships between them. udig st
the application requirements in these domains and find tisat d
coveringConstrained Acyclic Path&AP) is highly in demand. In
this paper, we define the CAP search problem and introdudené se
quantitative metrics for describing keyword-based camsts. We
propose a series of algorithms to efficiently evaluate CA&¥igs
on large-scale graph data. Extensive experiments illigsthat our
algorithms are both efficient and scalable.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval (Search process)

General Terms

Algorithms
Keywords

Keyword-based Association Discovery, Search Algorithrayes-
age, Relevance

1. INTRODUCTION

RDF (Resource Description Framework) [13] is a W3C recom-
mended language for describing linked data of the Semarglziw
the form of triples. RDF data can be represented by node ayel ed
labeled graphs. The simplicity and flexibility of the grapased
data representation model facilitate the wide adoptionesh&ntic
Web technologies in domains such as social network and chemi
formatics. Applications in these domains pose challengéesop-
portunities for managing and searching data on the Semafeti;
as witnessed by new technologies proposed in semanticiassnc
discovery [4] and keyword search [11, 15].

The semantic association discovery problem aims to answess-q
tions such as "what are possible relationships between Xyand
and the results are usually paths connecting the two nodes-co
sponding to the two entities in the graph [4]. The keywordclea
problem aims to answer questions such as "how do the dateesnti
that match keywords X, Y and Z relate to each other" and the re-
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sults are usually trees/sub-graphs with the labels of tiees and
edges covering all of the keywords [8, 11, 15].

Discovering acyclic paths between data entities undertcainss,
such as appearance of nodes, edges and patterns, and tifeoeng
paths, is at the core of many applications, such as drug\cisg§7,
14] in cheminformatics and research/social networks [18pw
to express such search queries precisely and how to anseler su
search queries efficiently are critical problems, but arefyky
studied in the literature.

A: Azriel
B: Ben
C: Chris
D: Dan
F: Frank

H: Helen
I: Ida

Figure 1: Graph Representation of a Sample RDF Data

EXAMPLE 1. Figure 1 shows the graph representation of a sam-
ple RDF data representing the relationships among peoplién
social networks. Let's consider the following search resjsie
casel. Find howAzriel connects tBenthroughChrisor Dan
case2. Find howAzriel connects t@enthrough at least two people
from Chris Danand Idawithin four steps.
case3. Find Azriel’s close (within 4 steps) professional connections
(e.g. relationships such asorkfor, coworker coauthoy to Ben,
cased. Find Azriel’s close semi-professional connectionsBien
(i.e. half of the relationships in any tie should be professi);

Query languages, such as SPARQL [16], have been proposed
to query data on the Semantic Web. Later, the notions of seman
tic association [4], label-constraint reachability [1&hd semantic
keyword search [11, 15] were proposed. Extending SPARQbL wit
regular expressions [3] enhances it with the capabilityxjoress
complex patterns satisfying strictly defined constraietg, cases
1 & 3. However, search requests as those in cases 2 & 4 cannot be
expressed by any existing language or language extension.

Significant amount of research has been done in RDF data stor-
age, indexing and query evaluation for answering SPARQLligsie
efficiently [2, 10]; however, the focus was on acceleratingpt
pattern matching, rather than finding arbitrary paths betwdata
entries. Many graph searching algorithms were proposearfor
swering keyword searches in graph data [11, 15]; but thegeaech-
ing for trees whose node/edge labels cover all keywords andat
be applied to answering CAP queries efficiently. Travebseded
approaches such as DFS, BFS, and bidirectional search &2 w
proposed for finding paths satisfying given regular expoessbe-
tween two end nodes [3]. These algorithms, trailed by a ffilter
process, can be used to answer CAP queries in Exp. 1, but inef-
ficiently, due to their poor scalability with respect to theesand
complexity of the graph data.



We study and tackle the problem of precisely specifying &nd e
ficiently answering CAP queries. Particularly,
e we introduce the notions @overageandrelevancefor precisely
describing the correlation between a resultant path anghadeel
setin a CAP query (Sec. 2);
e we propose a set of efficient CAP query answering algorithms,
including a family of DFS-based algorithms, which takesadv
tage of the keyword-based constraints to eliminate unpsioi
search branches (Sec. 3.1), and a n@edrch-and-Joiralgorithm
in which a CAP search is broken into a sequence of mini-search
and their results ar@ined to answer the CAP query and its effi-
ciency is guaranteed by carefully designing bookkeepirthpaian-
ing (Sec. 3.2);
e we conduct extensive empirical study to understand thegtine
and limits of our algorithms (Sec. 4); and
e we explore the application of CAP search queries, in stdoea
domain-specific applications, and in a new SPARQL extension
cSPARQL (Sec. 5).

2. CONSTRAINED ACYCLIC PATH DISCOV-
ERY PROBLEM

In this section, we formally define thi@onstrained Acyclic Path

3. if SN (A(nodes(fe)) U Xedges(fe))) # 0, we sayf. sat-
isfiesintersection constrainiv.r.t. S.
Using this definition, we can express the search requestpnEx
casel as "find-fragments fromAzrielto Benthat satisfy thenter-
section constraintv.r.t. keyword se{Chris, Dan}".

2.3 Quantitative Metrics

Among a possible large number of resultaAtragments of a
search request, shorter ones tend to express stronger aadaan-
ingful relationship between the two end nodes than the looges
do [4, 11]. Thelength constraintwhich restricts the length of the
resultante-fragments has been studied in [3, 5], and can be used to
express the search request in Exp. 1 case 2 & 3. However cases 2
& 4 require a more subtle description of the relationshipyeen
ane-fragment and a keyword set than thiéor-nothing set-based
constraints described in Def. 1. For this purpose, we intced
guantitative metricsoverageandrelevance

Intuitively, coveragedescribes the fraction of the keyword set
that appears in the label set of afragment, whilerelevancede-
scribes the fraction of the labels of affragment that are in the
keyword set. In an RDF graph, each node has its unique label,
while more than one edge may have the same label. Therefore,
we refinecoverageand relevancefurther into node-coverageand

Discoveryproblem whose applications have beeniillustrated in Sec. Inode-relevancéor keyword sets to be applied only on nodedge-

2.1 Preliminary

Let £ be an infinite set of literals antd be an infinite set of
URIs disjoint with£. We represent RDF data as a node and edge
labeled directed grapd = (V, E, \) whereV is a set of nodes,

E C V xVisasetof edges, andis a labeling function that maps
items inV U E into a finite set of labels and literals.

We represent a path between two nodes of gr@ls a sequence
of interleaving nodes and edges. Frequently, we are iriztés
partial paths, which we cafragments In particular, we are in-
terested in two types of fragmentsfragment (denoteg.) which
starts and ends with an edge, andfragment (denoted.,,) which
starts with an edge and ends with a node.

Given source and destination nodes, ng € V of G, in search
queries looking for paths from; to n4, frequently only acyclic
paths are of interest to users. In the rest of the paper, wéoeils
only on acyclic paths, and as the two end nodes are known, we fo
cus on thee-fragments and usé&. (ns, nq) to represent all acyclic
e-fragments fromm, tong in G.

To facilitate the discussion of constraints on paths, wewsles( f)
(edges(f)) to represent the set of nodes (edges) in fragnfieahd
| f| the length off, defined agedges(f)|. We overload the map-
ping function\ to map a set of nodes (edges) to their corresponding
labels.

2.2 Set-based Constraints

As shown in Exp. 1, when users search for paths between a pair

of nodes, it is frequently the case that the constraints>greessed

in the form of akeyword seidenotedS), where a keyword is a
label ini{. Keyword-based constraints as discussed in [5, 17] are
quite limited in terms of what can be in the keyword set and how
the results are regulated by it. We generalize the keywoardose
include keywords that can be mapped to labels of both nodgs an
edges and extend how the results are confined by the keywbrd se

Definition 1. Given afinite keyword sef C I/ and are-fragment
fe € fe(n37nd)y
1. if S C (A(nodes(fe)) U A(edges(fe))), we sayf. satisfies
presence constrain.r.t. S;

2. if S O (A(nodes(fe)) U A(edges(fe))), we sayf. satisfies
context constraintv.r.t. S;

coverageandedge-relevancéor edges, and ussverageandrele-
vancefor the constraints in which keywords can be mapped to both
nodes and edges.

Definition 2. Given a graphz, two nodesns,nqs € V and a
finite keyword setS C U, for ane-fragmentf. € F.(ns, na)",
_ IS0 (M(nodes(fe)) U Aedges(fe)))l

S|
_ S N A(nodes(fe))| + XiesentE(l, fe)
Relevancelfe, S) = = odes(fo)| + edges(fo)

The coverage and relevance for only nodes or edges can lhe easi
inferred.
Now, taking advantage of the quantitative metrices defihede,
we are able to express all constrains in Exp. 1. For exampks ¢
4: {fc | fe € Fe(Azriel, Ben) A EdgeRelevance( f., {workfor,
coworker,coauthor}y 0.5}.
All the constraints we defined in Def. 1 can be expressed using
the quantitative metrics defined in Def. 2.
Presence(fe,S) <= Coverage(fe,S)==1
Context(fe,S) <= Relevance(fe,S) ==1
Intersection(fe,S) <= Relevance(fe,S) > 0

Coverage(fe,S) (1)

@)

3
4
(5)
Similarly, we can define the node/edge version of these ifumst
2.4 Problem Definition

We define the Constrained Acyclic Path (CAP) search query:

A CAP search quer@’ AP(ns, nq, 7) on an RDF graph

G involves two end nodes,, ng € V, and constraint

T expressed using zero to many quantitative metrics
functions that involve zero or many keyword sets, and
returns thee-fragment(s) from; to n4 that satisfyr.

In this paper, we tackle the problem of efficiently evalugtAP
searches, and discuss the applications of CAP searches.

3. CAP DISCOVERY

We will first focus on the evaluation of a critical subset of EA
queries,core CAPqueries, in whichr contains conjunctive pred-
icates featuring only one keyword set. We %¢o represent the

YentE(1, f.) is the total numer of edges jf with labell



single keyword set in, and user;, 7¢, Tr, Tne, Teer Tnr @NdTer
to represent the length, coverage, relevance, node/edgeace,
node/edge relevance constraints respectively, each ahwibide-
fined as an interval, for example, = [71,,.,., Timax -

Certainly one solution, which we c&learch-and-Filter approach
(S&F), is to first find all acyclice-fragments inFe(ns, naq), then
eliminate those not satisfying However this approach is not prac-
tically efficient because generating. (ns,nq) is very time and

(S&J) algorithm. It leverages the local information arouthe
nodes containing the keywords to calculate more accurafeqied
value ranges, and thus conducts more efficient pruning.

We first introduce a few notions that are critical for thisalg
rithm. We useSy, to denote a set of nodes containing keywords in
S. We defineguery nodesisS,U{ns, nq}. A query node sequence
(QNS) is a sequence of query nodes which always startsmyith
ends withng, and consists of a subset 8f. We are interested in

space consuming and the search cost is mostly wasted siace th a special type oé-fragment.exclusivec-fragment e-fragments),

CAP query results are usually a very small subsét df (n,, nq, 0).

3.1 Constrained DFS Algorithm

which links two query nodes but does not go through any query
node. Theconstrained sequence joimperation takes as input
from a CAP query, a set of QNSs based on the keywords and

Depth First Search (DFS) is a commonly adopted approach for ge5 of exclusive-fragments between every pairs of query nodes,

generating paths between two nodes. In DFS, to generate an

and computes the-fragments that satisfy the CAP query by con-

fragment.en-fragments are generated one step at a time. To mini- catenating thee-fragments with the guidance from the QNSs and
mize the DFS search space in answering core CAP query, we wantajidating the constraints.

to stop the expansion of an intermediate regultif we are certain
that the expansion will not lead to any final results. Thedbai@a

is to calculate projected value ranges of the quantitatie¢rios’
values by considering the best and worst cases @ F.(ns, nq)
which hasf.,, as prefix. If the projected value ranges of the quan-
titative metrics do not overlap with those in we can safely stop
the expansion of.,,.

LEMMA 1. Given anen-fragmentf.,, generated in the DFS of
CAP(ns,nq,0) and a keyword sef, for any e-fragmentf. €
Fe(ns,ng) having fe, as prefix,

|S N (A(nodes(fen))|
S|
{ \SW(A("OdGS(feTS)?\er\*\fen\*l %

< NodeCoverage(fe)

<

M

1 Otherwise

S N (A(nodes(fen))]

< NodeRelevance(fe)

|fe‘ -1
[SN(A(nodes(fen)) |+ fel=[fenl—1 *
S { \S\ ‘fe‘*l .
Fol=T Otherwise

| fel SIS+ ([fen]| = IS 0 (A(nodes(fen))]) + 1

We then propose two DFS-based algorithms: constraintDBEE$3
and enhanced-cDFS (ecDFS).

constraintDFS (cDFS)is based on the non-recursive DFS. In cDFS,
we start a DFS from the source node. At each step of the DFS
process, we (1) identify a resultamtfragment when the destina-
tion noden, is reached; (2) detect loops in a fragment generated
and eliminate the fragment in question; and (3) calculabgepted
value ranges of the quantitative metrics by applying thenfdae

of Lemma 1 and eliminate a fragment if its projected valueyesn

do not overlap with those specifiedin

Enhanced-cDFS (ecDFSpvercomes the extra overhead brought
by the cDFS algorithm, in which the projected value rangethef
quantitative metrics are computed and compared witar every

The Search & Join(S&J) algorithm has two phases: teearch
phase takes as input the data grépand the query’ AP (ns, ng, 7),
computes the QNSs, and issues mini-searches on pairs of quer
nodes to find the set afe-fragments for each pair of query nodes;
thejoin phase then produces the query results by conducting con-
strained sequence join on the QNSs andragment sets generated
in thesearchphase.

Clearly, not all QNSs lead to valietfragments that satisfy. In
addition, given a QNSns that yields non-empty results, not all
the ze-fragments between all pairs of adjacent query nodesin
contribute to the final results. Following the "selectiarsp-down"
scheme widely used in database system design, it is criticain-
imize the cardinality of the participants of constrainedsance
join. We accomplish so by
(1) identify and eliminate invalid QNSs, e.g. QNSs whose-con
strained sequence join result is empty; and
(2) for each QNS that may generate non-empty constrained se-
guence join results, identify and eliminate the-fragments that
have no chance contributing to the results.

Given a QNSyns, gns is guaranteed to be invalid if there is no
ze-fragment between a pair of adjacent nodegrin, or the sum
of the minimum lengths of thee-fragments of adjacent node pairs
in gns exceedsr,, .., or the combined projected value ranges of
the node coverage or relevance are guaranteed to fall eudbitie
ranges specified im. When a QNS is deemed invalid, it can be
pruned immediately.

Beside generating minimal QNSs and-fragment sets, we also
aim at exploiting minimum number of data nodes/edges in¢hech
phrase in order to limit the search space, hence improviagén-
formance. We accomplish this by carefully design the sestepbs
and bookkeeping mechanism:

(1) For all node pairs that share the same starting node,ingke s
BFS search is issued for generating thefragments for all these
node pairs.

(2) After each BFS expansion, the QNSs are evaluated to have
the invalid ones pruned, and the newly generated interrteedia
fragments are leveraged to tighten constraints for all+e@arches.

(3) Each time, one BFS is picked to expand its intermediate

en-fragment generated. In ecDFS, at the time when the project fragments. The criteria is that we always pick the BFS sesuch

value ranges are estimated for am-fragment, we also estimate,
under the worst-case scenario, for how many more steps tie ge
erateden-fragments can remain promising. This allows us to skip
the calculation and comparison for the-fragments generated in
these search steps, hence further improve the performance.

3.2 Localized Search and Join

Targeting an important class of CAP queries, in which thenag-
based constraints are specified on nodes, we propoSetreh&Join

that the expansion has the potential to prune the maximunbaum
of invalid QNSs and restricts the search ranges of the BF Bsaif
and other query nodes most sharply.

4. EXPERIMENTAL EVALUATION

We conducted extensive experiments to study the perforenanc
of our algorithms, constraintDF8DFS), enhanced-constraintDFS
(ecDF3, and Search-and-JoiB&J), as well as existing Search-
and-Filter algorithms based on Depth First Sea@&K-DFS) and



Bi-directional Search§&F-BIS[12]). The experiments were car-
ried out on a desktop PC running Red Hat 4.1.2 with dual IRfel(
Core(TM)2 2.40GHz CPU and 4GB memory.

Our experiments were conducted on two RDF datagxpedia
(1504K nodes, 5.4M edges) [1] a@hem2Bio2RDK139K nodes,
1.8M edges) [7]; both have been widely used in the literatWe

If a drug is considered to be effective in treating certasedse,
its side-effect should also be considered [14]. As such elatides
do not appear directly on the paths between drug and disease,
complex pattern matching is required in addition to pathifigdo
integrate constraints about side-effects into the CARcbegueries
for drug discovery. We propose cSPARQL to integrate the CAP

tested the algorithms on many randomly generated CAP cuerie search into the structured search of SPARQL [16] by intrguyc

varying source and destination nodes, keyword sets andraonis.
Same trends were observed. Due to space limitation, we evill r
port our experimental results only on the Chem2Bio2RDF sita
as the paths in this dataset are much longer, putting signific
more stress on our algorithms and highlighting the impaactanf
ious parameters to the algorithms, and with only querieshitiw
the parameters on node coverage and node relevancé:vary

We compared the hot run of the algorithms and measured the
elapsed time ims Please note that as our algorithms improve the

performance over the S&F algorithms by several orders ofninag
tude, to better illustrate the difference, we plot the resinl loga-
rithmic scale.

12

" N
<8 \
: .
=13
20 X
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Figure 2: Performance Comparison: Varying 7. and 7

As shown in Fig. 2(a) and 2(b), keyword-based constrainis ha
no impact to the S&F algorithms. Our algorithms, which take
advantage of such constraints, significantly outperforemthes-
pecially when the constraint is strict, €.@xuc,,;,, (Of Tar,,,;,,) IS
close to 1, as more intermediate results are pruned. Even thiee
constraint is loose, the performance of the S&J algorithrsigs
nificantly better than others, as it has much smaller searches
thanks to the local information it takes into account. Itigavorth
pointing out that our DFS-based algorithms and S&J algorith-
act differently wherr,.,,,,, changes: when the node constraint be-
comes tighter, e.g. closer to 1, cDFS and ecDFS are veryesffici
due to their strong pruning power and small overhead; buthwhe
the constraint is relatively relaxed, e-g.0.5, the S&J algorithm is
able to take advantage of local information around the qnedes
to limit the search space and thus is much more efficient (loy tw

orders of magnitude) than cDFS and ecDFS.
5. APPLICATIONS

. !
CAP search can be used as a stand-alone search tool in domain-

specific applications, such as drug discovery, as well giated
into a high level query language to enhance its expressigene

In cheminformatics, a drug could affect a disease by affgcti
proteins and genes in a treatment process. By examiningaths p
from a drug to a disease, domain experts can assess theveffect
ness of the drug before conducting chemical experimentsgi]
isting path discovery tools on Chem2Bio2RDF [7] can only find
all paths between drug and disease, leaving the domaintexqier
ing the filtering manually or relying on other tools to do sen+
dering them impractical in dealing with the large data set toe
subtle constraints demanded by the domain experts. Bast#teon
research presented in this paper, we developed a tool thairés
CAP search queries [20], which enables the domain expectste
pose CAP search queries, execute it, get results instanthyadjust
the constraints to alter the results as the research leads th

2queries in each category shares the saime, andS

(1) path variablesfor expressing arbitrary-fragments in a graph
pattern; and (2) a set of quantitative metrics functions efsndd
in Sec. 2 for specifying the length and keyword-based caimgs.
More details about cSPARQL can be found in [19].

6. SUMMARY AND FUTURE WORK

In this paper we identify the problem of discovering acypkiths
between two given nodes in a directed graph under keywosdeba
constraints (CAP). We introduce the notions of coveragerahd
evance for specifying subtle relationship between patlts the
keyword set. We propose algorithms, including cDFS, ecDix6 a
S&J, to efficiently evaluate CAP queries. Our empirical aaéibn
proved that our algorithms outperform existing Search-aitter
algorithms using both DFS and bidirectional search and owgor
the performance by several orders of magnitude. We furtlser d
cuss the applications of CAP queries and propose cSPARQL, an
extension of SPARQL, to integrate CAP queries and the stredt
search on graph data.
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