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Abstract—Collaborative tagging of resources on the Web
has become a commonplace occurrence. Web sites allowing
resources to be tagged provide a tremendous amount of
user-generated taxonomic information. However, information
seekers are hindered by the lack of organization within these
tags as well as the multitude of domains encompassed within
these sites. To address these issues, we propose a multi-step
approach for creating domain specific concept hierarchies from
collaborative tags. Each concept hierarchy is based on domain
specific subject matters, which may span more than one tag,
as opposed to related work which are only concerned with the
relationships between single tags.
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I. INTRODUCTION

Collaborative tagging of resources on the Web has become
a commonplace occurrence. As part of the second generation
of the Web, users within these sites are allowed to provide
their own annotations (tags) to classify digital resources.
The resulting collection of user-generated tags is called a
folksonomy.

The word folksonomy is the combination of the words
folk and taxonomy, emphasizing the fact that the taxonomic
information generated within these Web sites is done by
common users (folk). The main advantage of folksonomies,
compared to formal taxonomies, is the low cost in building
and assigning resources, thus allowing communities of users
to contribute to the classification process.

Because of this collaborative annotation effort, there
is a great deal of user-generated taxonomic information
to discover within folksonomies. However, the resources
classified within these sites span a multitude of domains.
As a researcher interested in a particular domain, whether
for analyzing domain specific trends or using the data
for marketing or advertising purposes, one would need to
discover the taxonomic information for the particular domain
of interest. As as result, a multi-step framework is needed
to first extract the subset of appropriate domain specific tags
and then to discover the concepts and relationships among
the information extracted.

Several approaches have been proposed for organizing
user-generated tags [1]–[5]. The structures generated in these

approaches vary from a forest of trees such as in [2], [5]
to a directed acyclic graph as in [1], [4] to clusters of
directed graphs as in [3]. The current approaches, although
promising, do not provide a methodology for discovering
domain specific concepts within a collaborative tagging
Web site. Additionally, the ability to organize topics into a
conceptual hierarchy is absent from the current approaches,
where a concept may span more than one sequence of tags.

In [6], the subsumption hierarchy calculation was in-
troduced as a means to derive conceptual topic/sub-topic
relationships. Building off of this work, [4] utilized the co-
occurrence of single tags within Flickr1 to create a concept
hierarchy. This work provided promising results; however,
it did not take into account multiple tags in a sequence.

Folksonomies represent an organization of topics shared
by a large number of users. Topic identification can be
mapped to the problem of discovering frequent sequences
of tags. [7] proposed an algorithm for finding frequent
maximal text sequences. This algorithm is a refinement of
the algorithm for discovering sequential patterns introduced
in [8]. The problem of sequential pattern mining and incre-
mental sequence mining has been discussed in a collection of
studies [9]–[15]. Expanding on this research, [16] introduced
the concept of a decreasing support constraint on length-
increasing sequences.

Towards discovering domain specific concepts within
user-generated tags we propose the following:

• An approach for discovering domain specific tags from
within a folksonomy. The proposed approach leverages
curated domain sources such as reliable Web sites to
seed the set of domain specific topics and terms for
querying collaborative tagging sites.

• The use of a tag sequence suffix tree for discovering
important sequences of user annotated tags.

• The generation of a concept hierarchy from the impor-
tant tag sequences discovered.

• An implementation of our overall approach on the
domain of information specific to patient and customer
health.

1http://www.flickr.com
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Figure 1: Framework for the generation of the concept-based
hierarchy using user tags.

II. METHODOLOGY

A. Overview

This section outlines how to create a domain specific
concept hierarchy from the user-generated tags found within
a folksonomy. Figure 1 highlights the three-step process: 1.
Generate a seed set of domain specific topics from reliable
sources associated with the domain; 2. Use this seed set of
topics to query, extract, and clean the tags from one or more
folksonomies; and 3. Create the domain’s concept hierarchy
from the user-generated tag sequences.

It is possible to perform any one of these three steps
more than once, especially to keep the concept hierarchy
up-to-date. For example, Step 1. will need to be performed
to keep the seed set of domain terms up-to-date or as
other reliable domains sources are introduced. Moreover,
performing Steps 2. and 3. will keep the concept hierarchy
in sync with the current domain topics tagged by users. This
framework is neither implementation nor domain specific. It
can be applied to any domain as long as a quality set of
seed keywords can be obtained. We specifically applied this
methodology to the domain of consumer and patient health
topics. The rest of this section provides details of each of
the steps performed.

B. Generating a Seed Set of Topics from Reliable Domain
Sources

The first step in building a domain specific concept
hierarchy from a collaborative tagging Web site is to identify
a seed set of domain specific topics and terms from one or
more reliable sources. The seed set of topics and terms can
be queried from reliable Web sites, ontologies, or controlled
vocabularies.

The consumer and patient health domain was selected for
this study. The initial list of reliable Web sites started with
a subset of 100 trusted health Web sites provided by the
Consumer and Patient Health Information Section (CAPHIS)
of the Medical Library Association Web site2. This list was
then reduced to those that allowed crawling. Each of the
terms found within the allowable site’s A-Z index glossary
listing were extracted. On each of the glossary pages, the

2http://caphis.mlanet.org/

mining process was performed by saving the words found
within link’s anchor text. For example, the glossary page
for terms starting with “F” provided links to terms such as
the following: Flu, Fluoride, Food Allergies, and Fractures,
among others.

The same term extraction process was performed on other
health categorical listings available on these Web sites.
For example, several of the sites contained links targeting
patients of different ages: Children’s Health and Seniors’
Health; categories for both genders: Men’s Health and
Women’s Health; as well as other health categorizations:
Diseases & Conditions and Treatments & Procedures.

The list of downloaded topics was then processed for
cleaning. Cleaning included removing non-alphanumeric
symbols and common stop words such as: the, of, and and.
We also split the anchor text that included several related
topics, such as Acute Coronary Syndromes (Heart Attack;
Myocardial Infarction; Unstable Angina), into separate top-
ics: acute coronary syndromes, heart attack, myocardial
infarction, and unstable angina. The final data cleaning step
included the conversion of all words to lower case. After
eliminating duplicate topics, the set of total unique health
topics extracted from the seed Web sites totaled 11, 679.

C. Extracting Domain Specific Tags

In order to target the subset of tags relating to our specific
domain available from a collaborative tagging Web site, the
seed set of topics discovered in the previous steps were
used as search tags. Delicious was chosen as the source
folksonomy for this research. A query for each one of the
11, 679 health topics was performed by utilizing its data
feed API3. For topics consisting of only one word, we
combined the topic term with the term health to retrieve
results with both tags from Delicious. For all other health
topics consisting of more than one term we used the terms
as tags to query Delicious. We retrieved a total of 163, 128
annotation records from Delicious.

The results provided from the API are presented as a set
of entries. Each entry corresponds to an annotation record
created within the Delicious folksonomy, where a resource,
a Web page URL, has been annotated by a user, at a
specific time, and with a set of tags. The annotation record
is uniquely identified by the combination of the URL of the
resource and the user who annotated it.

The downloaded tags were cleaned in the same manner
as performed on the seed topics described above. During
this cleaning process, any single tag consisting of more than
one word concatenated with a non-alphanumeric symbol was
split into several tags. For example, the tag Heart Disease
was split into the tags heart and disease. During the analysis
of the tags generated by users, we discovered that users also
concatenated more than one term without a delimiter. For

3http://delicious.com/help/json/
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example, the tag HeartDisease consists of more than one
word; however, we did not attempt to split tags of this form.

D. Creating the Concept Hierarchy

After the tags have been retrieved and cleaned, the final
step was to create a domain specific concept hierarchy.
Discovering any frequent tag sequences is an important
procedure within this framework step. Once the frequent tag
sequences are discovered then a directed graph is generated
to expose the concepts and relationships that exist within
these tag sequences. The nodes of the graph are created
from frequent tag sequences and edges are created between
any two nodes, if there exist a topic/sub-topic relationship.
The subsumption relationship described in [6] is used to
establish an association from more general nodes to more
inclusive nodes. The next two sections describe in detail the
algorithms developed to discover frequent tag sequences and
construct the concept hierarchy.

III. FREQUENT TAG SEQUENCES

Mining sequential patterns within the folksonomy anno-
tation records allows domain concepts spanning more than
one tag to be identified. For example, the health topics
of heart attack and acute coronary syndrome span more
than one term and the sequential order of these terms is
semantically important. Therefore, discovering sequences of
varying lengths allows the relationships of topics, instead
of simply single tag-to-tag relationships, to be investigated.
In this section, we provide formal definitions to clarify the
problem of discovering sequences of tags frequently found
in folksonomy annotation records. We then discuss in detail
the process of discovering these sequences.

A. Definitions

We define the data within a folksonomy in much of the
same manner as it is defined in [2], [3], [5].

A folksonomy, F, is a collection of the finite sets
U,R, T,D,A where

• U,R, T,D represent users, resources, tags, and date-
times, respectively.

• A is a set of annotation records. An item a ∈ A has
the following format: (u, r, {t1, ..., tn}, d), representing
the user, u ∈ U , who annotated a resource, r ∈ R, with
a set of tags, {t1, ..., tn}, where ti ∈ T , on a date and
time, d ∈ D.

A folksonomy allows users to signup to participate, thus
creating a unique user identifier. Users provide tags at their
own discretion to annotate a resource. A tag can be any
type of textual string whether the string consists of a word,
a term, an acronym, or any combination thereof. The type of
resource that is tagged is dependent on the folksonomy itself.
Many of the popular folksonomies existing today allow users
to either tag a URL to a specific Web page (e.g. Delicious),

tag an image (e.g. Flickr), or tag a purchasable item (e.g.
Amazon4).

A tagset, within a folksonomy, is the set of m tags
{t1, t2, ..., tm} created by a user to annotate a resource at a
specific date and time. The tagset is analogous to the set of
items purchased (an itemset) within a transactional database
system [17]. A distinction exists, however, between an item-
set and an item sequence. Within an item sequence, the order
in which the items appear must be considered. For example,
it is semantically important to know that tags ti, ti+1, ti+2

(e.g. ti = acute, ti+1 = coronary, ti+2 = syndrome) appear
in the order specified by the user. Therefore, it is essential
to consider the notion of a text sequence explained in [7] as
well as the concept of an item sequence discussed [8].

A tag sequence is a consecutive arrangement of n tags
〈t1, t2, ..., tn〉 existing within a tagset. We refer to a tag
sequence of length n as an n-sequence. A tagset of size n is
synonymous with an n-sequence. Table I displays example
tag sequences along with a unique tagset identifier, tid.

Within a database DB, the support for a tag sequence s,
indicated by σDB(s), is defined as the fraction of the total
tagsets in DB containing the tag sequence. A tag sequence
is said to be frequent if its support is greater than a minimum
support threshold 0 ≥ σ ≥ 1. A frequent n-sequence, is a
sequence of length n that is frequent.

With respect to the length of the sequence, the differen-
tiation between a constant support measure and a decreas-
ing support measure are discussed in [16]. When mining
sequences, a constant support measure will use the same
σ to determine if a sequence is frequent, whereas with
a length-decreasing support measure it is possible for the
support measure to decrease as the length of the sequence
increases. We will formally define the length-decreasing
support measure below as well as its inverse and discuss
how these functions are used in future sections.

From [16], given a database DB and a monotonically
decreasing function f , such that ∀l ∈ Z

+ : 1 ≥ f(l) ≥
f(l + 1) ≥ 0, a sequence s is frequent when measured with
a length-increasing, support-decreasing support constraint
iff σDB(s) ≥ f(|s|).

From [16], given a length-increasing, support-decreasing
function f , the inverse of f , f−1, is defined as f−1(σ) =
min({l|f(l) ≤ σ}).

The inverse function, f−1, measures the minimum length
the sequence must be to become frequent. Because it is
possible for an infrequent sequence to become frequent, [16]
also introduced the smallest valid extension (SVE) property.
The SVE property states that if a sequence s is currently
infrequent, σDB(s) < f(|s|), then for a sequence s′ ⊃ s,
f−1(σDB(s)) is the minimum |s′| such that s′ can become
frequent.

4http://www.amazon.com
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tid sequence
1 〈 heart, attack, acute, coronary, syndrome 〉
2 〈 acute, coronary, syndrome, diagnosis 〉
3 〈 heart, attack, symptoms 〉

Table I: Example tag sequences

B. Tag Sequence Suffix Tree

The construction of a tag sequence suffix tree is an
essential aspect in finding frequent tag sequences. The tag
sequence suffix tree is a modified generalized suffix tree
constructed using the naive algorithm described in [18].
Excluding the root node, each node stores additional in-
formation to aid in determining frequent tag sequences.
Along with the current tag, ti, each node stores the set
of tagset ids, tids. A tagset id, tid, is added to the tids
set during construction of the suffix tree, if the tid does
not already exist in the set. Therefore, |tids| indicates the
number of unique tagsets containing the sub-sequence. The
second additional item stored in each node is l, the length
of the longest path from this current node to a descendant
leaf node. This value is utilized when searching the tree
to find frequent sub-sequences. Our search algorithm for
finding frequent sub-sequences will be able to disregard all
outgoing paths from a node in the tree based on analyzing
this value. Figure 2 provides a graphical representation of
the additional information stored at each node.

tag = current tag
(tids = set of tagset ids, 

l = length of longest remaining path)

Figure 2: Data at each node of tag sequence suffix tree
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Figure 3: Tag sequence suffix tree from data in Table I

1) Suffix Tree and Frequent Sequence Algorithms:
generate-suffix-tree. The generate-suffix-tree
function creates the tag sequence suffix tree nodes and
edges based on the tag sequence records stored in ΔDB.
The function takes as two parameters: root and ΔDB.
root is a pointer to the root node of the tag sequence suffix
tree. ΔDB is a set of tag sequence records. ΔDB can

be a full set of tag sequence database records or it can
be an incremental set of records to add to the suffix tree.
generate-suffix-tree loops through each record
(tid, 〈t1, ..., tm〉) in ΔDB adding each tag sequence suffix
of this record to the tree. The function will traverse the
tree, adding nodes when appropriate, and updating each
node with the information tied to this record. Each node
in the tag suffix tree contains tree pieces of information:
(1) tag - the current tag in the suffix; (2) tids - the set of
tagset ids containing the sub-sequence to this node; and (3)
l - the length longest remaining path in the tree originating
from this node. Figure 3 displays the suffix tree generated
from example data found from the example tag sequences
in Table I.

find-frequent. The find-frequent function discovers
the frequent tag sequences within the tag sequence suffix
tree. It takes as parameters node and path. node is the
current node in the tag suffix tree. path is the sequence
of tags created by traversing the tree to get to the current
node. The function will perform a depth-first search on the
tree determining whether the node is frequent by calculating
the support value (the length-increasing, support-decreasing
constraint measure) using the function f . find-frequent
also utilizes the inverse function, f−1, to determine if any of
the child nodes should be visited. Therefore, if the current
node is frequent or if there is a path long enough from this
node that could become frequent then the child nodes must
be visited. If the current node is neither frequent nor there is
a path long enough for a sequence to become frequent then
find-frequent will discontinue the depth-first search on
this path. If a frequent node is found then the algorithm adds
a tuple (s′, tids) to the set of frequent sequences F . The
tuple (s′, tids) contains s′, the path within the suffix tree to
this current node, and tids, the tagset ids contained at this
current, frequent node.

IV. DOMAIN SPECIFIC CONCEPT HIERARCHY

A concept hierarchy is a directed graph that places more
general concepts closer to the root and pushes more specific
topics closer to the terminal points of the graph. Directed
edges create a parent-to-child relationship between two
nodes within a graph. The parent node subsumes the child
node, if the parent’s concept is more general than the child’s
[6]. Using conditional probabilities, the concept hierarchy
algorithm creates a directed edge between nodes ni and nj ,
denoted ni −→ nj , if the conditional probabilities satisfy the
following criteria, P(ni|nj) > θ and P(ni|nj) > P(nj |ni),
where θ is the subsumption threshold.

A candidate node for the hierarchy is created for each
frequent n-sequence. The value displayed for the node
consists of concatenating the n tags with a space (‘ ’). For
example, if the frequent tag sequence discovered is 〈‘acute’,
‘coronary’, ‘syndrome’〉 then the label for this node is ‘acute
coronary syndrome.’
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A. Algorithm

The entire concept hierarchy can be constructed from the
candidate node tuples generated in generate-nodes and
the set of edges generated in generate-edges.

generate-nodes. The generate-nodes function takes
as a parameter, F , the set of frequent tag sequences dis-
covered in the find-frequent function. The set of node
tuples, N , is returned. A node tuple, (nid, value), contains a
unique node id, nid, and the value for the node, value. The
value is created by concatenating the tags with a space. The
nodes generated in this function are considered candidates
because it is possible one or more nodes may not appear
in the hierarchy, if they are not connected to another node
through an edge.

generate-edges. The generate-edges function takes
three parameters: F , N , and θ and returns E. F is the set
of frequent sequences discovered in the find-frequent
function. N is the set of candidate nodes generated in
generate-nodes. θ is the conditional probability used
to create an edge. The set of edges, E, is returned from
generate-edges. Each directed edge from ni to nj is
denoted ni −→ nj , where ni is designated as the source of
the edge and nj is designated as the target of the edge.

The two conditional probability calculations of nodes ni

and nj , P(ni|nj) and P(nj |ni), are calculated using the
tagsets associated with each node, which have been provided
by the set F . Each element in F contains the tuple (s′, tids),
where s′ is the frequent tag sequence and tids is the set of
tagset ids where this tag sequence appears.

When generating the concept hierarchy, our graph con-
struction algorithm creates a virtual node labeled {root} to
connect all nodes that are not subsumed by another node.
These nodes are not a sub-topic of another node and thus
placed at the top level of the concept hierarchy. The figures
provided in the Section V display this virtual node.

V. RESULTS AND DISCUSSION

During this study we queried Delicious several times
using the seed set of 11, 679 health topics originally
extracted from the health Web sites. From the tag se-
quences downloaded we created the tag sequence suf-
fix tree for the annotation records created before April
23, 2009. find-frequent, generate-nodes, and
generate-edges functions were run using this subset
of downloaded annotation records. This subset of records,
totaling 154, 308 annotation records, is denoted as db in
Figure 4. Next, the annotation records created on or after
April 23, 2009 were added to the tag sequence suffix tree.
There were a total of 8, 820 records within this additional
set, bringing the total set of annotation records to 163, 128.
This set of records is denoted as DB, as seen in Figure
5. This date was chosen based on approximately when
the Centers for Disease Control (CDC) added the H1N1

swine flu information to their Web site5. As it can be
seen additional topics revolving around swine flu and H1N1
became frequent. It should be noted that within the small
set of 8, 820 records there were a large set of flu-related
concepts that appeared.

{root}

health

ucolds u

shot

u shot

u health

u in uenza

in uenza

bird

bird u

bird u

avian

avian u

h5n1

pandemic

avian in uenza

Figure 4: Flu concept hierarchy for data up to April 23, 2009
(db), using conditional probability θ = 0.50

swine u in uenza

h1n1

swine u h1n1

swine u

avian u

avian

avian in uenza

h5n1

u in uenza

{root}

u
swine

u shot

u health

pandemic

u pandemic

bird u avian

bird

swine u

in uenza u

in uenza

bird u

Figure 5: Flu concept hierarchy including data on or after
April 23, 2009 (DB), using conditional probability θ = 0.50.

To discover frequent tag sequences with the decreasing
support constraint, we tried a variety of decreasing support
functions, for the graphs that are produced in this results
section, we used the function, f(1) = 0.001, f(2) =
0.0005, f(i) = 0.00025 for all i > 2.

When executing the generate-edges function, we
used θ = 0.50. For two nodes, ni and nj , we stored the
following tuple (ni, nj), if P(ni|nj) > θ and P(ni|nj) >
P(nj |ni). The storage of these records and the usage of a

low θ value was done so we can easily compare the con-
cept hierarchies created for different conditional probability
values.

The interconnectedness between several topics can be
seen within the graphs. Our visualization provides a very
easy way to see the progression of frequent topics among
the tag sequences. The time dimension associated with each
annotation record provides the ability to study the evolution
of health topics important to consumers and patients, such
as disease outbreaks, current diet and nutrition practices,
and treatments for diseases, just to name a few. This
methodology can be generalized to track the progression
user-generated annotation tags for domain specific concepts.

5http://www.cdc.gov/H1N1flu/
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VI. CONCLUSION

In this paper we presented a means for creating a domain
specific concept hierarchy from user generated taxonomic
information. A multi-step approach was employed to extract
domain specific tag sequences from a popular folksonomy.
A tag sequence suffix tree was then loaded for the discovery
of frequent sub-sequences. By applying a monotonically
decreasing support constraint on length-increasing tag se-
quences, a higher support threshold for shorter sequences
and a lower support threshold for longer sequences could be
used in the discovery of interesting sequences at a variety
of lengths.

Once the frequent sequences were discovered, a con-
cept hierarchy was created using conditional probabilities.
Directed edges were created within the concept hierarchy,
if a subsumption property was met. Our findings provide
a way to visualize the relationships that exist within the
folksonomy by only concentrating on the most frequent tag
sequences. Additionally, frequent concepts spanning more
than one tag are displayed, something of which is not
possible when using hierarchical clustering or graph creation
methods utilizing only tag-to-tag similarities.

VII. FUTURE WORK

In the future we plan to extend this work in the following
directions. It is possible to expand our methodology to find
the first set of tag sequences and URLs from a set of topics
and terms and then find the additional tag sequences tied
to newly retrieved URLs. Additionally, we plan to detect
and remove tagsets highly regarded as spam. It has been
discovered through this research that users may generate
identical or nearly identical frequent n-sequences (where
n > 10). Therefore, the approach of finding highly similar
frequent, long tag sequences that do not produce relevant
topical information can be detected as spam and removed
from the concept hierarchy.
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