
Workload-aware Trie Indices for XML

Yuqing Wu Sofía Brenes Hyungdae Yi

Indiana University, Bloomington, USA
{yuqwu, sbrenesb, yih}@cs.indiana.edu

ABSTRACT
Well-designed indices can dramatically improve query per-
formance. Including query workload information can pro-
duce indices that yield better overall throughput while bal-
ancing the space and performance trade-off at the core of
index design. In the context of XML, structural indices
have proven to be particularly effective in supporting XPath
queries by capturing the structural correlation between data
components in an XML document. In this paper, we pro-
pose a family of novel workload-aware indices by taking ad-
vantage of the disk-based P [k]-Trie index framework, which
indexes node pairs of an XML document to facilitate index-
only evaluation plans. Our indices are designed to be opti-
mal for answering frequent path queries in one index lookup
and efficient for answering non-frequent path queries using
an index-only plan. Experimental results prove that our
indices outperform the APEX index in overall throughput
and excel in answering non-frequent queries, queries with
predicates, and queries that yield empty results.

Categories and Subject Descriptors
H.2.2 [Information Systems]: Database Management—
Physical Design (Access Method)

General Terms
Index

Keywords
XML, structural index, workload, query processing

1. INTRODUCTION
The explosive growth of data and search on the Internet

and the growing demands for managing increasingly large
amounts of data have helped XML emerge as the data for-
mat for representing, storing, and querying semi-structured
data. As this trend is likely to continue, efficient query eval-
uation techniques for XML must be developed. The struc-
tural correlation between XML data components, as seen in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

Figure 1, has required the development of structural indices
for XML. These structural indices have proved to be of sig-
nificant importance in improving the performance of XPath
queries, which are at the core of all XML queries.

Figure 1: A Sample

XML Document

Good index design re-
quires a careful balance be-
tween index size and the
precision it may provide in
query evaluation. Workload
information can be lever-
aged to mitigate the trade-
off between index size and
precision, producing an in-
dex that yields better overall
throughput, while maintain-
ing its footprint under con-
trol. Numerous structural
indices (including workload-aware approaches) have been
proposed [5], however, there is room for improvement in the
areas of space and query efficiency.

Our research goal is to design workload-aware indices for
XML that are (1) optimal for answering frequent path queries
and efficient for answering non-frequent path queries; (2) ef-
ficient in identifying queries that yield empty results; (3)
efficient in updates induced by the changes in either the
workload or the data itself; (4) efficient in size and easily
adjustable to space allowance requirements.

2. PRELIMINARIES
We define an XML document as X = (V, Ed, r, λ), with

V the finite set of nodes, Ed ⊆ V × V the set of parent-
child edges, r ∈ V the root, and λ : V → L a node-labeling
function into the set of labels L.

Given an XML document X and a number k ∈ N, we
define DownPairs(X , k) as the set of node pairs (m, n) such
that (1) length(m,n) ≤ k, and (2) m is an ancestor of n.
A label-path LP (m,n) is defined as the unique sequence of
labels between two nodes m and n in V , with the k-label-path
LP (n, k) of a node n ∈ V and k ∈ N defined as the label-
path of the unique downward path of length l into n where
l = min(height(n), k). We define DownPaths(X , k) as the
set of k-label-paths of the node pairs in DownPairs(X , k).
Two node pairs (m1, n1) and (m2, n2) are P [k]-equivalent
if (1) (m1, n1) and (m2, n2) ∈ DownPairs(X , k) and (2)
LP (m1, n1) = LP (m2, n2).

The P [k]-partition of an XML document X is the parti-
tion of the node pairs in X induced by the P [k]-equivalence
relation. Each partition class C in the P [k]-partition can
be associated with the unique k-label-path lp of the node

Figure 2: WP[1]-Trie of X with F = {(A, A, B, C, D), (A, F, B, C, D)}.

pairs in C. Additionally, a label-path lp uniquely identifies
a P [k]-partition class C, denoted as P [k][lp].

XPath queries are the core of almost all XML query lan-
guages. The path semantics of the core XPath expressions
that are frequently studied [1] are defined as:

E := ǫ | φ | bl | ↑ | ↓ | E1 ◦ E2 | E1[E2] | E1 ∗ E2
1

The node semantics of an XPath algebra expression E on
X , denoted Enodes(X), is the set {n | ∃m : (m, n) ∈ E(X)}.

The downwards algebra D, as studied in [2, 4], contains
only label matching and downward navigation and is the
simplest form of a path query. We further define the D[k]
expressions to be the D expressions with no more than k ↓′s.
D[k] queries can be answered easily under path semantics by
applying the union operation to the P [k]-partition classes.

Theorem 2.1. Let X be an XML document and E an
expression in D[k], Let LPS(E,X) be the set of label-paths
in X that satisfy the node-labels and structural containment
relationships specified by E. Then,

E(X) =
[

lp∈LPS(E,X)

P [k][lp]

3. WORKLOAD-AWARE TRIE INDICES
Given a set of XML queries Q, we define the workload to

be a set of D queries whose appearance is above a certain
threshold. Since D queries can be represented by label-paths,
we call it frequent label-path set, abbreviated as F . Given
a document X and a workload F , we are interested in de-
signing workload-aware indices for X that support efficient
evaluation of core XPath queries with a very small space
and maintenance overhead.

To achieve this, we take advantage of the P [k]-Trie index
framework [2], in which all DownPairs(X , k) of an XML
document X are indexed. The P [k]-partition classes of X
are organized in a trie structure with the inverted label-path
(lp−1) as an index key. Because the P [k]-Trie index indexes
node pairs, any core XPath query can be decomposed into
D[k] sub-queries, which can be answered by an index scan
over the P [k]-Trie index, and subsequent natural joins that
compute the result of the query. Additionally, we take ad-
vantage of two important properties of the P [k]-Trie index:
(1) the independence of the trie branches in terms of the
degree of local bi-similarity; (2) the suitability of the P [k]-
Trie index for answering all core XPath queries and its good
performance with a modest k ≥ 1 value. Thus, we propose a
family of workload-aware Trie indices that index a frequent
label-path set and a selected set of complementary label-
paths that include all paths of length ≤ k (with a rather
small k value).
1Where ∗ is ∩, ∪ or −.

3.1 Extending the P [k]-Trie with F

Definition 3.1. Given an XML document X and a work-
load F, the k-extension of F in X , denoted FX ,k+ (or simply
F+), is defined as FX ,k+ = F ∪ DownPaths(X , k).

The WP [k]-Trie index is the simplest form of a P [k]-Trie
based, workload-aware index. It indexes the label-paths
in the k-extension of a given workload. Figure 2 shows a
WP [1]-Trie index for the XML document in Figure 1.

The lookup function of a WP [k]-Trie index takes a label-
path query lp as input and retrieves the extent of the index
entry with key lp−1, or ∅ if lp /∈ DownPaths(X , k). To assist
in effective query optimization, the WP [k]-Trie index also
provides a probe function, which takes a label-path query lp
as input and returns the label-path that is the best (longest)
match to lp, or ∅ when there is enough information in the
index to determine that lp(X) = ∅.

The P [k]-Trie index is a special case of the WP [k]-Trie
index where F ⊆ DownPaths(X , k). Thus, the WP [k]-Trie
index is also capable of answering all core XPath queries over
X using index-only plans. Furthermore, it can answer path
queries in F+ with one index lookup. However, there is still
room for improvement in terms of index size and its ability
in efficiently identifying queries that yield empty results and
answering non-frequent path queries longer than k.

3.2 Annotated Workload-aware Trie
By indexing only a subset of the downward label-paths

beyond length k, the WP [k]-Trie index no longer “fully rep-
resents” the structural distribution of the XML document,
resulting in over-shredding of queries and unnecessary index
lookups. To address this, we define the notion of label-path
representativeness at a structural and instance level.

Definition 3.2. Given a label-path lp ∈ DownPaths(X , k),
|lp| = k, and a label-path set S, we say that lp is structurally
represented by S with respect to X , denoted lp ≺s S, if ∀
lp′ ∈ DownPaths(X , k +1) such that lp is a proper suffix of
lp′, ∃ lp′′ ∈ S such that lp′ is a suffix of lp′′.

Given an XML document X and a workload F , for every lp
that is either in F+ or is the suffix of a label-path in F+, we
can easily compute the boolean flag struct(lp) = lp ≺s F+.
This flag will allow us to identify more queries that yield
empty results than the WP [k]-Trie index by applying the
following:

Lemma 3.1. Given an XML document X , a WP [k]-Trie
index T on X that is sensitive to a workload F, and a label-
path query lp such that lp /∈ F+, let lps be the longest proper
suffix of lp in F+. Then, we can conclude that lp(X) = ∅ if
lps ≺s F+.

Figure 3: AW [1]-Trie of X with F = {(A, A, B, C, D), (A, F, B, C, D)}.

Let us recall Theorem 2.1 stated in Section 2. We can sim-
plify the evaluation of query E if the label-paths in LPS(E,X)
are all indexed.

Definition 3.3. Given an XML document X , a set of
label-paths S and a label-path lp ∈ DownPaths(X), we say
that lp is represented at the instance level by S with respect
to X , denoted lp ≺i S, if there exists a label-path set S′ ⊂
{lp′ | lp′ ∈ S ∧ lp is a suffix of lp′}, such that lp(X) =S
lp′∈S′

(lp′(X)).

Note that S′ does not necessarily include all label-paths
that have lp as their suffix, but rather, there exists a smallest
S′ which includes only the “closest” label-paths that have lp
as their suffix. To summarize our study of label-path repre-
sentativeness, we define the notion of full representation:

Definition 3.4. Given an XML document X , a set of
label-paths S and a label-path lp ∈ DownPaths(X), we say
that lp is fully represented by S with respect to X , denoted
lp ≺ S, if lp ≺s S ∧ lp ≺i S.

Example 3.1. Consider the 1-extension FX ,1+ of F =
{(A, A, B, C, D), (A, F, B, C, D)} on the XML document shown
in Figure 1. Label-path (B,C, D) ⊀s FX ,1+ since (E, B, C, D)
∈ DownPaths(X , 3), of which lp is a proper suffix, /∈ FX ,1+.
On the other hand, label-path (A,B, C, D) ⊀i FX ,1+ since
we cannot compute the answer to query A/B/C/D through
the union of other label-paths in FX ,1+.

We are now ready to define the notion of a self-sustaining
label-path set and the self-sustaining closure of a label-path
set.

Definition 3.5. Given an XML document X and a label-
path set S, S is self-sustaining with respect to X if for each
label-path lp that is a suffix of a path in S, it is the case that
(1) lp ∈ S or (2) lp ≺ S.

Definition 3.6. Given an XML document X and a label-
path set S, the self-sustaining closure of S, denoted S(X)∗

(or simply S∗), is the minimal set among all sets that has S
as a subset and is self-sustaining with respect to X .

The AW [k]-Trie index of an XML document X , sensi-
tive to workload F , indexes the label-paths in (F+)∗, and
includes annotations that reflect the structural representa-
tiveness property for the suffix paths of every label-path in
(F+)∗.

Example 3.2. Figure 3 shows an example AW[1]-Trie
index of the XML document X shown in Figure 1. In this in-
dex structure, every node has an associated struct flag. For

example, struct((A,A)) = TRUE, since there is no label-
path in DownPaths(X) that has (A,A) as a proper suffix;
struct((B,C, D)) = FALSE, since the label-path (E, B, C,D)
of DownPaths(X) is not in (FX ,1+)∗. Label-paths lp1 =
(B, C, D) and lp2 = (A, B, C, D), which were not indexed in
the WP [1]-Trie index are indexed here since lp1 ⊀s FX ,1+,
and lp2 ⊀i FX ,1+.

We define two lookup methods for the AW[k]-Trie index:
(1) the direct lookup function is the same as the lookup
in the WP [k]-Trie index; (2) the sub-tree lookup uses Theo-
rem 2.1 to find all the“closest” label-paths lpi in the sub-tree
rooted at the index entry associated with lp and computes
lp(X) under node semantics.

The probe function of the AW[k]-Trie index takes a label-
path as input and returns the best (longest) label-path for
direct lookup, and the best label-paths for sub-tree lookup.

3.3 Sparse AW [k]-Trie
The AW [k]-Trie index is better equipped than the WP [k]-

Trie index in its ability to identify queries that yield empty
results and answer non-frequent path queries longer than k,
due to the introduction of the struct flag and the sub-tree
lookup. However, there is still room for improvement in
terms of index size.

We propose a variant of the AW[k]-Trie index to further
improve space efficiency with a minimum impact to query
performance.

Given an XML document X and a workload F , we define
the restricted k-extension of F , denoted FX ,(1,k)+, as the
union of F and all downward label-paths in X that are of
length 1 and k . The W[k]-Trie index indexes all label-paths

in the self-sustaining closure of FX ,(1,k)+, with annotations
that indicate the structural representativeness of the label-
paths in (FX ,(1,k)+)∗ and their suffixes. The structures of
the AW [k]-Trie index and the W[k]-Trie index are exactly
the same for label-paths with length ≥ k. A label-path lp
with length < k will only be indexed in the W[k]-Trie index
if (1) lp ∈ F , or (2) its length is 1, or (3) lp does not pass the

instance-level representativeness test in (FX ,(1,k)+)∗. There-
fore, the W[k]-Trie index is much more “sparse” on the top k
levels and much smaller in size when compared to its AW[k]-
Trie counterpart, but it bears the same query evaluation
power in answering frequent path queries and identifying
queries that yield empty results.

Figure 4 shows an example W[1]-Trie index for the docu-
ment X shown in Figure 1. Note that there is no index entry
associated with any label-paths of length 0 (except for (A)
which fails the instance-level representativeness test) since

none of them are part of (FX ,(1,1)+)∗.

Figure 4: W [1]-Trie of X with F = {(A, A, B, C, D), (A, F, B, C, D)}.

(a) Index Size (b) Query Set Evaluation (c) Q09 Evaluation

Figure 5: Experimental Results

4. EXPERIMENTAL EVALUATION
We compared the workload-aware Trie indices against each

other and against two existing indices: (1) the P [k]-Trie
index [2], a non workload-aware, structural index, and (2)
APEX [3], a workload-aware structural index that claims
to provide index-only query evaluation plans for any label-
path query. We implemented all indices in the Timber na-
tive XML database system [6]. We present the results of
the experiments conducted on a NASA XML document that
contains 1.4M nodes, a workload that combines longer and
shorter label-paths (w.r.t. k), and a query set that contains
10 automatically generated queries that honor the workload.

Among the Trie index family, the index size (Figure 5(a))
is directly correlated to the k parameter. The sizes of the
WP [k]-Trie and the AW[k]-Trie indices are comparable to
the size of the P [k]-Trie index with the same k value. Most
importantly, the W[k]-Trie index is significantly smaller than
other indices in the Trie family with the same k value, with
an average 35% decrease over the P [k]-Trie index, and only a
25% increase over the APEX index with the same workload.

The ultimate goal of our workload-aware Trie index is to
improve the overall query throughput when workload infor-
mation is available. Figure 5(b) shows how the workload-
aware Trie indices clearly outperform the P [k]-Trie index
and APEX in evaluating our query set. More importantly,
our workload-aware indices perform very well with a small
k parameter, making them a perfect solution for improving
query performance when the available space is limited.

We attribute the performance gain to the fact that our
workload-aware indices can facilitate efficient query process-
ing for different types of queries. The workload-aware Trie
indices and APEX perform equally well on frequent queries,
outperforming the P [k]-Trie index for queries longer than
k. The Trie indices all outperform APEX on non-frequent
path queries and queries with predicates (such as Q09 in
Figure 5(c)), as longer sub-queries can be evaluated, while
APEX can only evaluate sub-queries of length 0, resulting

in multiple joins.

Q09 //dataset[textFile/description/para/footnote]
/fitsFile/description/para/footnote

5. CONCLUSIONS
In this paper, we: (1) take advantage of the disk-based

P [k]-Trie index [2] and propose a family of workload-aware
Trie indices for indexing frequent label-paths while main-
taining efficient support for non-frequent queries; (2) intro-
duce the concept of structural and data instance representa-
tiveness of a set of paths with respect to an XML document
to guide the selection of the complementary label-path set
and the annotation of the index structure; (3) propose a
powerful probe function for the AW[k]-Trie index, which
opens the door for more sophisticated query optimization
strategies; and (4) perform extensive experiments to com-
pare the proposed indexing and query evaluation techniques
with existing techniques in terms of the space footprint and
query performance.

6. REFERENCES
[1] M. Benedikt, et al. Structural properties of XPath

fragments. Theor. Comput. Sci., 336(1), 2005.

[2] S. Brenes, et al. Trie Indexes for Efficient XML Query
Evaluation. In WebDB, 2008.

[3] C.-W. Chung, et al. APEX: An Adaptive Path Index
for XML Data. In SIGMOD, 2002.

[4] G. H. L. Fletcher, et al. A Methodology for Coupling
Fragments of XPath with Structural Indexes for XML
Documents. In DBPL, 2007.

[5] G. Gou, et al. Efficiently Querying Large XML Data
Repositories: A Survey. IEEE Transactions on
Knowledge and Data Engineering, 19(10), 2007.

[6] H. Jagadish, et al. TIMBER: A Native XML
Database. The International Journal on Very Large
Data Bases, 11, 2004.

