
A Study of a Positive Fragment of Path Queries:

Expressiveness, Normal Form, and Minimization

Yuqing Wu1, Dirk Van Gucht1, Marc Gyssens2, and Jan Paredaens3

1 Indiana University, USA
2 Hasselt University & Transnational University of Limburg, Belgium

3 University of Antwerp, Belgium

Abstract. We study the expressiveness of a positive fragment of path
queries, denoted Path+, on node-labeled trees documents. The expres-
siveness of Path+ is studied from two angles. First, we establish that
Path+ is equivalent in expressive power to a particular sub-fragment as
well as to the class of tree queries, a sub-class of the first-order conjunc-
tive queries defined over label, parent-child, and child-parent predicates.
The translation algorithm from tree queries to Path+ yields a normal
form for Path+ queries. Using this normal form, we can decompose a
Path+ query into sub-queries that can be expressed in a very small sub-
fragment of Path+ for which efficient evaluation strategies are available.
Second, we characterize the expressiveness of Path+ in terms of its abil-
ity to resolve nodes in a document. This result is used to show that each
tree query can be translated to a unique, equivalent, and minimal tree
query. The combination of these results yields an effective strategy to
evaluate a large class of path queries on documents.

1 Introduction

for $i in doc(...)//a/b
for $j in $i/c/*/d[e]

for $k in $j/*/f
return ($i, $k)
intersect
for $i in doc(...)//a/b

for $j in $i/c/a/d
for $k in $j/c/f

return ($i, $k)

XQuery [5] is a language to express queries on XML
documents (i.e., node-labeled trees). In this paper, we
study the expressiveness of an algebraic path query
language, denoted Path+, which is equivalent to a sub-
language of XQuery, and wherein each query associates
with each document a binary relation on its nodes.
Each pair (m, n) in such a relation can be interpreted
as the unique, shortest path from m to n in the queried
document. Hence, whenever we talk in the paper about a path in a document,
we represent it by the pair of its start- and end-node.

Consider the XQuery query on the right. We can express such queries in
an algebraic path query language which we denote as the Path+ algebra. The
Path+ algebra allows ∅ formation, label examination, parent/child navigation,
composition, first and second projections, and intersection. More precisely, the
expressions of Path+ are

E ::= ∅ | ε | �̂ | ↓ | ↑ |E; E |Π1(E) |Π2(E) |E ∩ E

A.P. Sexton (Ed.): BNCOD 2009, LNCS 5588, pp. 133–145, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

134 Y. Wu et al.

where the primitives ∅, ε, �̂, ↓, ↑ respectively return the empty set of path, the
paths of length 0, the labeled paths of length 0, the parent-child paths, and the
child-parent paths, and the operators ; , Π1, Π2, and ∩ denote composition, first
projection, second projection, and intersection of sets of paths. Path+ is fully
capable of expressing the XQuery query above in an algebraic form as

Π2(â; ↓); b̂; ↓; ĉ; ↓; ↓; d̂; Π1(↓; ê); ↓; ↓; f̂ ∩Π2(â; ↓); b̂; ↓; ĉ; ↓; â; ↓; d̂; Π1(↓; ê); ↓; ĉ; ↓; f̂

XPath is a language for navigation in XML documents [6] and is always
evaluated in the node-set semantics. Researchers have introduced clean algebraic
and logical abstractions in order to study this language formally. Literature on
the formal aspects of XPath has become very extensive, which involves full XPath
as well as its fragments [8,3,14,13,10]. Research on XPath and its sub-languages
has been focusing on the expressiveness [10] and the efficient evaluation of these
languages [8,12]. Tree queries, also called pattern trees, are also natural to XML.
They have been studied ever since XML and query languages on XML were
introduced. Such studies cover areas from the minimization of tree queries [2,15]
to the efficient evaluation of pattern trees [1,11,4].

However, XQuery, with its FLWR statement and nested variable bindings,
is capable of combining the results of multiple XPath queries. This language
feature requires that the path expressions in XQuery be evaluated in the path
semantics. In this paper, we study the expressiveness of Path+ from two angles.
(1) We establish that Path+ is equivalent in expressive power to a particular sub-
fragment of this language as well as to the class of tree queries, a sub-class of the
first-order conjunctive queries defined over label, parent-child, and child-parent
predicates. The translation algorithm from tree queries to Path+ expressions
yields a normal form for Path+ expressions. Using this normal form, we can
decompose a Path+ query into sub-queries that can be expressed in a very small
sub-fragment of Path+ for which efficient evaluation strategies are available.
(2) We characterize the expressiveness of Path+ in terms of its ability to resolve
pairs of nodes in a document. We show pairs of nodes cannot be resolved if
and only if the paths from the root of the documents to these nodes have equal
length and corresponding nodes on these paths are bisimilar. This result is then
used to show that each tree query can be translated to a unique, equivalent, and
minimal tree query.

We conclude the paper by showing that Path+ queries can be regarded as the
canonical building blocks for more general path queries, such as those involving
union, set difference, ancestor, and descendant operations. As such, Path+ can
be viewed to path queries, as SPJ queries are viewed to relational algebra queries.

2 Preliminaries

In this section, we give the definition of documents, a positive fragment of path
queries, and the query language of tree queries.1

1 Throughout the paper, we assume an infinitely enumerable set L of labels.

A Study of a Positive Fragment of Path Queries 135

Definition 1. A document D is a labeled tree (V,Ed, λ), with V the set of nodes,
Ed ⊆ V × V the set of edges, and λ : V → L a node-labeling function.

a 1

1211

1098765

432 b bb

cccc c

dd

e

Fig. 1. An Example
Document

For two arbitrary nodes m and n in a document D, there
is a unique, shortest path from m to n if we ignore the
orientation of the edges. The unique node on this path
that is an ancestor of both m and n will henceforth be
denoted top(m, n).

Example 1. Figure 1 shows an example of a document
that will be used throughout the paper. Notice that, in
this document, top(n8, n12) = n4.

2.1 The Positive Path Algebra

Here we give the formal definition of the positive path algebra, denoted Path+,
and its semantics.

Definition 2. Path+ is an algebra which consists of the primitives ∅, ε, �̂ (� ∈
L), ↓, and ↑, together with the operations composition (E1; E2), first projection
(Π1(E)), second projection (Π2(E)) and intersection (E1∩E2). (E, E1, and E2

represent Path+ expressions.)
∅(D) = ∅;
ε(D) = {(n, n) | n ∈ V };
�̂(D) = {(n, n) | n ∈ V and λ(n) = �};
↓ (D) = Ed;

↑ (D) = Ed−1;
E1; E2(D) = π1,4(σ2=3(E1(D) × E2(D)));
Π1(E)(D) = {(n, n) | ∃m : (n, m) ∈ E(D)};
Π2(E)(D) = {(n, n) | ∃m : (m, n) ∈ E(D)};

E1 ∩ E2(D) = E1(D) ∩ E2(D);

Given a document D = (V,Ed, λ),
the semantics of a Path+ expression
is a binary relation over V , defined
on the right. By restricting the op-
erators allowed in expressions, sev-
eral sub-algebras of Path+ can be
defined. The following is of special
interest to us: Path+(Π1, Π2) is the
sub-algebra of Path+ where, besides the primitives and the composition op-
eration, only the first and second projections are allowed. In addition, we
will consider the algebra DPath+(Π1), where, besides the primitives ∅, ε, �̂,
↓, and the composition operations, only the first projection is allowed. Thus,
in DPath+(Π1) expressions, the primitive ↑ and the second projection are
not allowed.

Example 2. The following is an example of a Path+ expression:

Π1(↓); Π2(d̂; ↑; ĉ); Π2(â; ↓; ĉ); ↑; Π2(Π1((↓; â; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; ĉ; Π1(ĉ; ↓; d̂); ↓ .

The semantics of this expression given the document in Figure 1 is the following
set of pairs of nodes of that document: {(n2, n12), (n2, n13), (n4, n15), (n4, n16),
(n4, n17), (n4, n18)}. The above expression is equivalent to the much simpler
Path+(Π1, Π2) expression Π1(↓; d̂); ĉ; ↑; Π2(↓); â; ↓; Π1(↓; d̂); ĉ; ↓ . Note that the
sub-expressions Π1(↓; d̂) and â; ↓; Π1(↓; d̂); ĉ; ↓ are in DPath+(Π1).

136 Y. Wu et al.

2.2 Tree Queries

Here we define the tree query language, denoted T, and its semantics.

Definition 3. A tree query is a 3-tuple (T, s, d), with T a labeled tree, and s and
d nodes of T , called the source and destination nodes. The nodes of T are either
labeled with a symbol of L or with a wildcard denoted “∗”, which is assumed
not to be in L. To the set of all tree queries, we add ∅. The resulting set of
expressions is denoted T.

Two symbols of L ∪ {∗} are called compatible if they are either equal or one of
them is a wildcard. For two compatible symbols �1 and �2, we define �1 + �2 to
be �1 if �1 is not a wildcard, and �2 otherwise. Let P = ((V ′,Ed′, λ′), s, d) be a
tree query, and let D = (V,Ed, λ) be a document. A containment mapping of P
in D is a mapping h : V ′ → V such that

1. ∀m′, n′ ∈ V ′((m′, n′) ∈ Ed′ → (h(m′), h(n′)) ∈ Ed; and
2. ∀m′ ∈ V ′(λ′(m′) ∈ L → λ(h(m′)) = λ′(m′).

a

*

c

d

s c

d *

d

c

*

a

Fig. 2. An Example
Tree Query

Observe that a containment mapping is in fact a ho-
momorphism with respect to the parent-child and label
predicates if the tree query does not contain wildcards.

We can now define the semantics of a tree query.

Definition 4. Let P = (T, s, d) be a tree query, and let
D be a document. The semantics of P given D, denoted
P (D), is defined as the set

{(h(s), h(d)) | h is a containment mapping of P in D}.
The semantics of ∅ on D, i.e., ∅(D), is the empty set.

Example 3. Figure 2 shows an example of a tree query. The semantics of this
tree query given the document in Figure 1 is the set of pairs of that document
exhibited in Example 2. We will show later in the paper that this tree query is
actually equivalent with the Path+ expression given in Example 2.

3 Equivalences of Query Languages

In this section, we show that Path+, T, and Path+(Π1, Π2) are equivalent in
expressive power by exhibiting a translation algorithm that translates an expres-
sion in one language to an equivalent expression in one of the other languages.

Proposition 1. The query language T is at least as expressive as Path+, and
there exists an algorithm translating an arbitrary Path+ expression into an equiv-
alent expression of T (i.e., a tree query or ∅.)
Proof. It is straightforward to translate the primitives to expressions of T.

Now, let E be a Path+ expression for which P is the equivalent expression in
T. If P equals ∅, then both Π1(E) and Π2(E) are translated into ∅. Otherwise,

A Study of a Positive Fragment of Path Queries 137

Algorithm Merge1

Input: two disjoint labeled trees
T1 = (V1, Ed1, λ1)
and T2 = (V2, Ed2, λ2);
nodes m1 ∈ V1 and m2 ∈ V2.

Output: a labeled tree or ∅.
Method :

q = min(depth(m1, T1), depth(m2, T2))
for k = 0, . . . , q

if the level-k ancestors of m1 and m2
have incompatible labels, return ∅

for k = 0, . . . , q

merge the level-k ancestors mk
1 of m1

and mk
2 of m2 into a node labeled

λ1(mk
1) + λ2(mk

2)
return the resulting labeled tree.

Fig. 3. The Algorithm Merge1

Algorithm Merge2

Input: a labeled tree T = (V, Ed, λ) and
nodes m1, m2 ∈ V ;

Output: a labeled tree or ∅.
Method :

let q1 = depth(m1, T);
let q2 = depth(m2, T)
if q1 	= q2 return ∅
for k = 0, . . . , q1 = q2

if the level-k ancestors of m1 and m2
have incompatible labels, return ∅

for k = 0, . . . , q1 = q2

merge the level-k ancestors mk
1 of m1

and mk
2 of m2 into a node labeled

λ1(m
k
1) + λ2(m

k
2)

return the resulting labeled tree

Fig. 4. The Algorithm Merge2

let P = (T, s, d) be the tree query under consideration. Then Π1(E) is translated
into P1 = (T, s, s), and Π2(E) is translated into P2 = (T, d, d).

Finally, let E1 and E2 be expressions for which P1 and P2 are the equivalent
expressions in T. If one of P1 or P2 equals ∅, then both E1; E2 and E1 ∩E2 are
translated into ∅. Otherwise, let P1 = (T1, s1, d1) and P2 = (T2, s2, d2) the two
tree queries under consideration.

(1) Translation of composition. First, apply the algorithm Merge1 (Figure 3) to
the labeled trees T1 and T2 and the nodes d1 and s2. If the result is ∅, so does
the translation of E1; E2. Otherwise, let T be the returned labeled tree. Then
E1; E2 is translated into the tree query P = (T, s1, d2).

(2) Translation of intersection. First, apply the algorithm Merge1 to the labeled
trees T1 and T2 and the nodes s1 and s2. If the result is ∅, so does the translation
of E1∩E2. Otherwise let Tint be the labeled tree returned by Merge1. Next, apply
the algorithm Merge2 (Figure 4) to the labeled tree Tint and the nodes d1 and d2.
If the result is ∅, so does the translation of E1 ∩ E2. Otherwise, let T be the
labeled tree returned by Merge2. Then E1 ∩E2 is translated into the tree query
P = (T, s, d), where s is the node that resulted from merging s1 and s2, and d
is the node that resulted from merging d1 and d2.

Example 4. Consider again the Path+ expression given in Example 2:

Π1(↓); Π2(d̂; ↑; ĉ); Π2(â; ↓; ĉ); ↑; Π2(Π1((↓; â; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; Π1(ĉ; ↓; d̂); ĉ; ↓
We will now translate this expression into a tree query. First write the expression
as E1; E2; E3, where

E1 = Π1(↓); Π2(d̂; ↑; ĉ); Π2(â; ↓; ĉ); ↑
E2 = Π2(Π1((↓; â; ↓) ∩ (↓; ↓; ĉ)); ↓)
E3 =↓; Π1(ĉ; ↓; d̂); ĉ; ↓

138 Y. Wu et al.

*

c

B.2

c

d *
C

*

d

s
A

a

dc

B.3

s

a

d*

B.1

s* *

d

s

a

c

B.4

s=d

B.6

a

c

*

*

s=d

B.5

a

c

*

*

d

s

c

d *

a

s

d

D

d

s

*

a

d

a

c

*

c

*

c

d

Fig. 5. Translation of the Tree Query in Exp. 4

The translation is illus-
trated in Figure 5. Figure B
exhibits how expression E2

is translated into a tree
query. Figures B.1, B.2,
B.3, B.4 and B.5 corre-
spond to the translations
of the subexpressions ↓
; â; ↓, ↓; ↓; ĉ, (↓; â; ↓) ∩ (↓; ↓
; ĉ), Π1((↓; â; ↓) ∩ (↓; ↓; ĉ)),
and Π1((↓; â; ↓)∩(↓; ↓; ĉ)); ↓

Algorithm Tree to Path

Input: a tree query P = (T, s, d);

Output: a Path+(Π1, Π2) expression E.

Method :
if T is base case

E := basecase(T, s, d)

else if s is not an ancestor of d (case 1)
p := the parent of s
T1 := the subtree of T rooted at s
T2 := the subtree resultant from removing all nodes in T1 from T
if s has no child and λ(s) is wildcard

E :=↑; Tree to Path(T2, p, d)
elseif d is the parent of s, d has no ancestor, no child other than s and λ(d) is wildcard

E := Tree to Path(T1, s, s); ↑
else E := Tree to Path(T1, s, s); ↑; Tree to Path(T2, p, d)

else if s is not the root (case 2)
r := the root of T
T1 := the subtree of T rooted at s
T2 := the subtree resultant from removing all strict descendants of s from T , with

λ(d) assigned to the wildcard ∗
if s has no child and λ(s) is wildcard

E := Π2(Tree to Path(T2, r, s))
else E := Π2(Tree to Path(T2, r, s)); Tree to Path(T1, s, d)

else if s is a strict ancestor of d (case 3)
p := the parent of d
T1 := the subtree of T rooted at d
T2 := the subtree resultant from removing all nodes in T1 from T
if d has no child and λ(d) is wildcard

E := Tree to Path(T2, s, p); ↓
elseif s is the parent of d, s has no child other than d and λ(d) is wildcard

E :=↓; Tree to Path(T1, d, d)
else E := Tree to Path(T2, s, p); ↓; Tree to Path(T1, d, d)

else if s = d is the root(case 4)
c1, . . . , cn := all children of s
for i := 1 to n do

Ti := the subtree of T containing s, ci, and all descendants of ci, with λ(s) assigned
to the wildcard ∗

if λ(s) is wildcard ∗
E := Π1(Tree to Path(T1, s, c1)); . . . ; Π1(Tree to Path(Tn, s, cn))

else E := Π1(Tree to Path(T1, s, c1)); . . . ; Π1(Tree to Path(Tn, s, cn)); λ(s)

return E

Fig. 6. The Algorithm Tree to Path

A Study of a Positive Fragment of Path Queries 139

respectively. Figure B.6, finally, corresponds to the translation of E2. Figures A
and C exhibit the translation of the expressions E1 and E3 respectively (details
omitted). Finally, Figure D exhibits the translation of the expression E1; E2; E3.

Proposition 2. The query language Path+(Π1, Π2) is at least as expressive as
T, and there exists an algorithm translating an arbitrary T expression into an
equivalent expression of Path+(Π1, Π2).

Proof. Clearly, ∅ is translated into ∅. We also have that (1) the tree query
(({s}, ∅), s, s) is translated to ε if λ(s) = ∗ and is translated to ˆλ(s) otherwise;
(2) the tree query (({s, d}, {(s, d)}), s, d), where λ(s) = λ(d) = ∗, is translated to
↓; and (3) the tree query (({s, d}, {(d, s)}), s, d), where λ(s) = λ(d) = ∗, is ↑. We
collectively call (1), (2), and (3) the base cases, and in the algorithm exhibited in
Figure 6 they are handled by the function basecase(T, s, d). For an arbitrary tree
query P = (T, s, d), a recursive translation algorithm is exhibited in Figure 6.

Example 5. Consider the tree query in Figure 5.D. Following the algorithms in
Figure 6, this tree query can be translated into an equivalent Path+(Π1, Π2)
expression: Π1(↓); Π1(↓; d̂); ĉ; ↑; Π2(Π1(↓; Π1(↓; ĉ); â); ↓); â; ↓; Π1(↓; d̂); ĉ; ↓ .

We can now summarize Propositions 1 and 2.

Theorem 1. The query languages Path+, T and Path+(Π1, Π2) are all equiva-
lent in expressive power, and there exist translation algorithms between any two
of them.

4 Normal Form for Expressions in the Path+ Algebra

Normalization is frequently a critical step in rule-based query optimization. It
serves the purpose of unifying queries with the same semantics, detect con-
tainment among sub-queries, and establish the foundation for cost-based query
optimization, in which evaluation plans are to be generated. As it will turn
out, using this normal form, we can decompose a Path+ query into sub-queries
that can be expressed in DPath+(Π1), a very small sub-fragment of Path+ for
which efficient evaluation strategies are available [7]. The full query can then be
evaluated by joining the results of these DPath+(Π1) expressions.

When we revisit Section 3, where the translation from queries in T to expres-
sions in XPath+(Π1, Π2) is described, we observe that the result of the trans-
lation is either ∅, or ε, or has the following general form (composition symbols
have been omitted for clarity):

Cum ↑ · · · ↑ Cu1 ↑ Ctop ↓ Cd1 ↓ · · · ↓ Cdn ,

where (1) m ≥ 0 ∧ n ≥ 0; (2) the Ci expressions, for i ∈ u1, · · · , um, d1, · · · , dn,
are of the form [Π1(D)]∗[l̂]?, where the D expressions are DPath+(Π1) expres-
sions in the normal form; and (3) Ctop is of the form [Π2(D)][Π1(D)]∗[l̂]? where
D is an expression in DPath+(Π1) in the normal form. Observe that in particu-
lar, there are no ∩ operations present in the normal form, and that there appears

140 Y. Wu et al.

at most one Π2 operation. We say that a Path+(Π1, Π2) expression of this form
is in normal form.

Example 6. Reconsider Example 2. Clearly, the expression

Π1(↓); Π2(d̂; ↑; ĉ); Π2(â; ↓; ĉ); ↑; Π2(Π1((↓; â; ↓) ∩ (↓; ↓; ĉ)); ↓); ↓; Π1(ĉ; ↓; d̂); ĉ; ↓
is not in normal form (e.g., note that this expression contains an intersection
operation and multiple occurrences of the Π2 operation). In Example 4, we
exhibited how this expression is translated in the tree query shown in Figure 2. In
Example 5, we exhibited how this tree query is translated into the Path+(Π1, Π2)
expression

Π1(↓); Π1(↓; d̂); ĉ
︸ ︷︷ ︸

; ↑; Π2(Π1(↓; Π1(↓; ĉ), â); ↓); â
︸ ︷︷ ︸

; ↓; Π1(↓; d̂); ĉ
︸ ︷︷ ︸

; ↓
︸︷︷︸

Cu1 Ctop Cd1 Cd2

This expression is in normal form, with the key ingredients identified below the
expression.

We have the following theorem.

Theorem 2. The tree-to-path algorithm of Figure 6 translates each tree query
into an equivalent Path+(Π1, Π2) expression which is in normal form.

Proof. ∅ is translated into the expression ∅. The tree query with a single node
labeled with a wildcard is translated into the expression ε.

Case 1 of the translation algorithm deals with the generation of the upward
fragment Cum ↑ · · · ↑ Cu1 ↑ in the normal form expression; Case 2 deals with
generation of the optional Π2() expression Ctop; Case 3 deals with the generation
of the downward fragment ↓ Cd1 ↓ · · · ↓ Cdn in the normal form expression; and
Case 4 deals with the generation of the expression [Π1(D)]∗[l̂]? that is associated
with a node in the tree query.

5 Resolution Expressiveness

So far, we have viewed Path+ as a query language in which an expression asso-
ciates to every document a binary relation on its nodes representing all paths in
the document defined by that expression. We have referred to this view as the
query-expressiveness of Path+. Alternatively, it can be viewed as language in
which, given a document and a pair of its nodes, one wants to navigate from one
node to the other. From this perspective, it is more meaningful to characterize
the language’s ability to distinguish a pair of nodes or a pair of paths in the
document, which we will refer to as the resolution-expressiveness of Path+.

In this section, we first establish that two nodes in a document cannot be
resolved by a Path+ expression if and only if the paths from the root of that
document to these nodes have equal length, and corresponding nodes on these
paths are bisimilar, a property that has been called 1-equivalence in [10]. The

A Study of a Positive Fragment of Path Queries 141

proof has the same structure as the proofs of similar properties for other frag-
ments of Path in [10]. Next, we extend this result to the resolving power of Path+

to pair of paths in a document.
We first make precise what we mean by indistinguishability of nodes.

Definition 5. Let m1 and m2 be nodes of a document D.

– m1 and m2 are expression-related (denoted m1 ≥exp m2) if, for each Path+

expression E, E(D)(m1) = ∅ implies E(D)(m2) = ∅, where E(D)(m1) and
E(D)(m2) refer to the sets {n | (m1, n) ∈ E(D)} and {n | (m2, n) ∈ E(D)},
respectively.

– m1 and m2 are expression-equivalent (denoted m1 ≡exp m2) if m1 ≥exp m2

and m2 ≥exp m1.

Asalready announced,we intend to show that the semantic notion of expression-
equivalence coincides with the syntactic notion of 1-equivalence. Before we can
give the formal definition of 1-equivalence of nodes, we need a few intermediate
definitions. First, we define downward 1-relatedness of nodes recursively on the
height of these nodes:

Definition 6. Let m1 and m2 be nodes of a document D. Then m1 and m2 are
downward 1-related (denoted m1 ≥1

↓ m2) if and only if

1. λ(m1) = λ(m2); and
2. for each child n1 of m1, there exists a child n2 of m2 such that n1 ≥1

↓ n2.

We now bootstrap Definition 6 to 1-relatedness of nodes, which is defined recur-
sively on the depth of these nodes:

Definition 7. Let m1 and m2 be nodes of a document D. Then m1 and m2 are
1-related (denoted m1 ≥1 m2) if

1. m1 ≥1
↓ m2; and

2. if m1 is not the root, and p1 is the parent of m1, then m2 is not the root and
p1 ≥1 p2, with p2 the parent of m2.

Finally, we are ready to define 1-equivalence of nodes:

Definition 8. Let m1 and m2 be nodes of a document D. Then m1 and m2 are
1-equivalent (denoted m1 ≡1 m2) if and only if m1 ≥1 m2 and m2 ≥1 m1.

We can now establish that two nodes in a document cannot be resolved by a
Path+ expression if and only if the paths from the root of that document to these
nodes have equal length, and corresponding nodes on these paths are bisimilar,
a property that has been called 1-equivalence in [10].

Theorem 3. Let m1 and m2 be nodes of a document D. Then, m1 ≡exp m2 if
and only if m1 ≡1 m2.

142 Y. Wu et al.

Obviously, two nodes are bisimilar (called downward 1-equivalent in [10]) if they
are downward 1-related in both directions. For the purpose of abbreviation, we
extend 1-relatedness to pairs of nodes, as follows. Let m1, m2, n1, and n2 be
nodes of a document D. We say that (m1, n1) ≥1 (m2, n2) whenever m1 ≥1 m2,
n1 ≥1 n2, and sig(m1, n1) ≥ sig(m2, n2). Next, we extend this result to the
resolving power of Path+ to pair of paths in a document. The following theorem
now states the the main result about the resolution expressiveness of Path+.

Theorem 4. Let m1, m2, n1, n2 be nodes of a document D. Then, the property
that, for each Path+ expression E, (m1, n1) ∈ E(D) implies (m2, n2) ∈ E(D) is
equivalent to the property (m1, n1) ≥1 (m2, n2).

The theorem states that when we find a pair (m1, n1) in the result of a query
in Path+, then we are guaranteed that any pair (m2, m2) such that (m1, n1) ≥1

(m2, n2), will also be in the result of the query, and vice versa.

6 Efficient Query Evaluation

Minimizing algebraic expressions and rewriting queries into sub-queries for which
efficient evaluation plans are available is a practice used extensively in relational
database systems. An example of this is selection push down for the selection
conditions on which indices are available. It is natural that the same principle
and procedure is followed in XML query processing and optimization.

6.1 Minimization of Tree Queries

The results on containment and minimization of tree queries can easily be derived
using the theory developed in Section 5. In particular, each tree query can be
translated to a unique, equivalent, and minimal tree query.

First, we extend the notion of containment mapping (Section 2.2). Thereto,
let P1 = ((V1,Ed1, λ1), s1, d1) and P2 = ((V2,Ed2, λ2), s2, d2) be tree queries. A
query containment mapping of P1 in P2 is a mapping h : V1 → V2 such that

1. for all m1, n1 ∈ V1, (m1, n1) ∈ Ed1 implies that (h(m1), h(n1)) ∈ Ed2;
2. for all m1 ∈ V1, λ1(m1) ∈ L implies that λ2(h(m1)) = λ1(m1); and
3. h(s1) = s2 and h(d1) = d2.

Proposition 3. Let P1 and P2 be tree queries. Then P2 is contained in P1 if
and only if there is a query containment mapping of P1 in P2. [9].

Now, let P = ((V,Ed, λ), s, d) be a tree query. We define the first reduction of P ,
denoted red1(P), to be the tree query obtained from P by merging 1-equivalent
nodes. For this purpose, we interpret P as a document D = (V,Ed, λ′), wherein
the nodes are relabeled as follows: (1) λ′(s) = λ(s)s; (2) λ′(d) = λ(d)d; and (3)
for all other nodes m in V , λ′(m) = λ(m).

Lemma 1. A tree query and its first reduction are equivalent.

A Study of a Positive Fragment of Path Queries 143

s

d *

a a

*

c c

d*

s

d

a

*

c

d*

red (P)

d *

c c

d

a a

*

c c

d*

c

d *

s

d

2P red (P)1

Fig. 7. A tree query and its first and second reductions

On the extended labels introduced above, we define an order which is the reflexive-
transitive closure of the following: (1) for all � ∈ L ∪ {∗}, �s ≥ �; (2) for all
� ∈ L ∪ {∗}, �d ≥ �; and (3) for all � ∈ L, � ≥ ∗.

We say that two extended labels �1 and �2 are compatible if either �1 ≥ �2 or
�2 ≥ �1. For compatible extended labels �1 and �2, we define �1+�2 = max(�1, �2).

Finally, we extend the notion of 1-relatedness from nodes of a document to
nodes of a tree query with extended labels by replacing the condition λ(m1) =
λ(m2) in Definition 6 by λ(m1) + λ(m2) = λ(m2). We shall then say that m1

and m2 are 1-∗-related and denote this by m1 ≥1∗ m2.
For P a tree query, we define the second reduction of P , denoted red2(P), to

be the tree query by deleting from red1(P) in a top-down fashion every node m1

for which there exists another node m2 such that m1 ≥1
∗ m2. Notice that the

purpose of doing the reduction in two steps is to ensure that that the graph of
the relation “≥1∗” is acyclic.

Lemma 2. A tree query and its second reduction are equivalent.

We can now show the following.

Theorem 5. Let P be a tree query. Every (with respect to number of nodes)
minimal tree query equivalent to P is isomorphic to red2(P).

Example 7. Figure 7 exhibits a tree query P and its first and second reductions,
red1(P) and red2(P), respectively. The latter is the (up to isomorphism) unique
minimal tree query equivalent to P .

6.2 Query Decomposition and Evaluation

In [7], the authors established the equivalence between the partitions on nodes
(node pairs) of an XML document induced by its own structural features and the
corresponding partitions induced by the DPath+(Π1) algebra. Based on these
findings, they showed that, with a P (k)-index [4] of k > 1, an index-only plan
is available for answering any query in the DPath+(Π1) algebra.

We now discuss how to take advantage of this result and the normal form we
discovered for the Path+ algebra to come up with an efficient query evaluation
plan for queries in Path+. Consider a Path+expression Exp in its normal form,

144 Y. Wu et al.

represented as a tree query, in the most generic case as in Figure 8. The normal
form of Exp can be written as

E(Tt,s)−1; E(Tt,t); Π2(E(Tr,t)); E(Tt,d),

r

t

d

s

T
r,t

Tt,d

Tt,s Tt,t

Fig. 8. General Structure of a
Tree Query T

where E(Tt,s), E(Tt,t), E(Tr,t), and E(Tt,d) are
the DPath+(Π1) expressions corresponding to
the tree queries Tt,s, Tr,t, Tt,t, and Tt,d, respec-
tively. Since each of the four sub-queries is in
DPath+(Π1), efficient query evaluation with an
index-only plan is available [7].

In conclusion, every Path+ query can be eval-
uated efficiently with an index-only plan pro-
vided a P (k)-index [4] with k > 1 is available,
and this with no more than three natural join
operations, as guaranteed by the normal form.
Indeed, for every document D, we have that

Exp(D) = E(Tt,s)(D)−1 �� E(Tt,t)(D) �� Π2(E(Tr,t))(D) �� E(Tt,d)(D).

7 Discussion

This paper has been concerned with the translation of Path+ expressions into
equivalent Path+(Π1, Π2) expressions via a tree query minimization algorithm,
followed by a translation algorithm from these queries into expressions in normal
form. Furthermore, it was argued that such normal form expressions have sub-
expressions that can be evaluated efficiently with proper index structures.

We now generalize the Path+ algebra by adding set union and difference
operations. Given a document specification D = (V,Ed, λ), the semantics of
a Path expression is defined by extending the definition of the semantics of a
Path+ expression with

E1 ∪ E2(D) = E1(D) ∪ E2(D) and E1 − E2(D) = E1(D) − E2(D).

Both in the operations present in the Path+ algebra as in the set union and set
difference, E1, and E2 now represent arbitrary Path expressions.

The set union operation alone does not alter the resolution expressiveness
results presented in this paper, since set union operations can be pushed out
through algebraic transformation, resulting into the union of expressions which
no longer contains the set union operations. The set difference operation, how-
ever, significantly increases the resolution expressiveness of the language.

Consequently, Path expressions containing set union and set difference can
in general no longer be expressed as tree queries, whence our minimization and
normalization algorithms are no longer applicable. Expressions containing set
union, but not set difference, however, can still be normalized using the algo-
rithms discussed in this paper, after the set union operations are moved to the
top. The resulting expression will then be a union of Path+(Π1, Π2) expressions.

A Study of a Positive Fragment of Path Queries 145

Ancestor/descendant relationships can be expressed in most semi-structured
query languages, and have been included as ↓∗ and ↑∗, in the XPath languages in
some studies. However, we regard ↓∗ and ↑∗ merely as the transitive closure oper-
ation of the primitive operations ↓ and ↑, whose characteristics have been studied
in the relational context. Furthermore, with proper encoding of the data—which
represent the structural relationship of a semi-structured document—the an-
cestor/descentant relationship can be resolved via structural join [1],which is a
value join on the structural encoding.

In conclusion, the results developed for Path+ can be used to process more
general path queries. In this regard, one can view the Path+ algebra to the
Path algebra as one can view the project-select-join algebra to the full relational
algebra.

References

1. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D.:
Structural joins: A primitive for efficient XML query pattern matching. In: ICDE
(2002)

2. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Tree pattern query
minimization. VLDB J. 11(4), 315–331 (2002)

3. Benedikt, M., Fan, W., Kuper, G.M.: Structural properties of XPath fragments.
Theor. Comput. Sci. 336(1), 3–31 (2005)

4. Brenes, S., Wu, Y., Gucht, D.V., Cruz, P.S.: Trie indexes for efficient XML query
evaluation. In: WebDB (2008)

5. Chamberlin, D., et al.: XQuery 1.0: An XML query language, W3C (2003)
6. Clark, J., DeRose, S.: XML path language (XPath) version 1.0,

http://www.w3.org/TR/XPATH

7. Fletcher, G.H.L., Van Gucht, D., Wu, Y., Gyssens, M., Brenes, S., Paredaens,
J.: A methodology for coupling fragments of XPath with structural indexes for
XML documents. In: Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS,
vol. 4797, pp. 48–65. Springer, Heidelberg (2007)

8. Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath
Queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)

9. Götz, M., Koch, C., Martens, W.: Efficient algorithms for the tree homeomorphism
problem. In: Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797,
pp. 17–31. Springer, Heidelberg (2007)

10. Gyssens, M., Paredaens, J., Gucht, D.V., Fletcher, G.H.L.: Structural character-
izations of the semantics of XPath as navigation tool on a document. In: PODS
(2006)

11. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for
indexing paths in graph-structured data. In: ICDE (2002)

12. Koch, C.: Processing queries on tree-structured data efficiently. In: PODS (2006)
13. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. SIG-

MOD Record 34(2), 41–46 (2005)
14. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.

ACM 51(1), 2–45 (2004)
15. Paparizos, S., Patel, J.M., Jagadish, H.V.: SIGOPT: Using schema to optimize

XML query processing. In: ICDE (2007)

http://www.w3.org/TR/XPATH

	A Study of a Positive Fragment of Path Queries: Expressiveness, Normal Form, and Minimization
	Introduction
	Preliminaries
	The Positive Path Algebra
	Tree Queries

	Equivalences of Query Languages
	Normal Form for Expressions in the Path+ Algebra
	Resolution Expressiveness
	Efficient Query Evaluation
	Minimization of Tree Queries
	Query Decomposition and Evaluation

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

