
Trie Indexes for Efficient XML Query Evaluation

Sofı́a Brenes, Yuqing Wu, Dirk Van Gucht, Pablo Santa Cruz
Indiana University, Bloomington

{sbrenesb, yuqwu, vgucht, psantacr}@cs.indiana.edu

ABSTRACT
As the number of applications that rely on XML data in-
creases, so does the need for performing efficient XML query
evaluation. A critical part of the solution involves provid-
ing new techniques for designing XML indexes and lookup
algorithms. In this paper, we leverage the results of our re-
search on coupling the partitions induced by fragments of
XPath algebra and those induced by the structural proper-
ties of an XML document to lead the design of the N [k] and
P [k]-Trie indexes for XML. We present the rationale behind
our approach, and detail the structure of the indexes, their
features, and algorithms for evaluating XPath queries with
index-only plans. We show that the P [k]-Trie indexes are
capable of answering XPath queries with arbitrarily compli-
cated predicates using index-only plans and improving query
performance in orders of magnitude over the A[k]-index.

1. INTRODUCTION
As an increasing number of applications use XML as their

data model, supporting efficient access to XML data contin-
ues to be one of the most important research problems in
this domain. XPath is a query language to specify node sets
in XML documents. It is a fundamental building block for
other more powerful XML query languages such as XQuery
and XSLT. Therefore, efficiently evaluating XPath queries
is essential to enable fast processing of general XML queries.

The complexity of both XML documents and XPath query
patterns pose significant challenges to supporting efficient
evaluation of such queries using indexes. The structural
relationships present in both XML data and XML queries
require the indexes to effectively summarize such structural
information and to support fast lookup. Therefore, a crit-
ical part of the solution involves proposing new techniques
for XML indexing and lookup; as well as the query evalua-
tion techniques and algorithms that take advantage of these
indexes. Moreover, as in relational database systems, with-
out workload analysis, it is difficult to predict the queries
issued by users. The flexible environments in which XML

Copyright is held by the author/owner.
Proceedings of the 11th International Workshop on Web and
Databases (WebDB 2008), June 13, 2008, Vancouver, Canada

data is mostly used, such as web databases, contribute to
this unpredictability. Therefore, even though it is important
to construct and maintain indexes that are designed to an-
swer frequent queries of a certain type, it is critical to design
and implement generic indexes that help evaluate the core
of XPath queries in general.

Example 1.1. Given a simple XML document, whose tree
representation is shown in Figure 1, 1 we are interested in
answering

1. Queries of arbitrary length, such as //B, //A/A/B/D.

2. Queries with uncertainty introduced by a wildcard ‘*’
or ‘//’, such as //B/*/C, //A//D.

3. Queries with predicates, such as //A/B[D]/C.

4. Any combination of the above.

1.1 Previous Work
There have been significant engineering efforts in devel-

oping novel index structures to improve the performance
of XPath query evaluation [7]. Early approaches combined
the use of traditional value indexes and structural join algo-
rithms [1, 2]. These present a simple solution to the problem
but cannot directly capture the structural relationships at
the heart of both XML data and queries.

Among structural indexes, DataGuides [5] construct a
complete summary of every path in an XML document; the
1-index, 2-index, and T-index [15] use templates to define
the paths that are to be summarized. These early structural
indexes are too large for practical use. As a remedy, the
A[k]-index [14] employed the notion of localized bi-similarity
in grouping the nodes of an XML document into equiva-
lence classes and organizing these in a directed graph. Since
then, several works have proposed variations of the A[k]-
index that deal mainly with its maintenance and tuning by
using query workload information [3, 9]. The Forward and
Backward index (F&B-index) [12] extends the local similar-
ity concept to include both the incoming and outgoing paths
of nodes, with the purpose of answering branching queries.
However, the F&B-index was found to be too large to fit
in memory and did not provide fully optimized methods for
answering queries [17].

Other directions of XML indexing techniques include in-
dexing frequent sub-patterns, indexing XML queries as se-
quences, encoding-based indexes, and index selection tools.
Most of these indexes focus on answering chain queries with-
out predicates [7].

1Single characters represent element tags and subscripts
identify instances of elements with the same tag.

Figure 1: An Exam-

ple XML Document

N [2]-partition P[2]-partition
N [2][A] = {A1} P[2][A] = {(A1, A1), (A2, A2)}
N [2][A,A] = {A2} P[2][B] = {(B1, B1), (B2, B2), (B3, B3), (B4, B4), (B5, B5)}
N [2][A,B] = {B1, B4} P[2][C] = {(C1, C1), (C2, C2), (C3, C3), (C4, C4)}
N [2][A,A, B] = {B2, B3} P[2][D] = {(D1, D1)}
N [2][A,B, B] = {B5} P[2][A,A] = {(A1, A2)}
N [2][A,B, C] = {C1, C2, C3} P[2][A,B] = {(A1, B1), (A2, B2), (A2, B3), (A1, B4)}
N [2][B, B, C] = {C4} P[2][B, B] = {(B4, B5)}
N [2][A,B, D] = {D1} P[2][B, C] = {(B1, C1), (B2, C2), (B3, C3), (B5, C4)}

P[2][B, D] = {(B2, D1)}
P[2][A,A, B] = {(A1, B2), (A1, B3)}
P[2][A,B, B] = {(A1, B5)}
P[2][A,B, C] = {(A1, C1), (A2, C2), (A2, C3)}
P[2][A,B, D] = {(A2, D1)}
P[2][B, B, C] = {(B4, C4)}

Figure 2: The N [2] and P[2]-partitions and label-paths of the sample XML document

1.2 Our Contributions
We approach the problem of designing generic indexes for

XML by leveraging the results of our previous studies [4] of
coupling partitions induced by fragments of the XPath al-
gebra and partitions induced by the structure of XML doc-
uments. More specifically, we

1. Propose a family of structural indexes for XML that
use a trie structure to organize the partitions induced
by node (N [k]) and pair (P [k]) equivalence relations.

2. Define efficient construction and lookup algorithms for
the Trie indexes and identify a set of strategies for
using the Trie indexes in XPath query evaluation.

3. Discuss the impact of the P [k]-Trie index on query de-
composition and generation of query evaluation plans.

4. Conduct extensive experiments to illustrate the prop-
erties of the Trie indexes and their efficiency in query
evaluation.

The rest of the paper is organized as follows: we lay out
the theoretical foundation of our ideas in Section 2, present
the design of the N [k] and P [k]-Trie indexes in Section 3,
present the implementation details and experimental results
in Section 4, and conclude the paper with a discussion of the
results and the future research directions in Section 5.

2. PRELIMINARIES
In this section we will define the concepts that will facili-

tate the discussion throughout the rest of this paper.

2.1 Label-Path Based Partitions of an XML
Document

We first define an XML document and its associated paths.

Definition 2.1. An XML document X is a node-labeled
tree. Formally, we define it as a 4-tuple (V, Ed, r, λ), with
V the finite set of nodes, Ed ⊆ V × V the set of parent-
child edges, r ∈ V the root, and λ : V → L a node-labeling
function into the set of labels L.

Given an XML document X, we define the set of its paths,
denoted Paths(X), as the set V × V . A pair of nodes
(m, n) ∈ Paths(X) identifies the unique path from node m
to node n in X. The set of downward-paths, DownPaths(X),
contains the pairs of nodes (m, n) where m is an ancestor
of n. Furthermore, for k ∈ N, DownPaths(X, k) represents
the set of node pairs such that (1) length(m,n) ≤ k, and
(2) (m, n) ∈ DownPaths(X).2

2length(m,n) denotes the length of the unique path between
m and n in X.

Definition 2.2. The label-path LP (m,n) is the unique
sequence of labels that occur on the unique path from node
m to node n. Given a node n ∈ V , and a number k ∈ N,
we define the k-label-path of n, denoted LP (n, k), to be the
label-path of the unique downward path of length l into n
where l = min(height(n), k).3

In the XML document shown in Figure 1, the label-path
between nodes A2 and C2 is LP (A2, C2) = (A, B, C). Simi-
larly, LP (C1, 1) = (B, C) and LP (C1, 5) = (A, B, C).

Definition 2.3. Let X = (V, Ed, r, λ) be an XML doc-
ument, and let k ∈ N. We say that nodes n1 and n2 ∈ V
are N [k]-equivalent (denoted n1 ≡N [k] n2) if they have the
same k-label-path, i.e., LP (n1, k) = LP (n2, k).

The N [k]-partition of X is then defined as the partition
induced by this equivalence relation. It immediately follows
that each partition class C in the N [k]-partition can be asso-
ciated with a unique label-path, the label-path of the nodes
in C, denoted LP (C). On the other hand, a k-label-path p in
an XML document X uniquely identifies an N [k]-partition
class, which we denote as N [k][p].

Definition 2.4. Let X = (V, Ed, r, λ) be an XML doc-
ument, and let k ∈ N. We define the k-pair equivalence
relation on the set DownPaths(X, k) as follows: two pairs
(m1, n1) and (m2, n2) ∈ DownPaths(X, k) are P [k]-equivalent
(denoted (m1, n1) ≡P[k] (m2, n2)) if they have the same
label-path, i.e., LP (m1, n1) = LP (m2, n2).

The P [k]-partition of X is then defined as the partition
on DownPaths(X, k) induced by this equivalence relation.
Similar to the N [k]-partition, label-paths can be associated
with each partition class in a P [k]-partition and a k-label-
path p in an XML document X uniquely identifies a P [k]-
partition class, denoted P [k][p].

Example 2.1. Table 2 shows the N [2] and P [2]-partitions
of the sample XML document shown in Figure 1.

Definition 2.5. Given a data model M and two equiv-
alence relations ≡R1

and ≡R2
, we say that R1 refines R2

(denoted R1 ≺ R2) if for each data instance m over M ,
the equivalence relation ≡R1

is a refinement of the equiva-
lence relation ≡R2

. We say R1 and R2 are equally refined
(denoted R1 ≃ R2) if R1 ≺ R2 and R2 ≺ R1.

For an XML document X, N [k] ≺ N [k − 1]. For any
k ∈ N where k ≥ height(X), we have that N [k] ≃ N [k + 1]
and P [k] ≃ P [k + 1]. Furthermore, we proved that N [k] ≃
A[k] [4], where A[k] is the node partition as defined in [14].

3height(n) denotes the height of node n in X.

2.2 TheD[k] and U [k] XPath Algebras
We now present the syntax and path semantics of the

XPath algebra, which were introduced earlier in [6, 8].

Definition 2.6. The XPath algebra consists of the prim-
itives ε, ∅, ↓, and ℓ together with the operations on expres-
sions E1 ◦ E2, E1[E2], and E1 ∗ E2. Given an XML doc-
ument X = (V, Ed, r, λ), the path semantics of an XPath
algebra expression E on X, denoted E(X), are defined as:

ε(X) = {(n, n) | n ∈ V }

∅(X) = ∅

↓ (X) = Ed

↑ (X) = Ed−1

ℓ(X) = {(n, n) | n ∈ V & λ(n) = ℓ}

E1 ◦ E2(X) = {(n, m) | ∃w : (n, w) ∈ E1(X) &

(w, m) ∈ E2(X)}

E1[E2](X) = {(n, m) ∈ E1(X)| ∃w : (m, w) ∈ E2(X)}

E1 ∗ E2(X) = E1(X) ∗ E2(X) where ∗ is ∩, ∪ or -

The node semantics of an XPath algebra expression E on
X, denoted Enodes(X), is the set {n | ∃m : (m,n) ∈ E(X)}.

Definition 2.7. The D (downwards) algebra consists of
the expressions in the XPath algebra without occurrences of
the set operators, predicates ([]), or the ↑ primitive. As
in [4], the D[k] algebras are recursively defined on k as fol-
lows:

1. D[0] is the set of expressions in D without occurrences of
the ↓ primitive.

2. For k ≥ 1,

(a) if E ∈ D[k − 1], then E ∈ D[k];

(b) ↓ ∈ D[1];

(c) if E1 ∈ D[k1], E2 ∈ D[k2], and k1 + k2 ≤ k, then
E1 ◦ E2 ∈ D[k].

Given an XML document X = (V, Ed, r, λ), and an ex-
pression E ∈ D[k], we define the label-path set that corre-
sponds to E in X, LPS(E,X) as the set of label-paths in
X that satisfy the node-labels and structural containment
relationships specified by E. For the sample XML docu-
ment in Figure 1 and the XPath expression //A/ ∗ /B the
corresponding LPS(E, X) = {(A, A, B), (A,B, B)}.

The upwards algebras U and U [k] are defined in the same
way as the downwards algebras, but feature the ↑ primitive
instead of ↓.

Definition 2.8. Let X = (V, Ed, r, λ) be an XML docu-
ment, and k ∈ N. We say two paths (m1, n1) and (m2, n2) ∈
DownPaths(X, k) are D[k]-equivalent, denoted (m1, n1) ≡D[k]

(m2, n2), if for any expression E in D[k] it is the case that
(m1, n1) ∈ E(X) if and only if (m2, n2) ∈ E(X).

The D[k]-partition of X is then defined as the partition on
DownPaths(X, k) induced by this equivalence relation. It
is straightforward to observe that the partitions associated
with the U [k] algebra are the partitions of the inverted node
pairs associated with the D[k] algebra.

2.3 Coupling Label-Path and Algebra Based
Partitions of an XML Document

The following propositions [4] provide the formal work
on which our index structure design and query evaluation
algorithms are based.

Proposition 2.1. Let X be an XML document and k ∈
N. The P [k]-partition of X and the D[k]-partition of X are
the same.

Recall that in both N [k] and P [k]-partitions a label-path
uniquely identifies its corresponding class of nodes (or node
pairs). Therefore, we can evaluate expressions in D[k] via
unions of the corresponding partition classes.

Proposition 2.2. Let X be an XML document and E an
expression in D[k]. Then,

E(X) =
[

lp∈LPS(E,X)

P[k][lp]

Enodes(X) =
[

lp∈LPS(E,X)

N [k][lp]

Propositions 2.1 and 2.2 establish an important princi-
ple in query evaluation: any D[k] (and therefore U [k]) ex-
pression can be evaluated by unions of P [k]-partition blocks
under path semantics and N [k]-partition blocks under node
semantics. This leads to the following design conclusion:
indexes based on the N [k] and P [k]-partitions are suitable
for answering queries in D[k] and U [k].

2.4 Evaluating XPath Expressions with De-
composition

Query expressions in D[k] or U [k] are important compo-
nents of XPath queries. However, the majority of query re-
quests are expressed in twig patterns, with arbitrarily com-
plicated predicates. The D[][k] algebra is defined as the D[k]

algebra, substituting D[k] with D[][k] and extending clause

(c) to include E1[E2] ∈ D[][k].

Definition 2.9. Given a list of expressions E1, . . . , Em

such that each Ei is an expression either in D (D[k]) or U
(U [k]), then the expression E1 ◦ . . . ◦ Em is in the DownUp
(DownUp[k]) algebra.

Proposition 2.3. For each expression E ∈ D[][k] there
exists an equivalent expression FE in DownUp[k].

It follows that each expression in D[] can be translated
into an equivalent DownUp expression, since E1[E2](X) =
E1(X) ◦ E2(X) ◦ (E2(X))−1.

3. TRIE INDEXES
The propositions of Section 2.3 imply that (1) the D[k]

and U [k] algebras are invertible to each other under the path
semantics: a partition block B ∈ D[k] iff B−1 ∈ U [k]; (2)
the D[k]-partition and the P [k]-partition are the same; (3)
each partition block is identified by a unique label-path; (4)
the answer to each D[k] or U [k] expression is the union of
the corresponding partition blocks.

To take full advantage of the N [k] and P [k]-partitions
and their block labeling expressions, we need a data struc-
ture: (1) that is capable of locating all partition blocks us-
ing label-path lookups; and (2) in which the partition blocks
that participate in the union operation that answer a query
are stored close to each other and can be located with a
minimum number of label-path lookups.

A trie, or prefix tree, is an ordered tree data structure
that is used to store an associative array where the keys are
strings. Strings in a sub-tree share a common prefix which
is represented by the incoming path to the root of the sub-
tree, making the trie structure a natural choice to organize
the N [k] and P [k]-partitions. Since all label-paths required
to answer an expression share a common suffix, we use the
reversed label-path of each partition block as the trie key.

Figure 3: Sample N [2] and P[2]-Trie Indexes for the XML source document in Figure 1

3.1 N [k]-Trie Index
In an N [k]-Trie we organize the N [k]-partition blocks in a

trie to facilitate quick lookup of groups of partition blocks.
Definition 3.1. Given an XML document X and an in-

teger k, the N [k]-Trie of X is a trie structure where the
index keys are the inverted label-paths of the N [k]-partition
blocks. The index entry of each label-path p is equal to the
contents of the corresponding N [k][p].

Figure 3 shows a sample N [2]-Trie. Given an XML docu-
ment X, the properties of its N [k]-Trie are:

1. The height of an N [k]-Trie is no larger than k.

2. The number of nodes in an N [k]-Trie is no larger than
|N [k]-partition(X)—.

3. Each leaf node (but only some non-leaf nodes) in an
N [k]-Trie has an associated N [k]-partition block.

4. The N [k − 1]-Trie is a compression of the N [k]-Trie.

3.1.1 Index Lookup
We define two types of lookup in an N [k]-Trie of an XML

document X: direct lookup and sub-tree lookup.
Definition 3.2. Given an N [k]-Trie T and a reversed

label-path p, the direct lookup of p in T is defined as T [p] =
N [k][p]. The sub-tree lookup of p in T is defined as Tst[p] =
S

p′ N [k][p′] where p is the prefix of p′.
A direct lookup will retrieve at most one partition block

from an N [k]-Trie. The lookup may return no results if no
string key matches p in the N [k]-Trie, or if the matching
string key has no partition block associated with it. A sub-
tree lookup will return the union of the partition blocks in
the sub-tree rooted at the node that matches p. As stated
in propositions 2.1 and 2.2, the result is precisely the answer
to p against X, under node semantics.

3.1.2 Query Evaluation
Using the direct and sub-tree lookup operations, an N [k]-

Trie can be used to efficiently answer any U [k] queries under
node semantics with only one index lookup. Given an XML
document X and an N [k]-Trie T of X, the node semantics
answer to a query p ∈ U [k] and q ∈ D[k] are:

p(X) =

T [p] if |p| = k
Tst[p] if |p| < k

q(X) =

T [q−1] if |q| = k

Tst[q−1] if |q| < k

3.1.3 Limitations of theN [k]-Trie
Even though the N [k]-Trie provides an efficient solution

for evaluating queries of length at most k using a single in-
dex lookup (an improvement over the A[k]-index), validation
(accessing the source data) is still required in case the query

has a predicate, a wildcard ‘*’, or ‘//’ in the middle, or if
the length is larger than k. For instance, among the moti-
vating examples, an N [2]-Trie can efficiently answer query
//B. However, for queries //A/A/B/D and //B[D]/C, val-
idation is required even with the help of the N [2]-Trie.

3.2 P [k]-Trie Index
We now introduce the P [k]-Trie, which organizes the par-

tition blocks of a P [k]-partition in a trie structure.
Definition 3.3. Given an XML document X and an in-

teger k, the P [k]-Trie of X is a trie structure where the index
keys are the inverted label-paths of the P [k]-partition blocks.
The index entry of each label-path p is equal to the contents
of the corresponding P [k][p].

Figure 3 shows a sample P [2]-Trie. Notice the N [k] and
P [k]-Trie share the same structure but differ in the content
of their index entries. For a given XML document X, the
properties of its P [k]-Trie are:

1. The height of a P [k]-Trie is no larger than k.

2. The structure of a P [k]-Trie of X is identical to the
structure of an N [k]-Trie of X.

3. The number of nodes in a P [k]-Trie is no larger than
k × |P [k]-partition(X)—.

4. All nodes in a P [k]-Trie have associated partition blocks.

5. The P [k−1]-Trie of X is the sub-structure of the P [k]-
Trie of X, and contains its top k layers.

3.2.1 Index Lookup
In a P [k]-Trie we only need to define a direct lookup op-

eration.
Definition 3.4. Given a P [k]-Trie T and a reversed label-

path p, the direct lookup of p in T (denoted T [p]) is defined
as T [p] = P [k][p].

A direct lookup will retrieve at most one partition block
from a P [k]-Trie. The lookup will return no results if no
string key matches p in the P [k]-Trie.

3.2.2 Query Evaluation
Using the direct lookup operation and query decomposi-

tion, the P [k]-Trie can efficiently answer a larger number of
query types. Given an XML document X and a P [k]-Trie
T of X, the path semantics answer to a query q ∈ U [k] is
q(X) = T [q] for |q| ≤ k. If we have a query q ∈ D[k] then
the answer will be q(X) = T [q−1] for |q| ≤ k.

Complicated XPath queries, such as queries with length
larger than k, with ‘*’ or ‘//’ in the middle, and queries
with predicates can all be decomposed into sub-queries in
D[k] (as shown in Section 2.4). For each such type of query,
the result of evaluating q in X under path semantics is:

• If q = //t1/t2/ . . . /tn where n > k, then q(X) =
t1(X) ⊲⊳ t2(X) ⊲⊳ . . . ⊲⊳ tn(X), where |ti| ≤ k and
the tail token of ti matches the head token of ti+1.

• If q = //q1//q2, then q(X) = q1(X) ⊲⊳sj q2(X).4

• If q = //t1/ . . . /tm[tb]/tm+1/ . . . /tn, then q(X) = q1(X)
⊲⊳ π1(q2(X)) ⊲⊳ q3(X), where q1 = //t1/ . . . /tm, q2 =
//tm/tb, and q3 = //tm/tm+1/ . . . /tn.

Other operations such as projection or join (including
structural join) may be required to compute the final an-
swer to the query. However, in all these cases access to
the source data can be omitted and no validation is neces-
sary. This enables us to claim that using a P [k]-Trie we

can efficiently evaluate any XPath query in D[][k] with an
index-only plan.

When compared to the N [k]-Trie, the P [k]-Trie (with the
same parameter k) clearly demands more storage space, as
shown in Figure 3. However, the fact that a P [k]-Trie can
support the evaluation of XPath queries with index-only
plans justifies such overhead. More importantly, whether
a query can be evaluated using an index-only plan using a
P [k]-Trie, is not determined by the value of k as long as
k > 0. If k = 0 then the information in the index is not
enough to join different partition blocks based on their an-
cestor information.

The structural properties of the N [k] and P [k]-Trie index
make it a simple process to adjust the k value of these in-
dexes, with simple refinement and compression algorithms
that will easily convert a k−1 Trie to a k Trie or vice-versa.
If a change is made to the source XML document, the Trie
indexes face the same challenges as any label-path based
index and previously proposed solutions [13, 18] apply.

4. IMPLEMENTATION AND EXPERIMEN-
TAL EVALUATION

4.1 Prototype Implementation
For our implementation, we are using Timber [11], a na-

tive XML database system developed at the University of
Michigan. As previously mentioned in Section 1.1, the A[k]-
index and its variants have been widely studied [3, 9, 12,
17]. Additionally, if we consider the fact that the A[k] and
N [k]-partitions are the same, but their index structures are
different, it is of particular importance to compare the per-
formance of the Trie indexes against that of the A[k]-index.
Therefore, we have extended Timber to include the imple-
mentation of the A[k]-index (as described in [14]) and the
N [k] and P [k]-Tries for fair comparison. We take advantage
of Timber’s Index Manager, which uses the GiST system [10]
to store indexes.

4.2 Experimental Setup
For our experiments, we used the DBLP data set [16],

which features 25 unique element tags, with a maximum
depth of 6, and an average depth of 2.9. The same trends
were observed in DBLP data sets of different scale. Due
to space limitations, we report only the results obtained
on DBLP100M (130MB raw data, 3.3M nodes). All ex-
periments were conducted on a computer running Microsoft
Windows XP, with an Intel Pentium 4 3.2GHz CPU, 2GB
of available RAM, and Timber’s default settings. Each test

4Where ⊲⊳sj represents structural join.

(both in construction and query evaluation) was executed
five times. The results (except in the case of index size)
present an average of the values obtained.

4.3 Trie Index Construction
Construction of the indexes requires two steps: (1) gen-

erating the A[k], N [k] and P [k]-partitions and (2) inserting
the resulting partition blocks into the index structures. In
the case of the N [k] and P [k]-Trie indexes, the partition
blocks are inserted into a trie structure. For the A[k]-index
a directed graph must be constructed, which is more compli-
cated than the trie structure. The partition generation algo-
rithm described in [14] iteratively constructs the partition
classes, analyzing every node and computing each node’s
successors in each iteration. Our algorithm uses a depth-
first approach that traverses each node only once, using a
stack to keep track of the current node’s ancestors up to the
root, presenting a significant performance improvement. We
have used our partition generation algorithm for construct-
ing the A[k]-index as well as the Trie indexes.

We constructed the Trie indexes as well as the A[k]-index
with k = 0 . . . 5. The index sizes, in terms of the number of
index items, are shown in Figure 4. Figure 5 shows index
construction times.

A(k)
N(k)
P(k)

 0

 1,000,000

 2,000,000

 3,000,000

 4,000,000

 5,000,000

 6,000,000

 7,000,000

 8,000,000

 9,000,000

 10,000,000

543210

In
de

x
En

tri
es

kFigure 4: Index construction - Size

A(k)
N(k)
P(k)

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

543210

Se
co

nd
s

kFigure 5: Index construction - Time

From the results, we can confirm that it is more expensive
to store and construct a P [k]-Trie index than an N [k]-Trie
or A[k]-index. As expected, the size of a P [k]-Trie increases
linearly with the k value and is influenced by document
structure, while the size of an A[k]-index and an N [k]-Trie
depends only on the size of the XML document. The fact
that the DBLP data is shallow, with an average depth of
2.9, contributes to the flattening of the size and construc-
tion time of the P [k]-Trie index beyond k = 3, and also to
a decrease in construction time for the A[k]-index and the
N [k]-Trie, because of the reduced number of cases where a
node’s label-path needs to be shortened to match the value
of k.

4.4 Efficiency in Query Evaluation
We now turn to query evaluation performance. We ex-

perimented with different types of queries to gauge the per-
formance of the N [k] and P [k]-Trie indexes versus the A[k]-

index, but we were also interested in comparing the perfor-
mance of the N [k] versus the P [k]-Trie index. We evaluated
ten different queries with varying characteristics. All ex-
hibited the same behavior, and we report two illustrative
results: a query with length 4 and a query with a nested
predicate. Figures 6 and 7 show query evaluation times (in
seconds) for the queries when using hot indexes.5

Queries are evaluated using Timber’s physical plan inter-
face. Since cost-based query optimization is not the focus of
this paper, multiple physical plans were executed for each
query and we report the results from the most efficient plans.

A(k)
N(k)
P(k)

543210

Se
co

nd
s

k

120

115

70

8

3.5

2

0.13

Figure 6: Query //dblp/inproceedings/title/i/sub

A(k)
N(k)
P(k)

543210

Se
co

nd
s

k

640

320

160

80

40

20

10

5

2.5

Figure 7: Query //dblp/inproceedings[title[i]/sub]/ee

The performance of the N [k]-Trie and the A[k]-index are
comparable, except in the case where k = 5 in Figure 6,
where the data structure used in the N [k]-Trie results in
more efficient evaluation of queries with length < k. The
P [k]-Trie consistently and significantly outperforms both,
even for those with larger k values. This is due to the fact
that index-only plans are enabled whenever a P [k]-Trie (k >
0) is available, whether the query is longer than k or has a
branch predicate, and validation is never needed.

The results also show that unlike the A[k]-index and the
N [k]-Trie, the k value does not have such a dramatic influ-
ence in the performance of the P [k]-Trie. This supports our
argument that a modest k is sufficient for providing a signif-
icant performance improvement that justifies the overhead
of constructing and maintaining a P [k]-Trie.

We are currently designing further tests for the Trie in-
dexes. We will follow the theoretical investigation of Trie
index performance with tests over different types of data,
such as XMark, and varying types of queries. These will
include queries with ‘//’ in the middle which can be effi-
ciently evaluated in the P [k]-Trie index by decomposing the
query and combining the results of the sub-queries using
structural join algorithms. We are also interested in com-
paring the Trie indexes with other approaches such as the
D(k)-Index [3] and the F&B-index [12].

5A logarithmic scale is used to clearly show smaller perfor-
mance times.

5. CONCLUSIONS
Leveraging the study that couples node and path parti-

tions induced by an XML document and those induced by
XPath algebras, we proposed novel structural indexes for
XML which organize such partitions using a trie structure.
In particular, we propose the P [k]-Trie index which indexes
node pairs that are k-bisimilar. Analytical and experimental
results show that the P [k]-Trie index enables XPath queries
to be evaluated via index-only plans and provides query eval-
uation improvement by orders of magnitude when compared
to the A[k]-index. We continue to evaluate our indexes with
varying data and query sets with different complexity and
structural properties, attempting to provide a generic index
structure that can perform efficient XML query evaluation
for a large range of queries.

6. REFERENCES
[1] S. Al-Khalifa, et al. Structural Joins: A Primitive for

Efficient XML Query Pattern Matching. ICDE, 2002.

[2] N. Bruno, et al. Holistic Twig Joins: Optimal XML
Pattern Matching. SIGMOD, 2002.

[3] Q. Chen, et al. D(K)-Index: An Adaptive Structural
Summary for Graph-Structured Data. SIGMOD, 2003.

[4] G. H. L. Fletcher, et al. A Methodology for Coupling
Fragments of XPath with Structural Indexes for XML
Documents. DBPL, 2007.

[5] R. Goldman, et al. DataGuides: Enabling Query
Formulation and Optimization in Semistructured
Databases. VLDB, 1997.

[6] G. Gottlob, et al. Efficient Algorithms for Processing
XPath Queries. VLDB, 2002.

[7] G. Gou, et al. Efficiently Querying Large XML Data
Repositories: A Survey. IEEE Transactions on
Knowledge and Data Engineering, 19(10), 2007.

[8] M. Gyssens, et al. Structural Characterizations of the
Semantics of XPath as Navigation Tool on a
Document. PODS, 2006.

[9] H. He, et al. Multiresolution Indexing of XML for
Frequent Queries. ICDE, 2004.

[10] J. M. Hellerstein, et al. Generalized search trees for
database systems. VLDB, pages 562–573, 1995.

[11] H. Jagadish, et al. TIMBER: A Native XML
Database. The International Journal on Very Large
Data Bases, 11:274–291, 2004.

[12] R. Kaushik, et al. Covering Indexes for Branching
Path Queries. SIGMOD, 2002.

[13] R. Kaushik, et al. Updates for Structure Indexes.
VLDB, 2002.

[14] R. Kaushik, et al. Exploiting Local Similarity for
Indexing Paths in Graph-Structured Data. ICDE,
2002.

[15] T. Milo, et al. Index Structures for Path Expressions.
ICDT, 1999.

[16] Trier University. DBLP Data Set.
http://dblp.uni-trier.de/xml, 2008.

[17] W. Wang, et al. Efficient Processing of XML Path
Queries Using the Disk-Based F&B Index. VLDB,
2005.

[18] K. Yi, et al. Incremental Maintenance of XML
Structural Indexes. SIGMOD, 2004.

