
A Methodology for Coupling Fragments of

XPath with Structural Indexes for XML

Documents ?

George H.L. Fletcher a, Dirk Van Gucht b, Yuqing Wu b,
Marc Gyssens c, Sof́ıa Brenes b, Jan Paredaens d

aWashington State University, Vancouver
bIndiana University, Bloomington

cHasselt University & Transnational University of Limburg
dUniversity of Antwerp

Abstract

We introduce a new methodology for coupling language-induced partitions and in-
dex -induced partitions on XML documents that is aimed for the benefit of efficient
evaluation of XPath queries. In particular, we identify XPath fragments which are
ideally coupled with the newly introduced P (k)-partition which has its definition
grounded in the well-known A(k) structural index and its associated partition. We
then utilize these couplings to investigate fundamental questions about the use of
structural indexes in XPath query evaluation.

Key words: XML, XPath, Structural Indexes, Query Processing

? This paper is a revised and extended version of the paper “A Methodology for
Coupling Fragments of XPath with Structural Indexes for XML Documents” pre-
sented at DBPL 2007, the 11th International Symposium on Database Programming
Languages, Vienna, Austria, 2007.

Email addresses: fletcher@vancouver.wsu.edu (George H.L. Fletcher),
vgucht@cs.indiana.edu (Dirk Van Gucht), yuqwu@indiana.edu (Yuqing Wu),
marc.gyssens@uhasselt.be (Marc Gyssens), sbrenesb@cs.indiana.edu (Sof́ıa
Brenes), jan.paredaens@ua.ac.be (Jan Paredaens).

Preprint submitted to Elsevier 23 August 2008

1 Introduction

Supporting efficient access to XML data using XPath [4] continues to be
an important research problem [7,8,14]. XPath queries are used to specify
node-labeled trees which match portions of the hierarchical XML data. In
XPath query evaluation, indexes similar to those used in relational database
systems—namely, value indexes on tags and text values—are first used, to-
gether with structural join algorithms [1,3,8,23]. This approach turns out to
be simple and efficient. However, the structural containment relationships na-
tive to XML data are not directly captured by value indexes.

To directly capture the structural information of XML data, a family of struc-
tural indexes has been introduced. DataGuide [6] was the first to be proposed,
followed by the 1-index [15], which is based on the notion of bisimulation [21]
among nodes in an XML document. These indexes can be used to evaluate
some path expressions accurately without accessing the original data graph.
Milo and Suciu [15] also introduced the 2-index and T-index, based on similar-
ity of pairs (vectors) of nodes. Unfortunately, these and other early structural
indexes tend to be too large for practical use because they typically maintain
too fine-grained structural information about the document [11,19].

To remedy this, Kaushik et al. introduced the A(k)-index which uses a notion
of bisimilarity on nodes relativized to paths of length k [13]. This captures
localized structural information of a document, and can support path expres-
sions of length up to k. Focusing just on local similarity, the A(k)-index can
be substantially smaller than the 1-index and others.

Several works have investigated maintenance and tuning of the A(k) indexes.
The D(k)-index [18] and M(k)-index [10] extend the A(k)-index to adapt to
query workload. Yi et al. [22] developed update techniques for the A(k)-index
and 1-index. Finally, the integrated use of structural and value indexes has
been explored [12], and there have also been investigations on covering indexes
[11,19] and index selection [17,20].

The introduction of structural indexes for XML data has lead to significant
improvements in the performance of XPath query evaluation. As was demon-
strated empirically, the performance benefits of these indexes are most dra-
matic when queries “match” the index definitions [13]. To date, however, there
lacks a formal understanding of this notion of queries matching indexes. This
leads to some fundamental questions about using structural indexes in query
evaluation:

(1) For which fragments of XPath are particular structural indexes ideally
suited?

(2) For these fragments, how are its expressions efficiently evaluated with the

2

index?
(3) Can the answers to these questions be bootstrapped to provide general

techniques for evaluation of arbitrary XPath expressions?

In this paper, we present a methodology for investigating such questions and
apply it to the important special case of the A(k)-indexes. For question (1),
we begin by noting that the A(k)-index of a document induces a partitioning
on its nodes. Recently, an approach has been proposed for considering par-
titioning XML documents based on notions of query indistinguishability of
nodes and paths, relative to particular fragments of XPath [9]. If we apply
this approach to show that there exists a fragment of XPath which induces
a partition identical to the A(k)-partition, then we can speak of an “ideal”
match between the index and this fragment. Given this ideal coupling, we
can then turn to a principled investigation of questions (2) and (3). A main
contribution of this paper is the identification of such a fragment of XPath.

Before going into the technical details of the various steps we take in our
methodology, we illustrate the general approach with a simple example com-
ing from relational databases. Note that the results in this example are well-
known, and as such do not add to the results of this paper.

1.1 A motivating example

Consider the B+-tree index on a column A of a relation R [5]. Clearly, this
index induces a partition on the tuples of R: tuples t1 and t2 in R will be
in the same partition block 1 if and only if t1(A) = t2(A). We will call this
partition the B+-tree-partition on column A of R, and denote it as Btree(A,R).
(For emphasis, observe that a B+-tree index on A of R is different than the
Btree(A,R)-partition. The first is a tree data structure, whereas the second is
a partition on R.)

Next, consider the relational algebra, and in particular its sub-algebra con-
sisting of the range queries. In this example, we focus on such queries as they
are specified on attribute A of R. We will denote this class of queries by
RangeQ(A,R). Its queries are of the form

σ((a1≤A≤a2) or ··· or (a2n−1≤A≤a2n))(R). 2

The RangeQ(A, R) algebra defines a partition on R, called the RangeQ(A,R)-
partition of R, and is defined as follows: tuples t1 and t2 in R are placed in the

1 “Block” stands for an element of a partition, not to be confused with a block on
a disk.
2 For simplicity, we will assume that all the ai values occur in the A-column of R.

3

same block of the RangeQ(A,R)-partition if for any query Q in RangeQ(A,R),
t1 ∈ Q(R) if and only if t2 ∈ Q(R). In other words, t1 and t2 can not be distin-
guished by any query in RangeQ(A,R), i.e., either t1 and t2 are both in Q(R),
or they are both not in Q(R). An important property of the RangeQ(A,R)-
partition is that for each query Q ∈ RangeQ(A,R), there exists a subset of
blocks in the partition such that Q(R) is the union of these blocks.

A natural question that arises now is to ask if the Btree-partition and the
RangeQ-partition are the same. It should come as no surprise that this is
indeed the case. This is captured in the following fact.

Proposition 1 [Btree-RangeQ Coupling Theorem]

Let R be a relation and let A be one of its attributes. The Btree(A,R)-partition
and the RangeQ(A,R)-partition are the same.

PROOF. We give a proof of this statement, not because it is difficult, but
because its structure reveals the strategy that we will follow to prove an anal-
ogous theorem for the XML case (Theorem 18).

(1) Let tuples t1 and t2 be in the same block of the Btree(A,R)-partition.
Then, by definition, t1(A) = t2(A). Consider now an arbitrary range
query Q. Then clearly, if t1(A) (and therefore also t2(A)) is in the range
of Q then t1 and t2 are both in Q(R), but if t1(A) is not in the range of
Q, then they are both not in Q(R). Consequently, t1 and t2 are in the
same block of the RangeQ(A,R)-partition.

(2) Let tuples t1 and t2 be in different blocks of the Btree(A,R)-partition.
Then, by definition, t1(A) 6= t2(A). Let a = t1(A). Then the range query
labela := σA=a(R) has t1 in its result, but not t2. Thus t1 and t2 are in
different blocks of the RangeQ(A,R)-partition, and the proof is done.

An immediate consequence of Proposition 1 is that each range query evaluated
on R is equal to the union of a family of blocks of the Btree(A,R)-partition.

Proposition 2 [Btree-RangeQ Block-Union Theorem] Let R be a relation,
let A be one of its attributes, and let Q ∈ RangeQ(A, R). Then there exists a
class BQ of partition blocks of the Btree(A, R)-partition such that

Q(R) =
⋃

B∈BQ

B.

Note that the Btree-RangeQ Block-Union Theorem can provide guidance and
insight in the processing of queries in richer relational fragments.

4

In the second part of the proof of Proposition 1, observe that the range
query labela has the property that it uniquely identifies the block of the
RangeQ(A,R)-partition consisting of the tuples of R that are indistinguish-
able from t1 by any query in RangeQ(A,R). We will call labela a labeling
query and its defining a-value a label. Now as a consequence of Proposition 2
we have that evaluating a range query Q ∈ RangeQ(A,R) can be done by
forming a union of such labeling expressions applied to R.

Proposition 3 [Btree-RangeQ Label-Union Theorem]

Let R be a relation and A one of its attributes. Then for each query Q ∈
RangeQ(A,R), there is a set of labeling queries LQ ⊆ RangeQ(A, R) such that

Q(R) =
⋃

label∈LQ

label(R).

Obviously, in practice we do not want to evaluate the labeling queries label ∈
LQ directly on R, but rather we would want a data structure that stores each
result label(R). If such a data structure supports efficient look-up of the
tuples in the partition block associated with each labeling expression label,
then evaluation of Q can be done by simply streaming out these tuples. Of
course, such a data structure is the B+-tree index. So, in a formal sense we
have shown that range queries match ideally with B+-tree indexes, which of
course is a well-known fact.

1.2 Paper overview

We proceed as in this motivating example, for structural indexes and the
XPath query language. Specifically, we have the following:

• We introduce the family of P (k)-partitions, which are derivatives of the
family of A(k)-partitions. It turns out that this new class of partitions is
fundamental for establishing the results which follow.

• We then introduce a family of upward XPath algebras, U (k), and show
that the P (k)-partition and the partition induced by the U (k) algebra are
the same. As a consequence of this, we have that the evaluation of a U (k)
query is equal to the union of some blocks of the P (k)-partition.

• Based on this result, we then develop guidelines for the use of a P (k)-
partition in the evaluation of general XPath queries.

• Following this, we show that for each block in the P (k)-partition a labeling
expression in U (k) can be constructed which uniquely identifies the block.
Thus, we conclude that each query in U (k) can be rewritten as the union
of some U (k) block labeling expressions.

5

These results indicate research directions into new data structures to support
efficient evaluation of general XPath queries.

2 Coupling indexes and XPath fragments

In this section, we set out to apply the methodology described in the moti-
vating relational example to the XML case.

2.1 The XML data model

We begin by introducing the document data model that will be used in this
paper. Our data model is a simplified version of the XML data model wherein
we view a document as a labeled tree.

Definition 4 A document D is a 4-tuple (V,Ed, r, λ), with V the finite set of
nodes, Ed ⊆ V ×V a tree of parent-child edges, r ∈ V the root, and λ : V → L
a node-labeling function into a countably infinite set of labels L.

Given a document, it is useful to introduce the concept of its paths. We define
the set of paths of a document D, denoted Paths(D), as the set V ×V . So, for
us a path is not a sequence of nodes, but rather a pair. This makes sense how-
ever, since a pair of nodes (n,m) ∈ Paths(D) identifies the unique (shortest)
path from node n to node m in D. The set of downward-paths, DownPaths(D),
consists of the paths (n,m) where n is an ancestor of m. Similarly, the set
of upwards-paths, UpPaths(D), consists of the paths (n,m) where n is a de-
scendant of m. Furthermore, for k ∈ N, DownPaths(D, k) (UpPaths(D, k)) are
those paths in DownPaths(D) (in UpPaths(D), respectively) of length at most
k. For example, in document D of Figure 1, the path (n1, n1) is a member
of both DownPaths(D, 0) and UpPaths(D, 0), the paths (n1, n1), (n1, n4), and
(n1, n9) are in DownPaths(D, 2), and their corresponding inverse paths (n1, n1),
(n4, n1), and (n9, n1) are in UpPaths(D, 2). The paths (n9, n12) and (n1, n19)
are in neither DownPaths(D, 2) nor UpPaths(D, 2).

2.2 The A(k)-partition of a document

Given a labeled semi-structured document 3 and a natural number k, Kaushik
et al. [13] introduced the A(k)-index for this document.

3 A semi-structured document does not have to be a tree. In particular, it is possible
that a node has multiple parents.

6

"Marketing"

n2
Department

Name

Name

Project Project

Name

Name

Lead

Lead

"D100"

"D100a"

Project

"Smith"

"D200"

n3

n1

n4 n5

n10 n11 n12

n20n19

"Sato"

Name

ProjectLead

Lead LeadName

Project

"A100"

n6

n16 n17 n18

n24n23n22n21

"Chen"

Department

n7Name

Name

"Ivanova"

Web

n0
Projects

Project n8

n9
Lead

"Dubois"

n13 n14
Web

n15

"A100b" "Adamo""A100a"

"http://""Design"

"http://"

Fig. 1. An XML document. For reference, non-leaf nodes are given unique IDs.

The index is built on the partition induced by a certain bisimilarity equivalence
relation on the nodes in the document. When specialized to a document, as
defined here, the definition of this bisimilarity equivalence is as follows.

Definition 5 Let D = (V,Ed, r, λ) be a document, n1, n2 ∈ V , and let k ∈ N.
We say that n1 and n2 are A(k)-equivalent in D, denoted n1 ≡A(k) n2, if

(1) λ(n1) = λ(n2); and
(2) if k ≥ 1 then

(a) n1 has a parent in D if and only if n2 has a parent in D; and
(b) if n1 has parent p1 and n2 has parent p2, then p1 ≡A(k−1) p2.

We call the partition induced by ≡A(k) on V the A(k)-partition of D.

A more intuitive reading of this definition is that nodes n1 and n2 belong to
the same block of the A(k)-partition if the label sequences associated with
their incoming paths in D of length at most k are the same. Also note that
the A(k + 1)-partition of a document is a refinement of the A(k)-partition.

Example 6 Figure 2 illustrates (ignoring for now the edges between the blocks),
for k = 0, 1, and 2, the A(k)-partition of the “Design” Department sub-tree
rooted at node n1 in the document of Figure 1.

Following Kaushik et al. [13], the A(k)-index of a document D is a graph
wherein each node is a block of the A(k)-partition of D, and an edge exists from
a block B1 to a block B2 if there exists a parent-child edge in D from a node in
B1 to a node in B2. So, the A(k)-index can be thought of as a representation
of the A(k)-partition and how its blocks can be related in accordance with the
document D. The A(k)-indexes for k = 0, 1, 2 are visualized in Figure 2 on the
Design Department sub-tree of the document of Figure 1. Note that, if k is
equal to the height of the document, then the A(k)-index corresponds to the
1-index proposed by Milo and Suciu [15] and the strong DataGuide proposed
by Goldman and Widom [6].

7

n11, n13, n20n4, n5, n9

n1
Department

n3, n10, n12, n19
Name Project Lead

n11, n13, n20

Department
n1

Name
n3

Project
n4, n5

Name
n10, n12, n19

Project
n9

Lead

n20

Department
n1

Name
n3

Project
n4, n5

Name
n10, n12

Project
n9

Lead
n11, n13

Name
n19

Lead

A(0) A(1) A(2)

Fig. 2. A(k)-indexes (k = 0, 1, 2) for the “Design” Department sub-tree rooted at
node n1 in the document of Figure 1.

2.3 The P (k)-partition of a document

The A(k)-partitions of a document D are partitions on its nodes. We will need
another family of partitions, the P (k)-partitions, which, rather than being
defined on nodes, are defined on the sets UpPaths(D, k), i.e., the sets of upward-
paths of D of length at most k. As we will see, the P (k)-partitions are more
fundamental than the A(k)-partitions for developing our results.

Definition 7 Let D be a document, let k ∈ N, and let (n1,m1) and (n2,m2)
be two paths in UpPaths(D, k). We say that (n1,m1) and (n2,m2) are P (k)-
equivalent, denoted (n1,m1) ≡P (k) (n2,m2), if

(1) n1 ≡A(k) n2; and
(2) length(n1,m1) = length(n2,m2).

4

We call the partition induced by ≡P (k) on UpPaths(D, k) the P (k)-partition of
D.

Example 8 Consider the sub-tree D′ in the document of Figure 1 rooted at
n4. For k = 0, 1, and 2, we have that

(1) the P (0)-partition on D′ is the set

{[(n19, n19), (n10, n10)], [(n20, n20), (n11, n11)], [(n9, n9), (n4, n4)]}.

(2) the P (1)-partition on D′ is the set

{[(n19, n19), (n10, n10)], [(n20, n20), (n11, n11)], [(n9, n9)], [(n4, n4)],

[(n19, n9), (n10, n4)], [(n20, n9), (n11, n4)], [(n9, n4)]}.

Notice that the block [(n9, n9), (n4, n4)] of the P (0)-partition is split into
two blocks of the P (1)-partition, namely [(n9, n9)] and [(n4, n4)]. This is
because n9 ≡A0 n4, but n9 6≡A1 n4.

4 As should be clear, length(n,m) denotes the length of the path in D from node
n to node m.

8

Table 1
The XPath-algebra path-semantics

∅(D) = ∅
ε(D) = {(n, n) | n ∈ V }
ˆ̀(D) = {(n, n) | n ∈ V & λ(n) = `} (` ∈ L)

↓(D) = Ed

↑(D) = Ed−1

E1 ∪ E2(D) = E1(D) ∪ E2(D)

E1 ∩ E2(D) = E1(D) ∩ E2(D)

E1 −E2(D) = E1(D)− E2(D)

E1 ; E2(D) = {(n, m) | ∃p : (n, p) ∈ E1(D) & (p,m) ∈ E2(D)}
E1[E2](D) = {(n, m) ∈ E1(D) | ∃p : (m, p) ∈ E2(D)}

(3) the P (2)-partition on D′ is the set

{[(n19, n19)], [(n10, n10)], [(n20, n20)], [(n11, n11)], [(n9, n9)], [(n4, n4)],

[(n19, n9)], [(n10, n4)], [(n20, n9)], [(n11, n4)], [(n9, n4)],

[(n19, n4)], [(n20, n4)]}.

Each P (2)-partition block is a singleton.

We observe that when k is equal to the height of a document D, then the P (k)-
partition corresponds to the partitions induced by the 2-index on D proposed
by Milo and Suciu [15].

2.4 The XPath-algebra

We present an algebraization [9] of the logical navigational core of XPath [7]
which we adopt in this paper and define the paths and nodes-semantics of
expressions in this algebra.

Definition 9 The XPath-algebra consists of the primitives ∅, ε, ˆ̀ (` ∈ L),
↓, and ↑, together with the operations on expressions E1 ; E2, E1[E2], E1 ∪
E2, E1∩E2, and E1−E2. Given a document D = (V,Ed, r, λ), the semantics of
an XPath-algebra expression E on D, denoted E(D), is a subset of Paths(D).
The semantics for each primitive and each operation is given in Table 1.

The XPath-algebra semantics reflects a “global” perspective of expressions
being evaluated on an entire document. There is also a “local” semantic per-
spective, in which expressions are viewed as working at a particular node, as

9

follows.

Definition 10 Let E be an XPath-algebra expression and let D = (V,Ed, r, λ)
be a document. For n ∈ V , the local semantics of E on D at n, denoted
E(D)(n), is the set {m ∈ V | (n,m)) ∈ E(D)}.

Example 11 Consider /Projects/Department/Project[./Project], which
is an XPath query that retrieves all the projects of departments that have a sub-
project. When applied to the document D of Figure 1, this query returns the set
of nodes {n4, n6}. An XPath-algebra expression corresponding to this query can
be formulated as 5 Projects;↓;Department;↓;Project[↓; Project]. According
to the semantics of the XPath-algebra, the global semantics of this expression
on D is the set of paths {(n0, n4), (n0, n6)} whereas its local semantics at the
root node n0 is the set of nodes {n4, n6}, which, as intended, corresponds to
the result set of the original XPath query.

2.5 Linking the P (k)-partition to the XPath-algebra

The A(k)-indexes were introduced to support efficient evaluation of certain
path queries on XML documents. As was demonstrated empirically on a
benchmark of queries, the performance benefits of these indexes were most
dramatic when the queries “matched” the index definitions [13]. However,
in that paper the concept of queries matching indexes was not formalized.
A main theme of this paper is that we can indeed formalize this concept.
More specifically, in the remainder of this section, we identify a class U (k)
of sub-algebras of the XPath-algebra whose queries ideally match up with the
P (k)-partitions (and as such with the A(k) indexes). The central idea behind
this formalization comes from showing that the P (k)-partitions are identical
to the partitions induced on the document by the U (k)-algebras. These lan-
guage induced partitions are defined using equivalence relations that define a
pair of paths equivalent when they can not be distinguished by the queries of
the sub-algebras, i.e., they are either both in the answer of a query, or they are
both not. (Compare with our motivating example in Section 1.1.) Intuitively,
such pairs are always processed together during query evaluation.

In the balance of this section, we define the U (k)-algebras and show how the
A(k) and P (k)-partitions are identical to partitions induced by these algebras.

5 In practical examples, we shall systematically omit the “hat” of the labeling
operator.

10

2.6 The U (k)-algebras and their associated U (k)-partitions

In the example of Section 1.1, we considered the class of relational queries
RangeQ and introduced the notion of RangeQ-partitions. In this section, we
define the U (k)-algebras, and then, in analogy with this example, define the
associated U (k)-partitions.

Definition 12 The upward-k XPath algebras, U (k), k ∈ N, are recursively
defined, as follows.

(1) U (0) is the set of XPath-algebra expressions in which “↓” and “↑” prim-
itives do not occur.

(2) For k ≥ 1, U (k) is the smallest set of expressions satisfying
(a) if E ∈ U (k − 1), then E ∈ U (k);
(b) ↑ ∈ U (k);
(c) if E1 ∈ U (k1) and E2 ∈ U (k2), and k1+k2 = k, then E1 ;E2 ∈ U (k)

and E1[E2] ∈ U (k); and
(d) if E1 ∈ U (k) and E2 ∈ U (k), then E1∪E2 ∈ U (k), E1∩E2 ∈ U (k),

and E1 − E2 ∈ U (k).

In particular, statement (2), (c), yields that, for E ∈ U (k − 1), E ; ↑, ↑ ; E,
E[↑], and ↑[E] are all in U (k).

Notice that the ↓ primitive cannot be used in U (k)-algebra expressions.

Example 13 The XPath-algebra expression Name ; ↑ ; Project ; ↑ ; Project is
in U (2), but not in U (1). Similarly, ↑ ; Department is in U (1), but not in
U (0). Hence, if we combine both expressions as

Name ; ↑ ; Project ; ↑ ; Project[↑ ; Department],

then this last expression is in U (3), but not in U (2).

The following useful proposition about the U (k)-algebras can be shown by a
straightforward inductive argument.

Proposition 14 Let D be a document, k ∈ N, and E ∈ U (k). Then E(D) ⊆
UpPaths(D, k).

We are now ready to define the partitions associated with the U (k)-algebras.
Proposition 14 motivates us to define these partitions on UpPaths(D, k), just
as we did for the P (k)-partitions.

Recall from the relational example in Section 1.1 that we associated the
RangeQ query language with the RangeQ-partition. This partition was defined
such that each of its blocks grouped those tuples in a relation that could not

11

be distinguished by the queries in RangeQ. We define the partitions associated
with the U (k)-algebras analogously, following Gyssens et al. [9].

Definition 15 Let D = (V,Ed, r, λ) be a document and k ∈ N. We say two
paths (n1,m1) and (n2,m2) in UpPaths(D, k) are U (k)-equivalent, denoted
(n1,m1) ≡U (k) (n2,m2), if, for any expression E in U (k), it is the case that
(n1,m1) ∈ E(D) if and only if (n2,m2) ∈ E(D). We call the partition induced
by ≡U (k) on UpPaths(D, k) the U (k)-partition of D.

We next establish that the P (k)- and the U (k)-partitions of D actually coin-
cide.

2.7 The coupling of P (k) and U (k)

We proceed in two steps. First, we show in Lemma 17 that the P (k)-partition
is at least as fine as the U (k)-partition. By bootstrapping Lemma 17, we will
then show in Theorem 18 that the two partitions coincide.

To show Lemma 17, we first need a technical lemma.

Lemma 16 Let D = (V,Ed, r, λ) be a document, k ∈ N, and n1, m1, n2 ∈ V
such that m1 is an ancestor of n1 and length(n1,m1) ≤ k. If n1 ≡A(k) n2, then
there exists m2 ∈ V such that m2 is an ancestor of n2 and (n1,m1) ≡P (k)

(n2,m2). Furthermore, m1 ≡A(k−length(n1,m1)) m2.

PROOF. By induction on k. For the base case, k = 0, clearly m1 = n1 and
λ(n1) = λ(n2). The statement holds for m2 = n2. For k ≥ 1, we can assume
that the statement holds for k − 1. If n1 ≡A(k) n2, then either (1) both n1

and n2 have no parents, or (2) they both have parents p1 and p2, respectively,
such that p1 ≡A(k−1) p2, by definition of A(k)-equivalence. In case (1), clearly
m1 = n1 and the statement holds for m2 = n2. In case (2), length(p1,m1) ≤
k − 1, and, by the induction hypothesis, there exists an ancestor m2 of p2

such that (p1,m1) ≡P (k−1) (p2,m2) and m1 ≡A(k−1−length(p1,m1)) m2. It follows
immediately that (n1,m1) ≡P (length(n1,m1)) (n2,m2) and m1 ≡A(k−length(n1,m1))

m2.

We are now ready to show that the P (k)-partition is at least as fine as the
U (k)-partition.

Lemma 17 Let D = (V,Ed, r, λ) be a document, k ∈ N, and let n1,m1,
n2,m2 ∈ V be such that m1 is an ancestor of n1, m2 is an ancestor of n2, and
(n1,m1) ≡P (k) (n2,m2). Then (n1,m1) ≡U (k) (n2,m2).

12

PROOF. Let E ∈ U (k) and let D be a document. By symmetry, it suffices
to prove that if (n1,m1) ∈ E(D), then also (n2,m2) ∈ E(D).

First, observe that it follows from E ∈ U (k) and (n1,m1) ∈ E(D) that
length(n1,m1) ≤ k, by Proposition 14.

The proof is a nested induction. The outer induction is on the value of k.
The base case, k = 0, follows straightforwardly from the definition of P (0)-
equivalence and a simple structural induction on expressions in U (0). Hence,
we may assume that k ≥ 1, and that the statement holds for 0, . . . , k − 1.

The inner induction is a structural induction on expressions in U (k). By
Definition 12, such expressions are built from expressions in U (k − 1) and
“↑.” We first consider these base cases of the structural induction.

• E ∈ U (k − 1). The statement holds by the outer induction hypothesis.
• E = ↑. If (n1,m1) ∈ ↑(D), then m1 is the parent of n1. Since (n1,m1) ≡P (k)

(n2,m2), it follows in particular that m2 is the parent of n2. We conclude
that (n2,m2) ∈ ↑(D).

We have now established the basis of the inner, structural induction. Hence, we
may additionally assume that E ∈ U (k) is neither an expression in U (k− 1)
nor “↑.” The following cases remain to be considered.

• E = E1 ∪ E2, for E1 and E2 ∈ U (k). Suppose (n1,m1) ∈ E(D). Then
(n1,m1) ∈ E1(D) or (n1,m1) ∈ E2(D). Without loss of generality, assume
(n1,m1) ∈ E1(D). Then by structural induction, (n2,m2) ∈ E1(D), and we
conclude (n2,m2) ∈ E(D).

• E = E1∩E2 or E = E1−E2, for E1 and E2 ∈ U (k). Similar to the previous
case.

• E = E1 ;E2, for E1 ∈ U (k1) and E2 ∈ U (k2), such that k1+k2 = k. Suppose
(n1,m1) ∈ E(D). Then there is a node p1 ∈ V such that (n1, p1) ∈ E1(D)
and (p1, m1) ∈ E2(D). By Proposition 14, length(n1, p1) ≤ k1 ≤ k. By
Lemma 16, there is a node p2 ∈ V such that (n1, p1) ≡P (k) (n2, p2), and
p1 ≡A(k−length(n1,p1)) p2. Since k1 ≤ k, it follows that also (n1, p1) ≡P (k1)

(n2, p2). It follows either from the outer induction hypothesis (if k1 < k)
or from structural induction (if k1 = k) that (n2, p2) ∈ E1(D). Since k =
k1 +k2 and length(n1, p1) ≤ k1, it follows that k2 ≤ k− length(n1, p1). Hence
p1 ≡A(k2) p2, whence (p1,m1) ≡P (k2) (p2,m2). It follows either from the outer
induction hypothesis (if k2 < k) or from structural induction (if k2 = k)
that (p2,m2) ∈ E2(D). Hence, (n2,m2) ∈ E(D).

• E = E1[E2], for E1 ∈ U (k1) and E2 ∈ U (k2), such that k1 + k2 = k. Sup-
pose (n1,m1) ∈ E(D). Then there is a node p1 ∈ V such that (n1,m1) ∈
E1(D) and (m1, p1) ∈ E2(D). By Proposition 14, length(n1,m1) ≤ k1 and
length(p1,m1) ≤ k2. Since k1 ≤ k, it follows from (n1,m1) ≡P (k) (n2,m2)
that (n1,m1) ≡P (k1) (n2,m2). From (n1,m1) ∈ E1(D), it now follows either

13

from the outer induction hypothesis (if k1 < k) or from structural induction
(if k1 = k) that (n2,m2) ∈ E1(D). From a straightforward inductive argu-
ment, it follows from (n1,m1) ≡P (k) (n2,m2) that m1 ≡A(k−length(n1,m1)) m2.
As in the previous case, we derive that m1 ≡A(k2) m2. By Lemma 16, there
is a node p2 ∈ V such that (m1, p1) ≡P (k2) (m2, p2). It follows either from
the outer induction hypothesis (if k2 < k) or from structural induction (if
k2 = k) that (m2, p2) ∈ E2(D). Hence, (n2,m2) ∈ E(D).

We now establish the following coupling theorem for the P (k) and U (k) par-
titions, in analogy to Proposition 1.

Theorem 18 [Coupling Theorem]

Let D = (V,Ed, r, λ) be a document and k ∈ N. The P (k)-partition of D and
the U (k)-partition of D coincide.

PROOF. Let n1,m1, n2, m2 ∈ V such that m1 is an ancestor of n1 and
m2 is an ancestor of n2. Let B be the block of the P (k)-partition containing
both (n1,m1) and (n2,m2). By Lemma 17, (n1,m1) ≡P (k) (n2,m2) implies
(n1,m1) ≡U (k) (n2, m2). It remains to show that (n1,m1) 6≡P (k) (n2,m2) im-
plies (n1,m1) 6≡U (k) (n2,m2). Thereto, it suffices to exhibit a labeling query
labelB ∈ U (k) that satisfies labelB(D) = B, since (n1,m1) ∈ labelB(D)
and (n2,m2) /∈ labelB(D) does indeed imply that (n1,m1) 6≡U (k) (n2,m2).
The expression labelB, the construction of which is rather involved, is also
of independent interest. Therefore, we defer the construction of this labeling
expression to Section 4, which is entirely devoted to this issue.

As an immediate corollary, each U (k) query evaluated on a document D is
equal to the union of a family of blocks of the P (k)-partition of D.

Corollary 19 [Block-Union Theorem]

Let D be a document, k ∈ N, and E ∈ U (k). Then there exists a class BE of
partition blocks of the P (k)-partition of D such that

E(D) =
⋃

B∈BE

B.

In the remainder of this paper, we will focus on the consequences of the Cou-
pling Theorem for query processing. In particular, we will see that in analogy
with Proposition 2, the Block-Union Theorem provides insight into the pro-
cessing of general XPath-algebra queries. We will return to discuss the relative
merits of index structures built on the A(k) and P (k) partitions in Section 5.

14

2.8 The coupling of A(k) and U (k)

To conclude Section 2, we also explore the relationship between the A(k)-
partitions and a notion of indistinguishability under the “local” semantics of
U (k) expressions evaluated at particular nodes in a document (Definition 10),
following the methodology of Gyssens et al. [9]. We contrast the results ob-
tained below with the results of Section 2.7, and argue that, from the view-
point of query processing, it is really the P (k)- and not the A(k)-partitions
that matter.

We first consider a notion of U (k)-indistinguishability at the node level that
can be compared with A(k)-equivalence.

Definition 20 Let D = (V,Ed, r, λ) be a document and k ∈ N. Two nodes
n1, n2 ∈ V are U (k)-equivalent, denoted n1 ≡U (k) n2, if, for every expression
E in U (k), it is the case that E(D)(n1) = ∅ if and only if E(D)(n2) = ∅.

We now show the following:

Theorem 21 Let D = (V,Ed, r, λ) be a document, n1, n2 ∈ V , and k ∈ N.
Then n1 ≡U (k) n2 if and only if n1 ≡A(k) n2.

PROOF.

(If) Suppose n1 ≡A(k) n2 and let E ∈ U (k) such that E(D)(n1) 6= ∅. Hence,
there exists m1 ∈ V such that (n1,m1) ∈ E(D). By Lemma 16, there exists
m2 ∈ V such that (n1,m1) ≡P (k) (n2,m2). By Lemma 17, (n2,m2) ∈ E(D),
and therefore E(D)(n2) 6= ∅. It follows symmetrically that if E(D)(n2) 6= ∅,
then E(D)(n1) 6= ∅. We conclude that n1 ≡U (k) n2.

(Only if) For the converse, assume that n1 ≡U (k) n2. We first establish two
facts.

(1) λ(n1) = λ(n2). Otherwise, consider the expression λ̂(n1) ∈ U (k). Then

λ̂(n1)(D)(n1) 6= ∅ and λ̂(n1)(D)(n2) = ∅, a contradiction.
(2) if k ≥ 1, then either n1 and n2 both have parents or are both the root.

Otherwise, assume that, e.g., n1 has a parent and n2 is the root. Consider
the expression ↑. Clearly, ↑(D)(n1) 6= ∅, but ↑(D)(n2) = ∅, a contradic-
tion.

We now finish the proof of the statement of the theorem by induction on k.
For the base case k = 0, this follows immediately from the first fact above.

Assume therefore that k ≥ 1, and that the statement holds for k − 1. If n1

15

and n2 are both the root, then, trivially, the statement holds for k as well.
Otherwise, by the second fact above, n1 and n2 have both parents, say p1

and p2, respectively. Suppose p1 and p2 are not U (k − 1)-equivalent. Then,
there exists an expression E in U (k − 1) such that, e.g., E(D)(p1) 6= ∅ and
E(D)(p2) = ∅. Now consider the expression F = ↑ ; E, which is in U (k).
Clearly, F (D)(n1) 6= ∅ and F (D)(n2) = ∅, a contradiction. Thus p1 ≡U (k−1)

p2, and, therefore, by the induction hypothesis, p1 ≡A(k−1) p2. From this result
and the first fact above, the theorem immediately follows.

One might be tempted to compare Theorem 21 with the Coupling Theorem
(Theorem 18) in Section 2.7, and, therefore, wonder why we do not present
here an analog of the Block-Union Theorem (Corollary 19). Unfortunately,
this comparison does not hold. In Section 2.7, the U (k)-partitions categorize
possible outputs of U (k) expressions under the “global” semantics. Here, the
U (k)-partitions do not categorize possible outputs of U (k) expressions under
the “local” semantics. Rather, they categorize nodes which are part of the
input. Because of this, Theorem 21 cannot be characterized as a coupling
theorem, and as a consequence it can not be bootstrapped to a block-union
theorem.

3 XPath query evaluation with P (k)-partitions

The results of Section 2 deal with answering U (k) queries directly using index
structures based on the P (k)-partition. In this section, we consider the evalu-
ation of more general XPath algebra expressions and show how the results of
Section 2 concerning the coupling between the U (k) and P (k)-partitions can
be utilized in this case. Given an XPath expression and a P (k)-partition, the
main idea is to identify its U (k) sub-expressions or those that are easily con-
verted to U (k) expressions using rewrite rules. For each such expression, we
are then guaranteed by the Block-Union Theorem that its value is the union
of an appropriate set of blocks of the P (k)-partition. If we then have a method
to quickly identify and return partition blocks, we will have an efficient way of
evaluating these expressions. We return to this last issue in the next section.
In this section, we focus on the development of general techniques for using
P (k)-partitions in the evaluation of XPath algebra expressions.

3.1 Evaluating Upward Expressions

If our given XPath expression is in fact a member of U (k) then no decomposi-
tion is necessary. However, if we consider a U (j) expression where j > k, then

16

such a query is not directly supported by the P (k)-partition. Nevertheless, we
can decompose it into sub-expressions that are in U (k). For example, suppose
that the P (2)-partition of the example document D in Figure 1 is available
and we have the expression

E = Lead ; ↑ ; Project ; ↑ ; Project ; ↑[Department ; ↑ ; Projects]

in U (4). Then E contains the sub-expressions

G1 = Lead ; ↑ ; Project ; ↑ ; Project, and

G2 = Project ; ↑[Department ; ↑ ; Projects]

which are both in U (2). As such, they can be directly evaluated using the
P (2)-partition as E1(D) = G1(D) ./ G2(D).

3.2 Evaluating Downward Expressions

In practice, most XPath expressions use navigation just along the parent-child
(↓) axis. Consider the XPath sub-algebra D which is defined as the set of all
XPath expressions in which the ↑ primitive does not appear. For such queries,
we cannot directly utilize the Block-Union Theorem. However, we can convert
downward navigation into upward navigation by using a technique which we
will refer to as “inverting expressions.” We illustrate this technique on down-
ward expressions with and without predicate operations. For this discussion,
we consider downward expressions to be in the D(k)-algebra which is defined
in complete analogy with U (k), except that the ↓ primitive is permitted, but
not the ↑ primitive.

3.2.1 Downward expressions without predicates

Downward expressions without predicates can be “inverted” into correspond-
ing upward expressions without predicates using the rewrite rules shown in
Table 2.

So, given a downward expression E ∈ D(k) without predicates, we can rewrite
E into E−1 which is in U (k) and also has no predicates. Given a document
D, we can then obtain E(D) by first computing E−1(D) and then inverting
the result. Since E−1 is an expression in U (k), we can directly apply the
evaluation techniques for U (k) expressions discussed above.

17

Table 2
Inversion Rewrite Rules for downward expressions without predicates.

E E−1

∅ ∅
ε ε

ˆ̀ ˆ̀

↓ ↑
E1 ∪ E2 E−1

1 ∪ E−1
2

E1 ∩ E2 E−1
1 ∩ E−1

2

E1 − E2 E−1
1 − E−1

2

E1 ; E2 E−1
2 ; E−1

1

3.2.2 Downward expressions with predicates

Now consider the evaluation of downward algebra expressions wherein predi-
cate operations occur. A simple example is the expression E = ↓[↓]. Applied to
a document, E evaluates to the document’s parent-child pairs for children that
have at least one child themselves. As above, to evaluate E on a document D,
we could consider the concept of inverting E into an expression E−1 ∈ U (2)
such that E(D) = (E−1(D))−1. This approach does not work here because the
inversion rules in Table 2 unfortunately do not extend to include the predicate
operation, as can be derived from the following result.

Proposition 22 Let D = (V,Ed, r, λ) be a document with V = {na, nb, nc, nd},
Ed = {(na, nb), (nb, nc), (nc, nd)}, r = na, and λ(na) = λ(nb) = λ(nc) = λ(nd),
as shown in Figure 3. Then, for each expression G ∈ U (2), we have that
(nc, nb) and (nd, nc) are both in G(D) or both not in G(D).

PROOF. The A(0)-partition on V is {[na, nb, nc, nd]}, since all nodes have
the same label. The A(1)-partition on V is {[na], [nb, nc, nd]}, since na has
no parent, and the A(2)-partition on V is {[na], [nb], [nc, nd]}, since nb has no
grandparent. It follows that the subset of the P (2)-partition involving pairs of
nodes of length exactly 1 is {[(nb, na)], [(nc, nb), (nd, nc)]}. By the Block Union
Theorem (Corollary 19), G(D) is a union of blocks of the P (2)-partition of
D. Since (nc, nb) and (nd, nc) are in the same block they are either both in or
both not in G(D).

Notice that a direct proof of Proposition 22, though feasible, requires a lengthy
and tedious case analysis.

18

Fig. 3. The document D in the statement of Proposition 22.

We now return to our expression E = ↓[↓]. For the document D of Propo-
sition 22, E−1(D) = {(nb, na), (nc, nb)}. By Proposition 22, we have that for
each expression G ∈ U (2), G(D) 6= E(D)−1, whence E−1 is not equivalent to
an expression in U (2).

We can however use another technique to deal with such expressions, which
is based on the following result.

Proposition 23 Let k ∈ N. Each boolean-free expression E in the D(k)-
algebra (i.e, without union, intersection, or difference) can be normalized to
an expression of the form

F1 ; G1 ; F2 ; G2 ; . . . ; Fn−1 ; Gn−1 ; Fn ; Gn ,

where

(1) F1, F2, . . . , Fn−1, Fn are boolean-free D(k) expressions in which no predi-
cates occur;

(2) F2, . . . , Fn−1, Fn are not D(0) expressions;
(3) G1, G2, . . . , Gn−1, Gn are boolean-free U (k) expressions in which no pred-

icates occur; and
(4) G1, . . . , Gn−1 are not U (0) expressions.

PROOF.

The proof is a nested induction. The outer induction is on the value of k.
For the base case, k = 0, it suffices to observe that each boolean-free D(0)
expression is equivalent to one of the primitives ∅, ε, or ˆ̀ (` ∈ L), as can be
shown by a simple structural induction. Hence, we may assume that k ≥ 1,
and that the proposition holds for 0, . . . , k − 1.

The inner induction is a structural induction on expressions in D(k), which
are built from expressions in D(k− 1) and “↓.” Clearly, the proposition holds
for these base cases of the structural induction. Hence, we may additionally
assume that E ∈ D(k) is neither an expression in D(k − 1) nor “↓.” The
following cases remain to be considered.

19

• E = E1; E2 with E1 ∈ D(k1), E2 ∈ D(k2), and k1 + k2 = k. By the outer
induction hypothesis or the inner structural induction hypothesis (if k1 or
k2 equals k), we may assume that

E1 = F11 ; G11 ; F12 ; G12 ; . . . ; F1(m−1) ; G1(m−1) ; F1m ; G1m and

E2 = F21 ; G21 ; F22 ; G22 ; . . . ; F2(n−1) ; G2(n−1) ; F2n ; G2n

satisfying the conditions of the proposition for k1 and k2, respectively. Hence,

E = F11 ; G11 ; F12 ; G12 ; . . . ; F1(m−1) ; G1(m−1) ; F1m ; G1m

F21 ; G21 ; F22 ; G22 ; . . . ; F2(n−1) ; G2(n−1) ; F2n ; G2n .

If neither G1m is in U (0) nor F21 is in D(0), then the above normalization
satisfies the proposition. If G1m is not in U (0), but F21 is in D(0), then
G1m ; F21 ; G21 is in U (k). If n 6= 1, this expression is not in U (0). Finally,
if G1m is in U (0), then F1m ; G1m ; F21 is in D(k). If m 6= 1, this expression
is not in U (0).

• E = E1[E2] with E1 ∈ D(k1), E2 ∈ D(k2), and k1 + k2 = k. By the outer
induction hypothesis or the inner structural induction hypothesis (if k1 or
k2 equals k), we may assume that

E1 = F11 ; G11 ; F12 ; G12 ; . . . ; F1(m−1) ; G1(m−1) ; F1m ; G1m and

E2 = F21 ; G21 ; F22 ; G22 ; . . . ; F2(n−1) ; G2(n−1) ; F2n ; G2n ,

satisfying the conditions of the proposition for k1 and k2, respectively. Now,
it is easily seen that E1[E2] is equivalent to E1 ; E2 ; E−1

2 . 6 Notice that E−1
2

can be normalized as

E−1
2 = G−1

2n ; F−1
2n ; G−1

2(n−1) ; F−1
2(n−1) ; . . . ; G−1

22 ; F−1
22 ; G−1

21 ; F−1
21 .

Since all the subexpressions above are predicate-free, the inverted D(k) ex-
pressions F−1

2n , F−1
2(n−1), . . . , F

−1
22 , F−1

21 can be converted to U (k) expressions
according to the rules in Table 2. Similarly, the inverted U (k) expressions
G−1

2n , G−1
2(n−1) . . . , G−1

22 , G−1
21 can be converted to D(k) expressions. Hence, the

normalization for E−1
2 satisfies the proposition. The remainder of this case

now follows immediately from the case for composition.

So, every boolean-free D(k) expression can be written as an alternating com-
position of boolean-free D(k) and U (k) expressions in which no predicates

6 For general XPath-algebra expressions E1 and E2, E1[E2] is equivalent to
E1; (E2; E−1

2 ∩ε). Since E2 is a downward XPath-algebra expression, we can simplify
E2; E−1

2 ∩ ε to E2; E−1
2 .

20

occur. If we apply Proposition 23 to the expression E = ↓[↓], we find that
it is equivalent to the XPath algebra expression ↓ ; ↓ ; ↑. Its sub-expression
F = ↓ ; ↓ is in D(2), and its sub-expression G = ↑ is in U (1). By apply-
ing the inversion technique described in Section 3.2.1 to F , the evaluation of
E(D) can be accomplished by computing the relation (F−1(D))−1 ./ G(D),
and, as indicated earlier in this section, the evaluations of G(D) = ↑(D) and
F−1(D) = ↑ ; ↑(D) can be done by utilizing the Block-Union Theorem for the
P (2)- and P (1)-partitions, respectively.

Given that the selectivity of a longer path is no larger than that of short sub-
paths of the path, evaluating F−1 reduces the search space to the minimum
that can be obtained on such a chain expression. It is reasonable to claim that,
generally speaking, the result of F−1(D) is substantially smaller than that
of G(D), and, hence, the ./ operation can be further optimized as F−1(D)
followed by an upward navigation.

Finally, we must observe that, in the worst case, the size of the normalized
expression in Proposition 23 can be exponential in the size of the original ex-
pression. However, as we shall argue in Section 5, the P (k)-indexes considered
in practice will typically have small values for k, so the above observation is
not a real drawback.

We also want to observe that boolean operations are best dealt with by stan-
dard relational query processing techniques.

In the last example of this section, we will now consider a slightly more com-
plicated expression.

Example 24 E in D(3), applied to the document D of Figure 1. This expres-
sion retrieves information about leaders of projects that have a sub-project:

E = Department ; ↓ ; Project[↓ ; Project] ; ↓ ; Lead.

If we apply Proposition 23 to this expression, we find

E = F2 ; F−1
5 ; F4,

with 7

F2 = Department ; ↓ ; Project ; ↓ ; Project ,

F5 = Project ; ↓ ; Project , and

F4 = Project ; ↓ ; Lead .

7 The strange numbering of the expressions is to be consistent with Figure 4 and
the example to which this figure pertains.

21

Department

ProjectLead

Project

(a) (c)

F
4

F
5

F
3

(b)

F1 F2

Fig. 4. Chain pattern tree for the expression E in Example 24.

Another way of going about the expression E is representing it as an expression
pattern tree, as illustrated in Figure 4, (a). The shaded node can be interpreted
as the “answer” of E applied to the root of the pattern.

Assume that the P (2)-partition is available on D. Then, as shown in Figure 4,
(b), there are two natural chains of length 2 present in the pattern tree of E:
F1 and F2. There are also natural chains of length 1 as shown in Figure 4(c):
F3, F4, and F5. Each of these chains corresponds to a downward algebra ex-
pression:

F1 = Department ; ↓ ; Project ; ↓ ; Lead ,

F2 = Department ; ↓ ; Project ; ↓ ; Project ,

F3 = Department ; ↓ ; Project ,

F4 = Project ; ↓ ; Lead , and

F5 = Project ; ↓ ; Project .

(Notice that we already encountered F2, F4, and F5.) Using F1, F2, and F4,
we can rewrite the expression E as

E = ((F1 ; ↑) ∩ (F2 ; ↑)) ; F4,

and, therefore, E(D) can be computed as 8

{[(F−1
1 (D))−1 ./ ↑(D)] ∩ [(F−1

2 (D))−1 ./ ↑(D)]} ./ (F−1
4 (D))−1.

All sub-expressions in this transformed expression of E are in U (2), and hence
can be evaluated using the Block-Union Theorem for P (2).

Now assume that only the P (1)-partition is available. In this case, the longest
path expressions that can take advantage of the partitions are those of length
at most 1. Such expressions are F3, F4, and F5. Using these sub-expressions,
E can be rewritten as 9

E = {[(F3 ; F4) ; ↑] ∩ [(F3 ; F5) ; ↑]} ; F4.

8 Square brackets and curly brackets have been used to improve readability.
9 Again, square brackets and curly brackets have been used to improve readability.

22

We have just observed how the Block-Union Theorem assists in the evaluation
of XPath expressions. However, if we want to make efficient utilization of these
ideas, we will need techniques for quickly identifying the P (k)-partition blocks
associated with a query. We turn to this issue in the following section.

4 Labeling P (k)-partition blocks

In Section 2, we showed that the U (k)-partition and the P (k)-partition coin-
cide (Theorem 18). To complete the proof of this result, we still need to show
the existence of labeling queries associated with the P (k)-partition. More con-
cretely, we require that, for each partition block B of the P (k)-partition, there
exists a U (k)expression labelB satisfying labelB(D) = B. This requirement
yields a syntactic characterization of the P (k)-partition in terms of U (k)
expressions, which complements the semantic relationship expressed in Corol-
lary 19. This syntactic relationship is critical in identifying the P (k)-partition
blocks used in query evaluation. In particular, we have that evaluation of a
U (k) query on a document D can be done by forming a union of partition
block labeling expressions applied to D, similarly to Proposition 3 for the
range queries.

Theorem 25 [Label-Union Theorem]

Let D be a document and k ∈ N. Then for each query E ∈ U (k), a set of
labeling queries LE ⊆ U (k) can be constructed such that

E(D) =
⋃

label∈LE

label(D).

The Label-Union Theorem is an immediate corollary to Theorem 19, provided
we can show the following:

Let D be a document and k ∈ N. For each block B of the P (k)-partition of
D, an expression labelB ∈ U (k) can be constructed such that labelB(D) =
B.

The remainder of this section is organized as follows. First, we define in two
steps the labeling expressions for partition blocks. Then, in the third and
final subsection, we make precise the relationship of these expressions to the
partition blocks.

23

Fig. 5. The document D of Example 28.

4.1 Step 1: Ancestor path expressions

Given k ∈ N, we first define k-ancestor label expressions.

Definition 26 Let k ∈ N, let D = (V,Ed, r, λ) be a document, and let n ∈ V .
Let the k-ancestor label path of n be the list of labels `0, . . . , `kn of the nodes on
the path from n up towards the root node r, of length kn = min{k, length(n, r)}.
We denote the k-ancestor label path of n as alp(k, n). For i ≤ kn, the ith k-
ancestor label expression of n is the U (k) expression

Lk,n,i =

ˆ̀
0 ; ↑ ; ˆ̀

1 ; . . . ; ↑ ; ˆ̀
i[↑ ; ˆ̀

i+1 ; . . . ; ↑ ; ˆ̀
kn] if i < kn;

ˆ̀
0 ; ↑ ; ˆ̀

1 ; . . . ; ↑ ; ˆ̀
kn if i = kn

The following observation follows directly from the definition of P (k)-equiv-
alence and Definition 26.

Proposition 27 Let k ∈ N, let D = (V,Ed, r, λ) be a document, and let B be
a block of the P (k)-partition on D. Let (n1,m1), (n2,m2) ∈ B. 10 Then

(1) Lk,n1,length(n1,m1) = Lk,n2,length(n2,m2); and
(2) B ⊆ Lk,n1,length(n1,m1)(D) = Lk,n2,length(n2,m2)(D).

So, all members of a P (k) partition block share a k-ancestor label expression.

Example 28 Consider the P (1)-partition of the small document in Figure 5,
wherein each node has label A:

{[(na, na)], [(nb, nb), (nc, nc)], [(nc, nb), (nb, na)]}.

As noted in Proposition 27, we can associate with each block in this partition
the expression L1,n,length(n,m), where (n,m) is an arbitrary element of the block,
as shown in Table 3.

Note, however, that ancestor label expressions do not necessarily characterize
particular P (k) blocks, in the sense that the inclusion in the second statement
of Proposition 27 is not necessarily an equality.

10 Notice that this implies that length(n1,m1) = length(n2,m2).

24

Table 3
The shared 1-ancestor label expressions of the blocks of the P (1)-partition on the
document of Figure 5.

Partition Block Expression

[(na, na)] L1,na,0 = A

[(nb, nb), (nc, nc)] L1,nb,0 = A[↑ ; A]

[(nc, nb), (nb, na)] L1,nb,1 = A ; ↑ ; A

Example 29 Continuing Example 28, we note that expression “A” for block
[(na, na)] evaluates on the document D in Figure 5 as

A(D) = {(na, na), (nb, nb), (nc, nc)}

and hence does not characterize its block. In other words, L1,na,0 is not selec-
tive enough. In particular, all blocks, with 1-ancestor label expressions having
L1,na,0 as a prefix expression will also appear in the evaluation of L1,na,0. For
example, the 1-ancestor labeling expression A[↑ ; A] for block [(nb, nb), (nc, nc)]
has as a prefix the 1-ancestor labeling expression A for block [(na, na)], and,
therefore, both blocks appear in the evaluation of A.

We pursue a remedy for this problem in the next step.

4.2 Step 2: Partition labeling expressions

To tighten up ancestor label expressions, we need two tools. To compare these
expressions, we introduce the following notion of expression prefixes.

Definition 30 Let k ∈ N, let D = (V,Ed, r, λ) be a document, and let n, n′ ∈
V . We denote by alp(k, n) ≺ alp(k, n′) that the k-ancestor label path of node n
is a strict prefix of the k-ancestor label path of node n′.

Example 31 In Example 29, we observed that alp(1, na) ≺ alp(1, nb).

To precisely characterize a block of a P (k)-partition, we shall eliminate the
spurious pairs introduced by the corresponding k-ancestor labeling expression
Lk,n,i by using all k-ancestor labeling expressions of which Lk,n,i is a prefix.

Definition 32 Let k ∈ N, let D = (V,Ed, r, λ) be a document, and let
(n,m) ∈ UpPaths(D, k). Then the k-partition labeling expression for (n,m)

25

is the U (k) expression

labelk,(n,m) = Lk,n,l −
⋃

n′ ∈ V

alp(k, n) ≺ alp(k, n′)

Lk,n′,l ,

where l = length(n,m).

Example 33 We observed in Example 31 that alp(1, na) ≺ alp(1, nb), whence
label1,(na,na) = L1,na,0−L1,nb,0 = A−A[↑ ;A]. When we evaluate this expression
on document D of Figure 5, this gives us precisely the P (1)-partition block to
which the pair (na, na) belongs, i.e., label1,(na,na)(D) = [(na, na)], as desired.

Below, we show that the technique described in Step 2 is adequate in general
as well.

4.3 Relationship to Partition Blocks

We are now ready to show the following.

Proposition 34 Let k ∈ N, let D = (V,Ed, r, λ) be a document, and let
(n,m) ∈ UpPaths(D, k). Let B be the block of the P (k)-partition to which
(n,m) belongs. Then labelk,(n,m)(D) = B.

PROOF. For easy reference, let l = length(n,m) and let ` be the label of n.

We first show that B ⊆ labelk,(n,m)(D). By Proposition 27, we know that
B ⊆ Lk,n,l. Now, let n′ be a node such that alp(k, n) ≺ alp(k, n′). This is only
possible if kn = length(alp(k, n)) = length(n, r) and kn′ = length(alp(k, n′)) >
length(n, r). Hence, (n,m) /∈ Lk,n′,l(D). By Proposition 27, this implies in turn
that no member of B is in Lk,n′,l(D). By Definition 32, B ⊆ labelk,(n,m)(D).

We now show that this inclusion is actually an equality. Thereto, we have
to show, for (n′,m′) ∈ UpPaths(D, k) with (n′,m′) /∈ B, that (n′,m′) /∈
labelk,(n,m)(D). First, we single out a few cases for which our assertion follows
very easily.

• If length(n′,m′) 6= l, then (n′,m′) /∈ Lk,n,l(D), for, by Definition 26, Lk,n,l

returns pairs of equal length. Consequently, (n′,m′) /∈ labelk,(n,m)(D). We
may therefore assume in the remainder of this proof that length(n′, m′) = l.

• If ` is not also the label of n′, then, by Definitions 7 and 5, (n,m) 6≡P (k)

(n′,m′). Also, by Definition 26, (n′,m′) /∈ Lk,n,l. Consequently, (n′,m′) /∈

26

labelk,(n,m)(D). We may therefore assume in the remainder of this proof
that the label of n′ is `.

We now proceed by induction on k.

For the base case, k = 0, we have that, necessarily n = m and n′ = m′. By
Definitions 7 and 5, (n′, n′) can belong to another block of the P (0)-partition
if ` is not the label of n′. But this case has already been dealt with above.

We may thus assume that k ≥ 1 and that our assertion holds for k − 1.

If n is the root, then, obviously, n′ is not the root. Hence, alp(k, n) ≺ alp(k, n′).
Since (n′,m′) ∈ Lk,n′,l(D), by Proposition 27, it follows from Definition 32 that
(n′,m′) /∈ labelk,(n,m)(D).

If n is not the root, but n′ is the root, then length(alp(k, n)) ≥ 1, and, by
Definition 32, (n′, n′) /∈ Lk,n,l. Consequently, (n′,m′) /∈ labelk,(n,m)(D).

We may therefore assume in the remainder of this proof that neither n nor n′

is the root. Thus, let p be the parent of n and let p′ be the parent of n′. We
consider two cases.

(1) l ≥ 1. Then, both (p,m) and (p′,m′) are in UpPaths(D, k − 1). Since
(n,m) 6≡P (k) (n′,m′), and n and n′ have the same label, we know from
Definition 7 that (p,m) 6≡P (k−1) (p′,m′). By the induction hypothesis, we
have that (p′,m′) /∈ labelk−1,(p,m)(D). If (p′,m′) /∈ Lk−1,p,l−1(D), then
(n′,m′) /∈ `;↑;Lk−1,p,l−1(D) = Lk,n,l(D), whence (n′,m′) /∈ labelk,(n,m)(D).
Otherwise, there exists a node p′′ such that alp(k − 1, p) ≺ alp(k −
1, p′′) and (p′,m′) ∈ Lk−1,p′′,l−1. But this is only possible if alp(k −
1, p′′) ≺ alp(k − 1, p′). Hence, alp(k − 1, p) ≺ alp(k − 1, p′). It follows
that alp(k, m) ≺ alp(k, m′). Now, by Proposition 27, (p′,m′) ∈ Lk−1,p′,l−1,
whence (n′,m′) ∈ ` ; ↑ ; Lk−1,p′,l−1 = Lk,n′,l. Consequently, (n′,m′) /∈
labelk,(n,m)(D).

(2) n = n′ and m = m′. If (p, p) ≡P (k−1) (p′, p′), it would follow from
Definitions 7 and 5 that (n, n) ≡P (k) (n′, n′), a contradiction. Hence,
(p, p) 6≡P (k−1) (p′, p′). By the induction hypothesis, we have that (p′, p′) /∈
labelk−1,(p,p)(D). Assume first that (p′, p′) /∈ Lk−1,p,0(D). Then (n′, n′) /∈
`[↑;Lk−1,p,0](D). It is readily seen that the U (k) expression `[↑;Lk−1,p,0](D)
is equivalent to Lk,n,0, whence (n′, n′) /∈ Lk,n,0. Consequently, (n′, n′) /∈
labelk,(n,n)(D). Otherwise, there exists a node p′′ such that alp(k −
1, p) ≺ alp(k − 1, p′′) and (p′, p′) ∈ Lk−1,p′′,0. But this is only possible if
alp(k−1, p′′) ≺ alp(k−1, p′). Hence, alp(k−1, p) ≺ alp(k−1, p′). It follows
that alp(k,m) ≺ alp(k, m′). Now, by Proposition 27, (p′, p′) ∈ Lk−1,p′,0.
It follows that (n′, n′) ∈ `[↑ ; Lk−1,p′,0](D). It is readily seen that then
the U (k) expression `[↑ ; Lk−1,p′,0](D) is equivalent to Lk,n′,0, whence
(n′, n′) ∈ Lk,n,0. Consequently, (n′, n′) /∈ labelk,(n,n)(D).

27

In other words, we have that for each block B, an expression labelB ∈ U (k)
can be constructed such that labelB(D) = B, completing the proof of Propo-
sition 34. These are precisely the labeling expressions of Theorem 25.

5 Towards indexes: A(k)-based, or P (k)-based?

In Section 3, we argued that many XPath queries can be evaluated by (1)
discovering appropriate blocks of P (k)-partitions and (2) assembling these
blocks, typically through unions and joins, into the final answer. Discovering
appropriate blocks of the P (k)-partition was accomplished through decompo-
sition and inversion techniques. Relative to a P (k)-partition, these techniques
yield expressions in D(k) and U (k) without predicate operations. Through
the Label-Union Theorem developed in Section 4, we know that these expres-
sions can be associated with label expressions, which are syntactic objects that
identify the relevant blocks. Thus, to develop an index structure to support
these evaluations, we need a data structure that organizes these label expres-
sions and their associated partition blocks in a way that allows fast look up.
Given the simplicity of the labeling expressions, this is entirely feasible. One
of the potential drawbacks of such an index structure is that it can be large:
for a given k, its size is O(k|V |) where V is the set of nodes of the document.
However, we believe that, in practice, storing such indexes will only be nec-
essary for small k values, and as such their size is nearly linear in the size of
the document.

Of course, it is also possible to develop indexes that are based on the A(k)-
partitions. In fact, the A(k)-index introduced by Kaushik et al. [13] is an
example of this. This index has several very desirable properties: (1) its size is
O(|V |) and (2) for expressions in U (k) without predicates wherein exactly k
“↑” primitives occur, simple navigations through the index yield their results.
However, it has also some significant limitations. Some of these were already
briefly discussed in Section 2.8. We elaborate a little further on this section,
here. For example, consider an expression without predicates in U (j), j >
k, that utilizes j “↑” primitives. Such an expression can be written in the
form E1 ; E2 where E1 ∈ U (k) and E2 ∈ U (j − k). Now the A(k)-index
can determine the set of nodes that are the result of evaluating E1 on the
document. However now, starting from these nodes, E2 is to be evaluated,
and this can only be done by accessing and navigating the original document
tree. (Notice that an index based on the P (k)-partitions does not suffer from
this problem because it never requires extra navigation in the document.) A
very similar problem occurs with expressions that have predicates. Consider an
expression in U (j) of the form E1[E2], where E1 ∈ U (k) and E2 ∈ U (j− k).
Again, the A(k)-index can support E1 well and retrieve the set of nodes that
are the result of its evaluation. But again, to process the predicate [E2], it

28

is necessary to navigate the original document. Notice, again, that the P (k)-
based indexes do not suffer from this problem.

From this discussion, we conclude that P (k)-based indexes are to be preferred
over A(k)-based indexes, especially when only small k’s are sufficient.

In fact, we are currently implementing A(k)- and P (k)-based index structures.
Some preliminary results have already been obtained [2]. These experiments
confirm that P (k)-indexes can outperform A(k)-indexes by several orders of
magnitude, outweighing the relatively moderate overhead involved in their
construction. Additionally, real data tend to be fairly shallow [16]. As a con-
sequence, dramatic improvements in performance already occur for relatively
small values of k. Our first results also indicate that, beyond the initial drop in
query execution time, no significant improvements occur for larger values of k.
We may therefore conclude that the joins required in some of the evaluation
schemes outlined in the present paper have no significant adverse effect on the
overall performance.

6 Future Directions

In this paper, we take a fresh step towards establishing connections between
the theoretical study of query languages and engineering research on the design
and implementation of XML database systems. These connections hinge on a
new methodology for coupling index -induced partitions and language-induced
partitions of an XML document.

To take full advantage of the P (k)-partitions introduced here and their block
labeling expressions, we next need a data structure that is capable of locating
all partition blocks based on label look-up, and in which the partition blocks
that participate in the evaluation of a query are stored close to each other
and can be located with a minimum number of label look-ups. We are cur-
rently involved in the development of a data structure which satisfies these
requirements.

In addition, we are going to investigate how information on the query workload
can drive various choices to be made, such as the appropriate value of k or
the label paths to be indexed.

Other future work includes experiments with queries involving ancestor/des-
cendant operations in combination with structural joins [1].

Acknowledgments. We thank the referees for their helpful comments.

29

References

[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, D. Srivastava,
Structural Joins: A Primitive for Efficient XML Query Pattern Matching, in:
IEEE ICDE, San Jose, California, 2002.

[2] S. Brenes, Y. Wu, D. V. Gucht, P. S. Cruz, Trie Indexes for Efficient XML
Query Evaluation, in: WebDB, Vancouver, Canada, 2008.

[3] N. Bruno, N. Koudas, D. Srivastava, Holistic Twig Joins: Optimal XML Pattern
Matching, in: ACM SIGMOD, Madison, Wisconsin, 2002.

[4] J. Clark, S. DeRose (eds.), XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/XPATH.

[5] D. Comer, The Ubiquitous B-Tree, ACM Comput. Surv. 11 (2) (1979) 121–137.

[6] R. Goldman, J. Widom, DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases, in: VLDB, Athens, Greece, 1997.

[7] G. Gottlob, C. Koch, R. Pichler, Efficient Algorithms for Processing XPath
Queries, ACM Trans. Database Syst. 30 (2) (2005) 444–491.

[8] G. Gou, R. Chirkova, Efficiently Querying Large XML Data Repositories: A
Survey, IEEE Trans. Knowledge and Data Eng. 19 (10) (2007) 1381–1403.

[9] M. Gyssens, J. Paredaens, D. Van Gucht, G. H. L. Fletcher, Structural
Characterizations of the Semantics of XPath as Navigation Tool on a Document,
in: ACM PODS, Chicago, 2006.

[10] H. He, J. Yang, Multiresolution Indexing of XML for Frequent Queries, in:
IEEE ICDE, Boston, 2004.

[11] R. Kaushik, P. Bohannon, J. F. Naughton, H. F. Korth, Covering Indexes for
Branching Path Queries, in: ACM SIGMOD, Madison, Wisconsin, 2002.

[12] R. Kaushik, R. Krishnamurthy, J. F. Naughton, R. Ramakrishnan, On the
Integration of Structure Indexes and Inverted Lists, in: ACM SIGMOD, Paris,
France, 2004.

[13] R. Kaushik, P. Shenoy, P. Bohannon, E. Gudes, Exploiting Local Similarity for
Indexing Paths in Graph-Structured Data, in: IEEE ICDE, San Jose, CA, 2002.

[14] C. Koch, Processing Queries on Tree-Structured Data Efficiently, in: ACM
PODS, Chicago, 2006.

[15] T. Milo, D. Suciu, Index Structures for Path Expressions, in: ICDT, Jerusalem,
1999.

[16] I. Mlynkova, K. Toman, J. Pokorný, Statistical Analysis of Real XML Data
Collections, in: COMAD, New Delhi, India, 2006.

30

[17] M. M. Moro, Z. Vagena, V. J. Tsotras, Tree-Pattern Queries on a Lightweight
XML Processor, in: VLDB, Trondheim, Norway, 2005.

[18] C. Qun, A. Lim, K. W. Ong, D(k)-Index: An Adaptive Structural Summary for
Graph-Structured Data, in: ACM SIGMOD, San Diego, California, 2003.

[19] P. Ramanan, Covering Indexes for XML Queries: Bisimulation – Simulation =
Negation, in: VLDB, Berlin, 2003.

[20] K. Runapongsa, J. M. Patel, R. Bordawekar, S. Padmanabhan, XIST: An XML
Index Selection Tool, in: XSym, Toronto, 2004.

[21] D. Sangiorgi, On the Origins of Bisimulation and Coinduction, ACM Trans.
Program. Lang. Syst., to appear.

[22] K. Yi, H. He, I. Stanoi, J. Yang, Incremental Maintenence of XML Structural
Indexes, in: ACM SIGMOD, Paris, 2004.

[23] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, G. M. Lohman, On Supporting
Containment Queries in Relational Database Management Systems, in: ACM
SIGMOD, Santa Barbara, California, 2001.

31

