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ABSTRACT
The importance of performing efficient XML query process-
ing increases along with its usage and pervasiveness. Study-
ing the properties of important fragments of XML query
languages and designing accurate structural summaries (in-
cluding indexes and statistical summaries) are all critical in-
gredients in solving this problem. However, up to this point
there has been a gap between the theoretical and engineer-
ing efforts taken in the context of XML. We draw from re-
search methodologies used in relational query languages and
database design and apply it to the study of XPath and the
design of structural summaries for XML. In particular, we
study the roles various fragments of XPath algebra play in
distinguishing data components in an XML document, and
leverage the results in designing novel structural indexes and
statistical summaries for more efficient XML query process-
ing and more accurate result size estimation.

1. INTRODUCTION
The available types of data and the content of the data

itself have evolved quickly to surpass the capabilities of tra-
ditional relational databases. Semi-structured data, particu-
larly XML, has become a standard for information exchange
and representation. As part of its fundamental properties,
semi-structured data has been identified in [1] as having an
irregular, implicit, and partial structure. As shown in Fig-
ure 1, element A may have B sub-element(s) and nested A
sub-element(s); and element B may or may not have a D
sub-element. An XML document schema can change at any
time, or even be omitted. This poses a benefit in terms of
flexibility, but also a challenge for properly modeling, stor-
ing, and querying XML data.

The two most popular XML query languages are XPath [28]
and XQuery [29]. XPath navigates the nodes of an XML
document using path expressions which may or may not con-
tain branching conditions. XQuery is an extension of XPath
that uses a FLWR (For, Let, Where, Return) expression to
specify desired results. It allows for more powerful queries
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Figure 1: A sample XML document (Subscripts
identify instances of elements with the same tag)

to be performed and for results to be constructed indepen-
dently of the source XML document. Given that XPath is at
the core of XQuery and other XML query languages such as
XSLT [30], efficiently evaluating XPath queries is essential
to the efficient processing of XML queries in general.

Since the debut of XML, extensive research has been done
in the theoretical study of XML query languages and the
engineering design of XML data engines. However, there is
a gap between the two areas that prevents the engineering
design from taking full advantage of the results in the theo-
retical study, an approach that has been successfully taken
in the context of relational databases.

In this paper, we focus on the study of XPath algebra
and some of its important fragments, in terms of their capa-
bility in distinguishing data components in an XML docu-
ment. We show how to leverage the results in the design of
structural indexes that lead to efficient processing of XPath
queries in general. We then discuss future research topics
that take advantage of this study in the design of statistical
summaries and result size estimation algorithms.

The rest of this paper is organized as follows: Section 2
provides an overview of related work, in Section 3 we define
the problem we address in our research, Section 4 presents
the preliminary results we have obtained in the formal study
of the coupling of language and document induced partitions
of XML. Section 5 discusses the implications of our work
and how this will guide our research in the design of a new
family of structural indexes for XML. Finally, Sections 6
and 8 present the conclusions of our work and the feedback
received from the presentation in the conference workshop.



2. RELATED WORK

2.1 Theoretical Study of XML Query
Languages

The theory underlying the XQuery and XPath query lan-
guages shares its foundations with the theory of query lan-
guages for relational, object-oriented, and semi-structured
databases, with finite model theory at the core of much of
this work. Several natural semantic issues have been inves-
tigated in recent years for various fragments of XPath [13,
19], including expressibility, closure properties, complexity
of evaluation [4, 11, 20], and decision problems such as satis-
fiability, containment, and equivalence [3, 21]. These prop-
erties can be used to formulate useful query rewrite rules for
query optimization. Other types of rewrite rules [23] focus
on eliminating XPath ancestor axes to enable more efficient
query processing.

2.2 XML Indexing Techniques
As in any large data repository, the existence and proper

use of indexes greatly improves the performance of certain
queries. When considering XML data, the structural in-
formation that is inherently encoded in a document pro-
vides a new dimension for performing queries and creating
indexes. Over twenty different types of indexes, as summa-
rized in [12], have been proposed in the past few years and
have led to significant improvements in the performance of
XML query evaluation. Based on their types, they can be
categorized into a few big families.

2.2.1 Value Indexes
Indexes similar to those used in relational databases, namely

value indexes on element tags, attribute names, and text
values, were first used together with structural join algo-
rithms [2, 5] in XML query evaluation. This approach turns
out to be simple and efficient, but fails to capture the struc-
tural containment relationships native to XML data.

2.2.2 Structural Indexes
A family of structural indexes were introduced to directly

capture XML structural information. DataGuides [10] pro-
vide a concise and accurate dynamic structural summary
of a semi-structured database by describing every unique
path exactly once. Each path has an associated “target set”
which contains all objects reachable by traversing it. Milo
et al [22] improved the DataGuides through the T-Index in
which classes of paths are associated with an index through
an arbitrary path template specification. For example, a
template can specify all nodes that are reachable from the
root (the 1-Index), or node pairs connected by a particular
path (the 2-Index).

Unfortunately, these index structures are usually too large
to be effectively used in practice. To solve this problem,
Kaushik et al [18] proposed the A[k]-index, which uses the
notion of upward node bi-similarity limited to paths of length
k. Two nodes are considered to be k-bisimilar if they share
the same label and their incoming paths of length ≤ k are
the same. The size of an A[k]-index and the degree to which
it helps in query evaluation varies upon the selection of the
parameter k. However, queries with branching predicates
cannot be answered directly using an A[k]-index. Valida-
tion is required, resulting in expensive disk access.

The Forward and Backward-Index (F&B-Index) [16] groups

nodes by considering both incoming and outgoing paths and
is capable of handling queries with branches. However, as
pointed out by [32], the F&B-Index is too large to fit in
memory and does not provide fully optimized methods for
answering queries.

2.2.3 Workload-aware Indexes for XML
In an A[k]-index, the k parameter determines both the size

and the usefulness of the index. Chen et al [6] argued that
not all structure has equivalent significance. Their D(k)-
index is an adaptive structural summary that allows differ-
ent similarity values for its indexed paths, adjusting them
according to query workload.

In [14], He et al improved the update algorithms in the
D(k)-index to create the M(k)-index. In their approach,
the update algorithm never over-refines unnecessary paths.
They also proposed the M∗(k)-index which is a collection
of M(k)-indexes with different resolutions connected to one
another.

2.2.4 Other XML Indexes
Other directions in XML indexing techniques include in-

dexing frequent query sub-patterns [7], or indexing XML
trees and queries as sequences. ViST [31] represents both
XML documents and queries as structure-encoded sequences.
[26] and [31] use Prüfer sequences and string indexes re-
spectively. In [24], XML documents are indexed using forms
of prefix-tree encodings.

An index selection tool [27] uses algorithms that consider
query workload information and cost-benefit formulae to
propose both the paths to be included in an index, and also
the best index to use for a given query.

2.3 Query Processing and Optimization
A key issue in XML query processing is finding all oc-

currences of the structural relationships expressed in XML
queries. This is an issue that arises in both relational database
systems that support XML, and in native XML query en-
gines. The problem has been addressed in the latter with
two different approaches: structural indexes (as discussed in
Section 2.2) and structural join algorithms [2, 5].

Optimization techniques have been proposed to choose ef-
ficient evaluation plans based on the availability of indexes
and statistical information [8, 33]. These optimization tech-
niques rely on well-defined cost models and accurate esti-
mates of cardinalities of intermediate results to function ef-
fectively. Statistical summaries, such as histograms [34] and
XSketch [25], and their corresponding usage and mainte-
nance algorithms, have been proposed for providing such
estimates.

3. PROBLEM DEFINITION
Theoretical results have successfully guided the design

and implementation of relational database management sys-
tems (RDBMS), as witnessed by the systematical theoretical
study of relational algebra, relational calculus, and the rela-
tional query language.

The coupling between theory and engineering is exempli-
fied in the design of indexes used in a RDBMS. In this case,
range queries select tuples from a relational table satisfy-
ing the condition that its values on a certain attribute set
fall within a given range. The tuples are partitioned into
groups, each group featuring a unique, distinct value on the



given attribute set. The result of any range query is com-
posed of the tuples in such a group, or the union of a set
of such groups. A B+-tree index partitions tuples by the
values of a set of attributes (the index key) and organizes
the groups according to the distance between their index key
values. The B+-tree index provides a good coupling with the
theory behind range queries and as such, can answer them
efficiently. A histogram, which keeps track of the number
of tuples that satisfy a certain value condition, is bound to
provide an accurate selectivity estimate of range queries.

Since the debut of XML in the late 1990’s there have been
numerous efforts in both the theoretical and engineering re-
search for this data model. However, the type of tight cou-
pling between the two, as seen in the relational database
context and shown in the above example, has yet to emerge.
This leads to a series of open questions in this research area,
among which we have identified:

1. For each family of XML indexes, which classes of XML
queries are these indexes ideally suited for?

2. For each class of XML queries, which XML index struc-
ture works ideally for answering these queries?

3. How can the partition classes represented by each type
of index be labeled, and how to efficiently locate the
partition classes that contribute to the query evalua-
tion for a given set of queries?

4. How to choose a query evaluation plan that takes full
advantage of available indexes?

5. How to use query workload information to further op-
timize the structural indexes?

6. How to capture structural information of XML data
for more accurate result size estimation for each class
of queries?

In this proposed research, we adopt a methodology that
is drawn from the classical study of relational queries, the
design of relational indexes, and query evaluation techniques
and extend it to the context of XML. Rather than attempt-
ing to tackle all the open problems listed above, we will focus
on certain fragments of XPath. In particular, we will:

1. Analyze the structural features of XML documents and
study important fragments of XPath algebra and their
properties.

2. Design novel structural indexes and corresponding in-
dex access and maintenance algorithms for efficient
query evaluation.

3. Design workload-aware structural indexes and algo-
rithms for constructing, accessing and updating such
indexes.

4. Design summary data structures for accurate result
size estimation.

4. PRELIMINARY RESULTS
At this stage, we have proposed the notion of label-paths

and label-path based partitions of nodes and pairs in an XML
document. We have studied a family of algebras for sub-
languages of XPath and discovered the coupling between
a partition of XML data induced from the algebra and a

partition induced from purely analyzing the structure of the
data.

We are using these results in the design and implemen-
tation of the N [k]-Trie and P [k]-Trie structural indexes for
efficient query evaluation. In this section, we will present
these preliminary results and then discuss our ideas on fur-
ther utilizing the results in the design of workload-aware
structural indexes and the design of statistical structural
summaries and the corresponding result size estimation al-
gorithms in Section 5.

4.1 Label-Path Based Partitions
An XML document X is a node-labeled tree. Formally,

we define it as a 4-tuple (V, Ed, r, λ), with V the finite set
of nodes, Ed ⊆ V x V the set of edges, r ∈ V the root, and
λ : V → L a node-labeling function into the set of labels L.

For a given pair of nodes m and n in an XML document
X where m is an ancestor of n, we define its associated
label-path to be the unique path between m and n, denoted
LP (m, n). We use DownPairs(X) to represent the set of
all such pairs in X, and use DownPairs(X, k) to represent
the set of node pairs such that (1) m is an ancestor of n in
X, and (2) length(m,n)1 ≤ k.

Given a node n in X, and a number k ∈ N, we define
the k-label-path of n, denoted LP (n, k), to be the label-path
of the unique downward path of length l into n where l =
min{height(n), k}.2

Example 4.1. Take the XML document shown in Fig-
ure 1. We have that (A2, C2) ∈ DownPairs(X, 2) but (A2, C2)
/∈ DownPairs(X, 1). The label-path between these nodes is
LP (A2, C2) = (A,B, C). Similarly, LP (C1, 1) = (B, C) and
LP (C1, 5) = (A, B, C).

We use the notion of label-paths to define N [k]-equivalence.

Definition 4.1. Let X = (V, Ed, r, λ) be an XML docu-
ment, and let k ∈ N. We say that nodes n1 and n2 in V
are N [k]-equivalent (denoted n1 ≡N [k] n2) if they have the
same k-label-path, i.e., LP (n1, k) = LP (n2, k).

The N [k]-partition of X is then defined as the partition
induced by this equivalence relation. It immediately follows
that each partition class C in the N [k]-partition can be asso-
ciated with a unique label-path, the label-path of the nodes
in C, denoted LP (C). On the other hand, a k-label-path p in
an XML document X uniquely identifies an N [k]-partition
class, which we denote as N [k][p]. In [9] we proved that the
N [k]-partition and the A[k]-partition are the same.

Definition 4.2. Let X = (V, Ed, r, λ) be an XML doc-
ument, and let k ∈ N. We define the k-pair equivalence
relation on the set DownPairs(X, k) as follows: two pairs
(m1, n1) and (m2, n2) in DownPairs(X, k) are P [k]-equivalent
(denoted (m1, n1) ≡P[k] (m2, n2)) if they have the same
label-path, i.e., LP (m1, n1) = LP (m2, n2).

The P [k]-partition of X is then defined as the partition
on DownPairs(X, k) induced by this equivalence relation.
Similar to the N [k]-partition, label-paths can be associated
with each partition class in a P [k]-partition, which we denote
as P [k][p].
1length(m, n) denotes the length of the unique path between
m and n in X.
2height(n) denotes the height of node n in X.



N [1]-partition N [2]-partition
N [1][(A)] = {A1} N [2][(A)] = {A1}
N [1][(A, A)] = {A2} N [2][(A, A)] = {A2}
N [1][(A, B)] = {B1, B2, B3, B4} N [2][(A, B)] = {B1, B4}
N [1][(B, B)] = {B5} N [2][(A, A, B)] = {B2, B3}

N [2][(A, B, B)] = {B5}
N [1][(B, C)] = {C1, C2, C3, C4} N [2][(A, B, C)] = {C1, C2, C3}

N [2][(B, B, C)] = {C4}
N [1][(B, D)] = {D1} N [2][(A, B, D)] = {D1}

Table 1: The N [1] and N [2]-partitions and label-paths of the sample XML document

P [1]-partition P [2]-partition
P [1][(A)] = {(A1, A1), (A2, A2)} P [2][(A)] = {(A1, A1), (A2, A2)}
P [1][(B)] = {(B1, B1), (B2, B2), (B3, B3), (B4, B4), (B5, B5)} P [2][(B)] = {(B1, B1), (B2, B2), (B3, B3), (B4, B4), (B5, B5)}
P [1][(C)] = {(C1, C1), (C2, C2), (C3, C3), (C4, C4)} P [2][(C)] = {(C1, C1), (C2, C2), (C3, C3), (C4, C4)}
P [1][(D)] = {(D1, D1)} P [2][(D)] = {(D1, D1)}
P [1][(A, A)] = {(A1, A2)} P [2][(A, A)] = {(A1, A2)}
P [1][(A, B)] = {(A1, B1), (A2, B2), (A2, B3), (A1, B4)} P [2][(A, B)] = {(A1, B1), (A2, B2), (A2, B3), (A1, B4)}
P [1][(B, B)] = {(B4, B5)} P [2][(B, B)] = {(B4, B5)}
P [1][(B, C)] = {(B1, C1), (B2, C2), (B3, C3), (B5, C4)} P [2][(B, C)] = {(B1, C1), (B2, C2), (B3, C3), (B5, C4)}
P [1][(B, D)] = {(B2, D1)} P [2][(B, D)] = {(B2, D1)}

P [2][(A, A, B)] = {(A1, B2), (A1, B3)}
P [2][(A, B, B)] = {(A1, B5)}
P [2][(A, B, C)] = {(A1, C1), (A2, C2), (A2, C3)}
P [2][(A, B, D)] = {(A2, D1)}
P [2][(B, B, C)] = {(B4, C4)}

Table 2: The P[1] and P[2]-partitions and label-paths of the sample XML document

Example 4.2. Tables 1 and 2 show the N [k] and P [k]-
partitions of the sample XML document shown in Figure 1
for k = 1, 2.

4.2 Families of XPath Algebras
The syntax and path semantics of the XPath algebra, as

proposed in [11] and [13], are defined as follows:

ε(X) = {(n, n) | n ∈ V }

∅(X) = ∅

↓ (X) = Ed

↑ (X) = Ed−1

ℓ(X) = {(n, n) | n ∈ V & λ(n) = ℓ}

E1 ◦ E2(X) = {(n, m) | ∃w : (n, w) ∈ E1(X) &

(w, m) ∈ E2(X)}

E1[E2](X) = {(n, m) ∈ E1(X)| ∃w : (m,w) ∈ E2(X)}

E1 ∗ E2(X) = E1(X) ∗ E2(X) where ∗ is ∩, ∪ or -

The node semantics of an expression E on an XML doc-
ument X, denoted E(X)[nodes]3 is defined as the set {n |
∃m : (m,n) ∈ E(X)}.

We focus our study on a few sub-algebras of XPath. The
D algebra consists of the expressions in the XPath algebra
without occurrences of the set operators, predicates ([]), or

the ↑ primitive. The D[] algebra consists of the D algebra

3Since it will always be clear from the context, we will often
use the notation E(X) to denote E(X)[nodes].

plus predicates. As in [9], the D[][k] algebras are recursively
defined on k as follows:

1. D[][0] is the set of expressions in the D[] without oc-
currences of the ↓ primitive.

2. For k ≥ 1,

(a) if E ∈ D[][k − 1], then E ∈ D[][k];

(b) ↓ ∈ D[][1];

(c) if E1 ∈ D[][k1], E2 ∈ D[][k2], and k1 + k2 ≤ k,

then E1 ◦ E2 ∈ D[][k] and E1[E2] ∈ D[][k].

3. No other expressions are in D[][k].

Example 4.3. Given an XPath algebra expression E =
A◦ ↓ ◦B◦ ↓ ◦C we have that E /∈ D[][1] but E ∈ D[][2].

The D[k] algebra is defined as the set of expressions in the

D[][k] algebra without occurrence of predicates. Similarly,

we can define the U , U [], U [][k] and U [k] algebras, which
feature the ↑ primitive instead of ↓.

We now define the DownUp algebra in terms of expressions
in the D algebra and U algebra: given a list of expressions
E1, E2, . . . Em such that Ei is an expression either in the D
algebra or in the U algebra, then the expression

E1 ◦ E2 ◦ · · · ◦ Em−1 ◦ Em

is defined as an expression in the DownUp algebra. A
DownUp[k] algebra is defined as a DownUp algebra in which
each run (Ei) is an expression in either D[k] or U [k].



XPath D Expression LPS Evaluation
q1 //A/A/B A◦ ↓ ◦A◦ ↓ ◦B {(A,A,B)} q1(X)[nodes] = N [2][(A, A,B)](X)

q1(X) = P [2][(A, A, B)](X)
q2 //A/ ∗ /B A◦ ↓ ◦ ↓ ◦B {(A,A,B), (A,B,B)} q2(X)[nodes] = N [2][(A, A, B)](X) ∪N [2][(A, B, B)](X)

q2(X) = P [2][(A, A,B)](X) ∪ P [2][(A, B, B)](X)

Table 3: Evaluating D expressions using N [2] and P [2]-partitions

It follows that each expression of the D[] algebra can be
translated into an equivalent DownUp expression with the
following at the core of this translation:

Lemma 4.1. Let D be an XML document and let E1 and
E2 be expressions in the D[] algebra. Then

E1[E2](D) = E1(D) ◦ E2(D) ◦ (E2(D))−1.

Lemma 4.1 provides the foundation that allows us to trans-
form an XPath expression with predicates to an expression
without predicates. Furthermore, an arbitrary XPath ex-
pression can be decomposed into sub-queries that are linear
and whose length is ≤ k. Thus, Proposition 4.1 and Corol-
lary 4.1 follow.

Proposition 4.1. For each expression E ∈ D[] there ex-
ists an equivalent expression FE in the DownUp algebra.

Corollary 4.1. For each expression E ∈ D[] there exists
an equivalent expression FE in the DownUp[k] algebra.

4.3 Coupling D[] Algebras with the N [k] and
P [k]-partitions of an XML Document

We now discuss how the D[] algebras can be coupled with
the N [k]-partition and P [k]-partition of an XML document.

Given an XML document X = (V, Ed, r, λ) and an expres-
sion E ∈ D, we define the label-path set of E in an XML
document X (denoted LPS(E, X)) as the set of label-paths
in X that satisfy the node-labels and structural containment
relationships specified by E.

Example 4.4. For the sample XML document in Fig-
ure 1 and the XPath expression //A/∗/B the corresponding
LPS(E, X) = {(A, A,B), (A, B, B)}

Given that a label-path uniquely identifies an N [k]-partition
class of nodes (or a P [k]-partition class of node pairs) of
an XML document, expressions in D can be evaluated via
unions of the corresponding partition classes. Given an XML
document X and an expression E ∈ D,

E(X)[nodes] =
[

lp∈LPS(E,X)

N [∞][lp](X)

E(X) =
[

lp∈LPS(E,X)

P[∞][lp](X)

We now define the refinement relationship (≺) between
two equivalence relations:

Definition 4.3. Given a data model M and two equiva-
lence relations ≡A and ≡B, we say that A ≺ B if for each
data instance m over M , the equivalence relation ≡A is a
refinement of the equivalence relation ≡B. We say A ≃ B if
A ≺ B and B ≺ A.

We can prove that under both the node and path seman-
tics of XPath:

D[k] ≃ N [k] and D ≃ N [∞]

D[k] ≃ P[k] and D ≃ P[∞]

Given that D ≃ U and D[k] ≃ U [k], similar coupling rela-
tionships can be established between the U algebra and the
N [k] and P [k]- partitions. This leads to the design princi-
ple that indexes based on the N [k] and P [k]- partitions are
suitable for answering queries in D and U . For example,
given the document shown in Figure 1, the evaluation of
two sample D queries is shown in Table 3.

5. RESEARCH DIRECTION

5.1 Trie Indexes for XML
Good index structures facilitate efficient query evalua-

tion by strategically partitioning, labeling and organizing
the source data such that:

1. the unions of some partition classes are the proper su-
per set of the result of queries;

2. such partition classes can be easily located via search
over the partition labels;

3. the partition classes are fine enough such that the
search space is efficiently reduced via index access; and

4. partition classes that are likely to contribute to a query
answer are stored physically together to reduce I/O
cost.

In [13], it is suggested that the study of the XPath alge-
bra could have an impact on indexing XML documents. This
step was first taken in [9] by analyzing the connection be-
tween certain upward XPath algebras and structural indexes
such as the A[k]-index and DataGuides. As previously men-
tioned, we proved that the N [k]-partition and A[k]-partition
are the same [9] and established the refinement and coupling
relationships between the U-algebras and the N [k] and P [k]
partitions.

Since D[k] ≃ N [k] ≃ A[k] and U ≃ D, DataGuides and
the A[∞]-index are suitable for answering queries in D and
U . The A[k]-index trades the degree of bi-similarity in fa-
vor of a smaller size of the index graph, and is suitable for
answering queries in D[k] and U [k], but not D and U when
k < height(D). This echoes the findings discussed in Sec-
tion 4.2 and 4.3.

Here, we take a further step in leveraging the above dis-
covery in proposing new index structures for efficient XML
query evaluation.



Figure 2: N [1] and N [2]-Trie Index

5.1.1 N [k]-Trie Index
Focusing on the N [k] partition of data nodes, we propose

to organize the N [k]-partition classes in a trie structure,
using the reversed label-path of each partition class as the
key. We use a reversed label-path because the answer to an
expression requires sharing of a common suffix, and a trie
structure guarantees sharing of a common prefix. We denote
this index an N [k]-Trie index.

Example 5.1. Figure 2 shows the N [1] and N [2]-Trie
indexes of the sample XML document shown in Figure 1.
Notice that all leaf nodes in an N [k]-Trie have associated
partition blocks, while non-leaf nodes only have associated
partition blocks when the trie node label is the same as the
root of the XML document. The height of the trie is no
larger than k and the trie reflects all paths in the document
of length ≤ k. See section 5.1.3 for more properties of the
N [k]-Trie.

A carefully designed index lookup algorithm distinguishes
between two types of lookup operations in the trie structure:
a normal trie lookup, and a subtree lookup.

Given an N [k]-Trie index, the normal trie lookup is suit-
able for answering chain queries that are of length k, by
returning the index item associated with the reversed path
expression.

The subtree lookup is suitable for answering chain queries
that are shorter than k, by returning the index items in the
subtree rooted at the node associated with the reversed path
expression.

5.1.2 P [k]-Trie Index
None of the structural indexes in the literature feature

both a manageable size and the capability of answering queries
in the more general algebra of D[] efficiently with an index-
only plan.

A query q in D[] can be decomposed into multiple runs
(sub-queries) of queries in D and U . To obtain the result
of q, the results of these runs need to be stitched together,
requiring the intermediate results to be in the form of pairs
rather than nodes. In other words, it requires that the sub-
queries be evaluated in the path semantics, rather than the
node semantics.

The P [∞]-partition serves this purpose well. As per Corol-
lary 4.1, an index structure based on the P [k]-partition with

a modest k would serve just as well. Thus, we propose the
P [k]-Trie index which organizes the P [k]-partition classes of
an XML document in a trie structure, using the reversed
label-paths as the keys.

Example 5.2. Figure 3 shows the P [1] and P [2]-Trie in-
dexes of the sample XML document. Please note that unlike
the N [k]-Trie, every node in the P [k]-Trie has an associated
partition block. As in the N [k]-Trie, the height of the trie is
no larger than k, and the trie reflects all paths in the doc-
ument of length ≤ k. In fact, the N [k] and P [k]-Trie have
the same structure. See section 5.1.3 for more properties of
the P [k]-Trie.

5.1.3 Trie Index Structural Properties
We summarize some properties of the trie indexes that

may provide insight into the study of the workload-aware
Trie indexes and statistical summary structures for XML:

1. The height of an N [k]-Trie (P [k]-Trie) index is no
larger than k.

2. The number of entries in an N [k]-Trie is no larger than
k × |N [k]-partition(X)|.

3. The structure of a P [k]-Trie of a document X is exactly
the same as the structure of an N [k]-Trie of X.

4. For a given XML document X, the N [k − 1]-Trie is a
strict compression of the N [k]-Trie. The N [k]-Trie is
a strict refinement of the N [k − 1]-Trie.

5. The P [k]-Trie of X is a sub-structure of the P [k + 1]-
Trie of X. To be more precise, the P [k]-Trie of X is
a sub-structure that contains the top k layers of the
P [k + 1]-Trie of X.

5.1.4 Query Evaluation
Let’s consider evaluating some typical D and D[] queries

in the sample XML document. The evaluation plans for
evaluating these queries using the indexes discussed above
are summarized in Table 4. Here, I represents an index-only
plan, I+V represents index access plus validation, MC/SC
represents accessing multiple/single partition class(es) in the
index. When multiple partition classes are involved, ML/SL
represents multiple/single lookup, and RA/SA represents
random/sequential access.



Figure 3: P [1] and P [2]-Trie Index

Query Query Class DataGuides [10] A[2]-index [18] N [2]-Trie P [2]-Trie
//A/B D[1] I, MC (ML,RA) I, MC (ML, RA) I, MC (SL, SA) I, SC

//A/B/B/D D[3] I, SC I+V, SC I+V, SC I, SC

//A/B[D]/C D[][2] I+V, SC I+V, SC I+V, SC I, SC

Table 4: Evaluating expressions using structural indexes

The example illustrates that all queries of D[] can be evalu-
ated with index-only plans when the P [k]-Trie index (k > 1)
is available. Because the P [k]-Trie contains partition infor-
mation under path semantics, it is possible to decompose
the original query into sub-queries that can be answered
with an index-only plan, performing join on the partial re-
sults to obtain the answer to the original query. This can be
applied to queries with length larger than k, or queries that
contain predicates, ‘//’ and ’*’ in the middle. How to best
decompose a query is an interesting optimization question
that deserves further research.

Clearly, all these facts point to a trade-off of space and
query efficiency between the N [k]-Trie and P [k]-Trie indexes
that deserve further study.

5.1.5 Trie Index Implementation
We are implementing our Trie indexes using Timber [15],

a native XML database system developed at the University
of Michigan. Using Timber has allowed the focus of the
implementation to remain on index construction and query
processing, as Timber already provides the necessary frame-
work for storing and querying XML documents.

Our algorithms for partition and index creation were in-
tegrated into Timber’s Index Manager module; while the
Query Evaluator module was modified so that we may per-
form queries and extract information from our indexes.

We have created Trie indexes for the DBLP bibliography
XML file (130MB in size), and are executing different types
of queries to evaluate performance. Each query is evaluated
using: no index, Timber’s default element tag index, the
A[k]-index, the N [k]-Trie index, and the P [k]-Trie index,
with k = 0 . . . 7 for the former three.

Preliminary results show that the performance of both
N [k] and P [k]-Trie indexes present an improvement over the
A[k]-index, as well as showing important differences among
themselves.

We are also developing update algorithms for the Trie in-
dexes. The structural properties identified in Section 5.1.3
will allow us to develop simple refinement and compression
algorithms that will easily convert a k Trie to a k + 1 Trie
or vice-versa.

Regarding Trie index maintenance, if the source XML doc-
ument is modified, then the Trie indexes will face the same
challenges as any label-path based index. Previous solutions
such as [17, 35] have already been proposed, and we must
investigate which approach most benefits our index struc-
ture.

5.2 Workload-aware Structural Summaries
The N [k] and P [k]-Trie indexes proposed provide a dra-

matical performance improvement for evaluating XPath queries.
Another useful feature of these indexes is that the trie branches
are independent from one another, allowing us to construct
and maintain indexes in which the local bi-similarity is dif-
ferent for label-paths with different importance. This makes
the N [k] and P [k]-Trie family a suitable platform for the de-
sign of workload-aware indexes for XML.

We will investigate how to choose the optimal bi-similarity
for the label paths, given a database, a query workload, and
an upper bound for space. We will also study how to rep-
resent the degree of bi-similarity in the index to minimize
lookup and validation in query evaluation, and how to main-
tain such indexes dynamically when there are data or query
workload changes.



5.3 Statistical Summaries for XML
The query decomposition and optimization techniques dis-

cussed above are within the scope of cost-based query opti-
mization. Cost-based optimization strategies depend on an
accurate cost model and cardinality estimates to perform
well. The Trie structure we proposed provides a suitable
framework for collecting and presenting statistical informa-
tion about an XML document. Since neighboring sub-trees
in a trie are independent from each other, statistical infor-
mation can be specific to each path.

We will investigate how statistical information can be col-
lected and stored at various levels of granularity, how to
maintain the statistical summary when data changes, and
how to accurately estimate the cardinality of path expres-
sions, in both node and path semantics, leveraging the cou-
pling theory we have discovered.

6. CONCLUSION
Currently there are two leading trends in the design of

XML repositories: reuse existing relational database tech-
nology and adapt it for use with XML or implement native
XML database management systems. Efficient query eval-
uation is at the core of database system design, whether
in a relational or XML context. We propose to draw from
the strength of successful research and practice in relational
databases and apply the same methodology to the study
of the XPath query language and the design of summary
structures for efficient XML query processing. The research
methodology, preliminary results, and future research direc-
tions we presented here are all independent of the storage
model and can be easily adopted in both.

We presented the preliminary results of our work that find
a coupling between fragments of the XPath algebra and a
structural partition of XML documents. These results have
guided the design of a new structural index family, the Trie
indexes. The methodology we have used in the design and
study of the Trie indexes makes a first attempt at bridging
the gap between the theoretical and engineering work in the
context of XML structural indexes.

We outlined research directions that will continue to take
advantage of this methodology in the design of structural
indexes, workload-aware structural indexes, and statistical
summary structures, along with their corresponding access
and maintenance algorithms.
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