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The NCI Developmental Therapeutics Program Human Tumor cell line data set is a publicly available
database that contains cellular assay screening data for over 40 000 compounds tested in 60 human tumor
cell lines. The database also contains microarray assay gene expression data for the cell lines, and so it
provides an excellent information resource particularly for testing data mining methods that bridge chemical,
biological, and genomic information. In this paper we describe a formal knowledge discovery approach to
characterizing and data mining this set and report the results of some of our initial experiments in mining
the set from a chemoinformatics perspective.

INTRODUCTION

Since 1990, National Cancer Institute Developmental
Therapeutics Program (DTP) has been screening compounds
against a panel of 60 human tumor cell line assays. The
results are available on the DTP Web site.1 Approximately
10 000 compounds are screened each year, and at the time
of writing, results were available for 44 653 compounds
including growth inhibition (GI50), lethal dose (LD50), and
total growth inhibition (TGI). The untreated cell lines have
also been run through microarray assays, yielding gene
expression information.

The tumor cell line data set is interesting in several ways
relating to current research in finding biomarkers that cross
different kinds of data and in using chemical, biological, and
genomic information together. First, it provides a well curated
set of tumor-related cellular assay screening results for a large
number of compounds (the 60 cell lines include melanomas,
leukemias, and cancers of the breast, prostate, lung, colon,
ovary, kidney, and central nervous system2), which can be
considered as a surrogate for high-throughput screening data.
Second, the gene expression profiles of untreated cell lines
allow some level of integration of genomic information with
chemical and biological information. Third, the program is
ongoing and so the tumor cell line data set is continually
growing, but the cell lines themselves are stable (both in
terms of number and comparability of results). Fourth, and
most importantly, the data are made freely available through
the DTP Web site and are thus available for research and
publication.

A substantial amount of research on the tumor cell line
data set has been carried out locally at the NCI laboratories
including development of the COMPARE algorithm3,4 which
measures similarity between vectors of screening results of

compounds using a Pearson correlation coefficient. A search-
ing program based on COMPARE is available online.5

Zaharevitz et al.4 cite several examples of the successful
application of these approaches in drug discovery projects.
The original authors of COMPARE also introduced the use
of themean graph3 that gives a visual bar graph representa-
tion of the difference between the screening result for a
particular compound and the mean for all compounds, across
the 60 cell lines. This representation has been widely used
alongside COMPARE.

Other research has used neural networks6 to classify
compounds in the set. In their 2000 paper, Scherf et al.7

examine correlations between compounds’ high-throughput
screening results (the activity pattern set) and mRNA
expression levels. Recently, Rabow et al.8 performed a
clustering of the tumor cell line data set based on the activity
profiles, using a self-organizing map (SOM). Other work at
the NCI focused on ellipticine analogs and the potential
relationship between the mechanism of action and the 60
cell line activity profiles. The compounds were grouped using
hierarchical clustering, and a significant difference in activity
profiles was found for groups with different mechanisms of
action9 which led to a follow-up QSAR study.10

Researchers at Leadscope Inc. have applied their Lead-
scope software11 to relate the information in the tumor cell
line data set to structural feature analysis of the DTP
compounds, including analysis similar to that done by
Scherf12 and correlations of chemical structural features of
cytotoxic agents with gene expression data.13 Blower et al.14

also applied a three-stage pipeline to the data set, including
filtering for druglikeness, structure alerts, promiscuity and
diversity; structural feature based classification using a
variant of Recursive Partitioning (requiring separation of
actives and inactives) and organization based on hierarchical
clustering; and SAR analysis through R-group assembly,
macrostructure assembly, and predictive models. The re-
searchers found a close match between classifications and
clusters found by Leadscope and manual classifications
previously identified at NIH.
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Recently, Richter et al.15 have evaluated an activity
prediction model based on both structural information and
genomic information, and at Bristol-Myers Squibb, a version
of recursive partitioning derivative was applied.16 Fang et
al.17 developed a set of Internet-based tools that permit
correlations to be found between the activity profiles, gene
expression profiles, and compounds using COMPARE as
well as Spearman & Kendall correlation coefficients and a
p-test to indicate significance of correlation results.

In this work, we have focused on characterizing the
compounds present in the data set and applying a variety of
methods to discover relationships between the compounds
and the biological activity values. We have tried to take a
more formal approach to data mining, such as has been
applied in other domains where large volumes of information
need to be searched for important associations.Data Mining,
and more generallyKnowledge DiscoVery in Databases
(KDD), is an area of computer science that has attracted a
significant amount of research, industry, and media attention
in the past decade, as the amount and complexity of
information in databases has increased. Many KDD tech-
niques, such as cluster analysis and decision trees, are already
well established in chemical and bioinformatics, while others,
such as data cleaning and pattern verification and discovery,
are less widely applied.

PRINCIPLES AND PRACTICES OF KNOWLEDGE
DISCOVERY IN DATABASES

KDD is usually defined as the process of identifyingValid,
noVel, potentially useful, and ultimately understandable
patterns from large collections of data. At an abstract level,
it is concerned with the development of methods and
techniques for making sense of data. Since its debut in 1989,
KDD has become the most rapidly growing field in the
database community and was soon adopted in other business
and scientific areas, such as marketing, fraud detection, and
bioinformatics. In practice, this field covers techniques often
applied in chemoinformatics including cluster analysis,
machine learning, and visualization techniques. Several KDD
models have been proposed in the past decade. For the
discussion in this paper, we adopt the 7-step KDD process
presented in the most popular data mining textbook by Han
and Kamber:18 data cleaning, data integration, data selection,
data transformation, data mining, pattern evaluation, and
knowledge presentation.

Knowledge Discovery goals are defined by the intended
use of the system. Goals may beVerification goals, in which
the system is limited to verifying users’ hypotheses, or
discoVery goals, in which the system is required to autono-
mously find entirely new patterns. Discovery goals may be
descriptiVe (requiring characterization of general properties
of the data in the database) andpredictiVe (requiring
predictions to be made using the data in the database).

Discovery goals are generally achieved throughdata
mining. Data mining involves fitting models to, or determin-
ing patterns from, observed data. Model fitting may be
stochastic or deterministic, although stochastic approaches
are the most frequently used.

The first task of data mining is concept description. A
concept is a labeling of a collection of data, such as labeling
a set of “graduate students”, “best-seller books”, etc. The

goal of concept description is to summarize the data of the
class under study in general terms (data characterization)
and to provide a description comparing two or more
collections of data (data discrimination). Several methods
have been proposed for efficient data summarization and
discrimination. For example, a data cube19 can be used for
user controlled data summarization among concept hier-
archies; analytical characterization can be used for unsuper-
vised data generalization and characterization. After concept
description, classification may be applied. The purpose of
data classification is to find a set of models that describes
and distinguishes data classes or concepts. Usually, finding
such models is not the ultimate goal but rather the first step
of using such models to predict the class of objects whose
class is unknown or to predict future data trends. Decision
trees are one of the most popular methods for data clas-
sification and predication.

In addition to classification, unsupervised clustering may
be applied. The goal of cluster analysis is to examine data
objects without consulting known class labels and is generally
used as a way of organizing the database. In cluster analysis,
objects are grouped based onmaximizing the intraclass
similarity and minimizing the interclass similarity.An
excellent overview of clustering in chemoinformatics is given
by Downs and Barnard.20 Popular clustering algorithms used
in data mining include partitioning methods such as k-
means,21 k-mediods,22 and CLARANS23 algorithm; hierarchi-
cal methods such as agglomerative and divisive algorithms,
BIRCH24 algorithm, CURE25 algorithm, and Chameleon26

algorithm; density-based methods such as DBSCAN,27

OPTICS,28 and DENCLUE;29 grid-based methods such as
STING,30 WaveCluster,31 and CLIQUE;32 and model-based
methods such as classification trees and neural networks. It
is interesting to note that there is only limited overlap
between the methods popularly applied in chemoinformatics
and those applied in the data mining community as a whole.

Finally, association analysis may be applied. The goal of
association analysis is the discovery of association rules
showing attribute value conditions that occur together
frequently in a given set of data. The Apriori33 algorithm
family has variants that are suitable for various data types
and database models. Combining the association analysis and
concept hierarchies, one may generalize the association rules
with ISA relationship or various aggregations on different
granularities.

Raw data are often not suitable for data mining, due to
noise, missing or inconsistent data points, or lack of
normalization across data sources. Preprocessing must there-
fore be applied. The purpose ofdata cleaningis to fill in
incomplete data, smooth out noise, and correct inconsisten-
cies. Data may be incomplete when attributes of interest are
missing. Approaches for filling missing values include
ignoring entries with missing values, filling missing values
manually, using a global constant, using the attribute mean
to fill in missing values, using the attribute mean for all
samples belonging to the same class as the given entry, using
the most probable value, and so on.Noisy datausually refers
to data that contain errors or outlier values that deviate from
the expected values. Approaches for noise elimination include
the following: binning (smoothing a sorted data value by
consulting its neighborhood), clustering (clustering data to
detect and eliminate outliers), hybrid methods combining
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computer and human inspection, and regression (fitting the
data to a function).Inconsistent datamay be the result of
errors that happen during data entry or due to the heteroge-
neous nature of data. The first usually needs to be handled
manually. The inconsistency and data redundancy caused by
heterogeneous data resources are usually handled in the data
integration process.

Data integration and transformation are needed when data
from heterogeneous resources are merged and transformed
into forms appropriate for mining. In the data integration
process, ontology is usually used for schema integration.
Additional attention is needed to detect and resolve data value
conflicts, such as attributes representing the same concept
but using different units. Data transformation techniques
include smoothings removing the noise from data, ag-
gregation, generalizations low level data are replaced by
high level concepts, normalizations attribute data are scaled
to fall within a small specific range and attribute construction
s construct a new attribute to help mining.

Besides precision, performance is another important issue
in data mining. The purpose of data selection is to obtain a
data representation that is much smaller, yet closely maintains
the integrity of the original data. Data reduction is the most
common practice used in data selection. Many strategies have
been proposed for data reduction: (1) Data cube aggrega-
tion,19 where aggregation operations are applied to the data
in the construction of a data cube. (2) Dimension reduction,
where irrelevant, weakly relevant, and redundant attributes
or dimensions are removed. The most popular dimension
reduction algorithms are stepwise forward selection, stepwise
backward elimination, hybrid (combination of forward selec-
tion and backward selection), and decision tree induction.
(3) Data compression, where encoding is used to reduce the
data size. Techniques include wavelet transformation, prin-
cipal components analysis, etc. (4) Numerosity reduction,
where the data are replaced or estimated by alternative,
smaller data representations such as parametric models, by
regression and log-linear models, histograms, clustering, or
sampling. (5) Discretization and concept hierarchy generation
where raw data values for attributes are replaced by ranges
or higher conceptual levels.

A data mining system can generate thousands or even
millions of clusters, classes, patterns, and rules. Not all of
them are interesting to all users. The measurement of the
“interestingness” of a pattern is subjective. Typically, a
pattern is considered interesting if it is novel, valid with some
degree of certainty, potentially useful, and easy to understand.
It is unrealistic to expect a data mining system to generate
all interesting patterns or only interesting patterns. This
makes the measuring of pattern interestingness an essential
component in KDD. A desirable feature of any data mining
system is the development of a proper measurement model
for a given field or user group and the use of it not only
after all patterns are detected but also in the process of data
mining as a guide for pruning uninteresting patterns and to
speed up the mining process.

The data mining results, whether they are clusters or
association rules, need to be presented to users (who usually
are in the area of applications and are not database or data
mining experts) before they can be deployed. Visualization
and knowledge representation techniques are required to
present the mining result to users, to improve the understand-

ability. This is especially important for supervised mining
tasks, where the user’s involvement is required in the mining
process.

DATA CLEANING, INTEGRATION, SELECTION, AND
TRANSFORMATION

At the time of writing the tumor cell line data set contained
257 547 compounds in total. Among those compounds,
44 653 compounds have cell line screening data (GI50, LC50,
TGI data), and the total number of cell lines is 159, although
only 60 of those cell lines have gene expression data. The
gene expression data consist of 961 gene expression values
for each cell line.23 For the experiments reported here, we
implemented a local version of the database containing the
44 653 compounds, screening results and gene expression
values using PostgreSQL along with the gNova CHORD
extension to allow chemical searching and generation of
fingerprint bits.34 166-Bit structural key fingerprints were
produced with gNova, based on a SMARTS-based interpre-
tation of the public MACCS key set available from MDL.35

Characterization of the Chemical Compounds.There
are several well-established methods of characterizing com-
pounds by chemical properties or structural features. We
applied two methods to characterize the compounds: first,
calculation and profiling of predicted property values com-
pared to two other well-established data sets, and second, a
2D fingerprint based structural feature comparison with
compounds in one of the data sets.

In our first experiment, we chose three compound data
sets for comparison to the tumor cell line set. The first is
the FDA’s Maximum Recommended Therapeutic Dose
(MRTD) set containing 1220 current prescription drugs
available in SMILES format from the FDA Web site.36 We
chose this set as a representative of current marketed drugs.
The second two sets were randomly selected 40 000 com-
pound subsets of PubChem, a freely available chemical
database,37 used as representatives of a diverse set of
chemical structures. We calculated properties (Molecular
Weight, XLogP, Polar Surface Area, and Numbers of
Hydrogen Bond Donors and Acceptors) for all of the
structures in the data sets using OpenEye FILTER38 and then
generated property distribution plots for each of the properties
for each of the data sets. These profiles can be seen in Figure
1. The most striking result is that the profiles for the tumor
cell line set are very similar to those for the MRTD set,
indicating that the compounds in the tumor cell line set are
very “druglike”. The noticeably different (but consistent)
profiles for the two PubChem subsets indicate that the
compounds in PubChem are more diverse.

In our second experiment we compared the similarity of
the drug compounds in the MRTD with the most similar
compounds in the tumor cell line set: the distribution of the
Tanimoto similarity values of the 166-bit fingerprints is
shown in Figure 2. Overall 29% of the compounds in the
MRTD set have a counterpart in the tumor cell line set with
similarity greater than 0.8.

Characterization of the Cell Line Screening Growth
Inhibition Values. We then went on to examine the
distribution of the-log GI50 data points (henceforth referred
to as growth inhibition values) across cell lines and com-
pounds. First, it is important to note that there is missing
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data: overall 12.1% of the cell line screen data points are
missing. Figure 3 shows the percentage of compounds with

missing data for each cell line. Only 2696 compounds (6%)
have the growth inhibition values for all the 60 cell lines.

Figure 1. Comparative distribution of various properties for the compounds in the MRTD set (first column), tumor cell line set (second
column), and two Pubchem subsets (third and fourth columns).
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Growth inhibition values at or near 4.0 indicate inactivity
of compounds (i.e., doses of less than 10-4 molar did not
inhibit growth). Overall 44.9% of growth inhibition values
are equal to 4.0 (see Figure 4 for the distribution across cell
lines). When these compounds are removed from the set, a
normal distribution can be seen with a peak of values less
than 5.0, indicating inactive or extremely weakly active
compounds. Based on this data distribution, we decided for
our experiments to set the cutoff for determining whether a
compound was active or inactive at 5.0: we consider the
data which are less than 5 as inactive (set as 0) and the data
which are greater or equal to 5 as active (set as 1). Overall,
19.6% compounds are considered active using this cutoff.
The percentage of compounds considered “active” using this
cutoff for each of the 60 cell lines is shown in Figure 5.

Characterization of the Gene Expression Results.
Although this paper does not directly address data mining
of the gene expression results, we carried out some initial
experiments to characterize the data, for completeness and
as a basis for future data mining experiments. The distribu-

tions of the microarray gene expression data are shown in
Figure 6. The values less than zero represent underexpression
from the norm and the values above zero represent overex-
pression. As shown, the overall distribution and the distribu-
tion for individual cell lines are very similar. Based on these
distributions, for our work we decided to consider values
less than or equal to-1.0 and greater than or equal to 1.0
to indicate under or overexpression, respectively.

Predicting Missing Activity Values. In order to test
whether it might be possible to estimate the missing data
points using computational prediction, we applied a machine
learning tool, WEKA,39 on the 2696 compounds which have
values for all 60 cell lines. We did two prediction experi-
ments using various methods: first using only 166 known
attributes to predict one attribute (the 166 fingerprint is
known and the cell line information is unknown); second a
leave-one-out approach, using 255 known attributes to predict
one attribute (the 166 fingerprint and 59 cell line growth

Figure 2. Distribution of Tanimoto similarity values (x-axis)
between compounds in the MRTD set and the most similar
compound for each in the tumor cell line set.

Figure 3. Fraction of the compounds with missing data for each
of the 60 cell lines.

Figure 4. Fraction of compounds with growth inhibition values
of 4.0 for each of the 60 cell lines.

Figure 5. Fraction of compounds showing activity in each of the
60 cell lines.
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inhibition values as known attributes, one cell line growth
inhibition value as unknown). Tables 1 and 2 show the
accuracy of the prediction using various methods (ADTree
and REPTree, two decision tree methods; RIDOR, a rule-
based method; AODE and BayesNet, two Bayesian methods;
and VFI, a voting feature interval classifier). The columns
show the true and false positive rates, precision, and activity
class for each of the methods. Clearly the accuracy is poor
when only fingerprint bits are used, but is much improved
when other cell line data are included. We may therefore
assume that activity in one cell line is related to activity in
others. While we would have liked to use this method to

predict missing values, we are not confident that the set is
complete enough to warrant it: 90% of the compounds miss
some cell line data and only 10% of compounds are missing
only one cell line data.

DATA MINING

Having obtained some broad characterizations of the
compounds and cell line screening results in the set, we
performed several experiments to find relationships between
2D chemical structure and activities across the 60 cell lines.
Our intention in these experiments was to use both statistical
and predictive modeling methods to look for associations
and relationships between chemical structure features (as
encoded by the 166-bit fingerprints) and the actual activities
of the compounds in the 60 cell lines. Specifically, we
applied a standard statistical ratio technique across all the
cell lines, a random forest predictive modeling technique (as
might be used in QSAR studies) to each cell line individually,
and a novel rule-based SMARTS matching procedure that
effectively generates “on-the-fly” structural descriptors re-
lated to activities.

Relating Dictionary-Based Structural Keys to Cellular
Screening Activities. The activity classifications (active,
inactive) and the structural key fingerprint bits described
previously were used to determine which structural features
were either more prevalent or scarce in active compounds
compared with inactives. Two ratios, the active-structural
ratio and overall-structural ratio, were created. The active-
structural ratioRa,j for a structural featurej is defined as

whereTa,j is the total number of compounds with the feature
j, andCa is the set of active compounds. The overall-structure
ratio Rj is defined as

Figure 6. Distribution of the microarray gene expression data across all the 60 cell lines (left) and for five randomly selected cell lines
(right).

Table 1. Accuracy of the Prediction Using Only Fingerprint
Information

methods TP_Rate FP_Rate Precision Class

ADTree 0.087 0.047 0.434 0
0.953 0.913 0.713 1

REPTree 0.192 0.098 0.451 0
0.902 0.808 0.727 1

Ridor 0.029 0.008 0.59 0
0.992 0.971 0.709 1

AODE 0.389 0.227 0.418 0
0.773 0.611 0.751 1

BayesNet 0.436 0.303 0.376 0
0.697 0.564 0.747 1

VFI 0.545 0.413 0.356 0
0.587 0.455 0.755 1

Table 2. Accuracy of Prediction Using Fingerprint and Cell Line
Information

methods TP_Rate FP_Rate Precision Class

ADTree 0.813 0.092 0.787 0
0.908 0.187 0.92 1

REPTree 0.781 0.087 0.789 0
0.913 0.219 0.909 1

Ridor 0.785 0.091 0.784 0
0.909 0.215 0.91 1

AODE 0.815 0.102 0.771 0
0.898 0.185 0.921 1

BayesNet 0.82 0.109 0.759 0
0.891 0.18 0.922 1

VFI 0.83 0.118 0.746 0
0.882 0.17 0.925 1

Ra,j )
Ta,j

|Ca|

Rj )
Tj

|C|
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whereTj is the total number of compounds with a structural
featurej, andC is the complete set of compounds. We may
then calculate the difference between these values, which
provides a statistical value for how much more prevalent or
absent a featurej is in the active compounds compared with
the feature in all compounds:

Figure 7 plots the difference between the active ratio and
the overall ratio for each of the 166 keys. A positive value
indicates the greater percentage of this feature appearing in
the active cells. Alternatively, a negative value indicates the
lack of the feature in the active compounds compared with
all compounds. Each feature was evaluated across all 60 cell
lines, and thus each bar on thex-axis of the chart (each
structural attribute) is based on 60y-values. The effects of
the substructure on the compounds’ activities are very

consistent as shown in the figure. Nearly all 60 cell lines
follow the same track. Thus, we can use the average
difference of the active ratio and the overall ratio to find the
most important substructures in determining the “global”
activity and inactivity. We may consider the features
associated with global activity to be indicative of promiscuity
(i.e., the tendency to bind to anything) and those associated
with inactivity to be ones that tend to stop binding to tumor
growth related proteins in a variety of situations. We found
that the bits 105, 127, 145, 152, and 99 are the most
important bits for activity and the bits 117, 110, 92, 77, and
95 are the most significant bits for inactivity. The Daylight
SMARTS strings40 and reasonable interpretations of those
significant bits are shown in Table 3. In interpreting these
results, it should be noted that approximately 5% of the
structural keys differ only in the number of features present
in the molecule, and some that almost never occur in
biological molecules.

We may deduce from this that compounds with multiple
ring systems, particularly involving oxygens and methyl
groups, tend to be associated with activity, and close non-
amide formations of nitrogens and oxygens as well as sulfur-
containing compounds tend to not be active. This is borne
out by looking at compounds which are active or inactive in
all cell lines: a few examples are given in Figure 8.

Predictive Models of Activity. As shown in the last
section, some structure features are highly correlated with
activity or inactivity across the cell lines. We next performed
experiments to see if it would be possible to build a predictive
machine-learning model that can predict individual activity
in each of the 60 cell lines. Our previous study with WEKA
shows the AD-Tree and Ridor methods work best of the
models available in that package. As an example, we initially
applied those two methods on various feature subsets using
cell line 60 (UO-31). The features are selected based on the
rank of active and inactive features across all 60 cell lines
and the rank of activity and inactivity features on cell line
60. For example, 20 features contain the top 10 active
features and top 10 inactive features.

Figure 7. Difference in active structural ratio and overall structural
ratio. Each of the 166 structural attributes is represented across the
x-axis with the 60 cell lines displayed in various points. The central
line shows the mean difference in active structural ratio and overall
structural ratio.

Table 3. SMARTS and Interpretation for the Bits Associated with Global Activity and Inactivity

SMARTS bit interpretation

Significant Features for Activity
*@*(@*)@* 105 multiple ring system
*@*!@[#8].*@*!@[#8] 127 >1 aliphatic oxygen joined to a ring
*∼1∼*∼*∼*∼*∼*1.*∼1∼*∼*∼*∼*∼*1 145 >1 6-membered rings
[#8]∼[#6](∼[#6])∼[#6] 152 tertiary carbon with 2 carbons and 1 oxygen attached
CdC 99 double-bonded carbons
[CH3].[CH3] 149 >1 methyl group
[CH3].[CH3].[CH3] 141 >2 methyl groups
[CH3]∼*∼*∼[CH2]∼* 116 methyl 3 bonds away from a chain carbon
[CH3]∼*∼[CH2]∼* 115 methyl 2 bonds away from a chain carbon
[#7]∼[#8] 71 NO

Significant Features for Inactivity
[#7]∼*∼[#8] 117 nitrogen one bond away from an oxygen
[#7]∼[#6]∼[#8] 110 N-C-O
[#8]∼[#6](∼[#7])∼[#6] 92 OC(N)C
[#7]∼*∼[#7] 77 two nitrogens separated by one bond
[#7]∼*∼*∼[#8] 95 nitrogen two bonds away from an oxygen
[!#6]∼*(∼[!#6])∼[!#6] 106 heteroatom bonded to atom with 2 branched heteroatoms
[#16] 88 sulfur
[#16]∼*(∼*)∼* 81 sulfur off a branched system
[!#6]∼[#7] 94 heteroatom bonded to a nitrogen
[#7]∼[#6](∼[#6])∼[#7] 38 NC(C)N

diff j ) Rj - Ra,j
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The results of these experiments are shown in tabular form
(Table 4) and graphically (Figure 9). Clearly, not all 166
structural features are useful in determining the cell line
activity. Our experiments show that the best prediction
accuracy for AD-tree only uses 60 structural features and
that the best prediction accuracy for Ridor only uses 80
structural features if the features are chosen based on the
rank cross all cell lines. By limiting the number of features,
we can increase the prediction accuracy for the inactive group
from 43% to 62% for AD-tree and from 51% to 71% for
Ridor. The best prediction accuracy for AD-tree only uses
40 structural features, and the best prediction accuracy for
Ridor only uses 80 structural features if the features are
chosen based on the rank over cell line 60. It also shows
that the feature selection helps increase the prediction
accuracy. Interestingly, the feature selection based on cell
line 60 is slightly worse than the feature selection based on
all 60 cell lines.

In addition to these methods, we also considered the
random forest.41 This technique has become popular in the
data mining community, and there are a number of examples
of its use in the chemical informatics literature.42-44 The
random forest is essentially an ensemble of decision trees
and is thus an example of a bagging method.45 The ensemble
character of this method leads to some useful characteristics.
Most important for our purposes is the fact that to develop
a random forest model, one is not required to perform feature
selection a priori. In addition, it can be shown that a random
forest model does not overfit. That is, increasing the number
of trees in the ensemble does not lead to overfitting, and the
only real disadvantage is the increase in memory consump-
tion.

We developed 60 random forest models, one for each cell
line, using the randomForest package available in R.46 We
considered the 166-bit fingerprints previously described for
the input features. For general usage the default settings for
the method lead to good results. The main parameter of
interest is the number of trees in the ensemble. As noted
above, a higher number of trees does not lead to overfitting.
However the default value of 500 trees led to excessive
memory consumption when we built all 60 models. We
investigated a number of values for this parameter and settled
on 250 trees. The models were developed on a machine
equipped with a 3.2 GHz dual core Xenon CPU and 2 GB

Figure 8. Example compounds which are active in all cell lines (top row) or inactive in all cell lines (bottom row). Depictions were
generated by the Molinspiration package, www.molinspiration.com. Features identified in Figure 3 are highlighted.

Table 4. Accuracy of the Prediction Based on Various Structure Features

based on the rank cross all cell lines based on the rank over cell line 60

AD-Tree Ridor AD-Tree Ridor

features inactive active inactive active inactive active inactive active

10 0.35 0.71 0.24 0.70 0.22 0.71 0.33 0.71
20 0.48 0.71 0.46 0.71 0.47 0.71 0.52 0.71
40 0.60 0.72 0.54 0.71 0.61 0.72 0.48 0.71
60 0.62 0.72 0.56 0.71 0.58 0.72 0.61 0.71
80 0.51 0.71 0.71 0.71 0.33 0.71 0.62 0.72

100 0.44 0.72 0.64 0.71 0.46 0.75 0.62 0.72
120 0.41 0.71 0.63 0.71 0.46 0.75 0.62 0.72
140 0.46 0.72 0.61 0.71 0.49 0.74 0.61 0.72
166 0.43 0.71 0.59 0.71 0.43 0.71 0.59 0.71

Table 5. Smarts Bond Types

∼ general bond, any possible bond
-!@ single bond, not part of a ring
)!@ double bond, not part of a ring
# triple bond
-@!: single ring bond, not aromatic
)@!: double ring bond, not aromatic
: aromatic bond
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RAM running Fedora Core 5. On average, the development
of a single model took 16.5 min. Since we had a dual core
CPU, we processed two cell lines at a time, thus leading to
a total run time of 8 h to develop all 60 models. Note that
the speed of this process could easily be increased by utilizing
one of the many parallel execution packages available for R
(such as snow) and a cluster of machines. Alternatives to
the random forest could also be considered. Since we are
mainly interested in pure predictive ability (as opposed to
developing a model of the underlying distribution) one
possible approach would be to consider a k-nearest neighbor
classification. Though simplistic in nature, this method would
be relatively fast, though for larger data sets this may not be
such an advantage unless appropriate nearest neighbor
detection algorithms were employed. The downside to this
and other methods is that some sort of feature selection would
need to be performed prior to the prediction step.

As has been noted above, the data sets for each cell line
represent an unbalanced classification problem, with the
actives being the minor class. As can be seen from Table 4,
this leads to very poor predictive performance, since new
observations will tend to be classified as inactive, by default.
To alleviate this problem in our random forest models, we
specified that for each tree in the ensemble the algorithm
should consider all the actives as well as a set of randomly
selected inactives in the ratio of 1.0:0.6. Thus each tree in
the ensemble would not see the highly unbalanced data set
but would in fact see a subset that was enriched by the
actives. By including a smaller number of inactives, one can
effectively force each individual tree to exhibit a high

predictive accuracy for the minor (active) class. It is clear
that this is simply the reverse of the current situation, where
we have very good predictive accuracy for the major
(inactives) class. As a result, we experimented with a variety
of ratios until we obtained a ratio where the predictive
accuracy for the minor and major class were approximately
equal. We realize that this approach does lead to a model
biased in favor of the actives. We believe that this is justified
since our aim is to try and avoid false negatives. Thus by
biasing toward the active class, we not only improve the true
positive rate but also increase the false positive rate at the
expense of the false negative rate. Finally, for each cell line
we considered only those observations that had measured
values of growth inhibition and split the data sets, such that
70% was placed in a training set and 30% in a test set.

The plots in Figure 10 summarize the predictive accuracy
for the 60 models that were developed using the above
approach. We consider the predictive accuracy in three
ways: Box A represents the range of percentage correct
prediction for the test set overall, across the 60 cell lines.
For this case we utilized the g-mean measure of accuracy
described by Kubat et al.47 which takes into account the
unbalanced nature of the test set. The worst model exhibited
a 67% correct accuracy, while the best model exhibited close
to 77% correct. Box B represents the percent correct
prediction for the actives, across all 60 cell lines. It is clear
that the variation in the accuracies for the 60 models is much
smaller when the actives are considered in isolation. This is
not surprising, since by construction the models are expected
to fare better on the actives. Thus we see that the accuracies

Figure 9. Accuracy of the prediction based on various structural features: (a) structural features are ranked across all cell lines and (b)
structure features are ranked over cell line 60.
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range from 74% to 79% correct. In contrast, Box C represents
the percent correct prediction for the inactive class over the
60 cell lines. It is clear that the spread of accuracy is much
more than for the actives, and once again this is a result of
our model construction. As we noted above, our focus is on
identifying actives, thus we accept a slightly poorer perfor-
mance on the inactive class.

The models have been deployed in our Web service
infrastructure,48 allowing access to predictions from any client
that supports SOAP. As an example we have provided a Web
page client that allows one to supply a set of SMILES and
obtain the predicted activity class for all 60 cell lines. In
addition, the probability associated with each classification
is also provided. Thus, values greater than 0.5 indicate an
increasingly higher probability of being predicted active and
correspondingly for values lower than 0.5. The Web page
can be accessed at http://www.chembiogrid.org/cheminfo/
ncidtp/dtp.

Relating Freely Generated SMARTS Structures to
Cellular Screening Activities. Our previous experiments
used a constrained dictionary of 166 SMARTS fragments.
We were also interested in applying a free-form approach
that has been developed at the University of Michigan in
which a larger number of SMARTS-based fragment keys
are generated. A brute force method of lengthening and
scoring SMARTS strings was applied in order to establish
SMARTS strings up to seven atoms long that have a strong
tendency to identify active and inactive compounds across
the cell lines. For this experiment we used an updated version
of the NCI/DTP 60 cancer cell line data set obtained through
PubChem. A MOE database was created for the 42 888
compounds that had both structural and growth inhibition
data in order to perform iterative scoring based SMARTS
structural similarity searches. This method tracks active and
inactive hits for a set of SMARTS strings across the entire
data set. SMARTS strings are then scored, evaluated, ranked,
pruned, and extended for subsequent searches.

Scoring is determined by the ratio of active compounds
identified by a SMARTS string divided by the number of
inactive compounds identified by the same SMARTS string.
With this method, scores will range from 0 to∞. The ratio
of active to inactive compounds in the NCI/DTP data set is
7274 to 35 664. If we took a random sampling of the data
set we would expect to find one active compound to every
five inactive compounds selected. Therefore, the ratio of
significance is 1:5 or 0.2. Here we will consider SMARTS
strings that demonstrate a tenfold improvement in active or
inactive hits as significant. That is, the score of significance
for SMARTS strings identifying active compounds is greater
than or equal to 2.0 and less than or equal to 0.02 for inactive
compounds. Weight can further be given to SMARTS stings,
which have a high number of total hits. For example, if
SMARTS string A has a score of 5.0 with a total of six hits,
five active and one inactive, it is not as significant as
SMARTS string B with a score of 5.0 with 240 total hits,
200 active and 40 inactive. In this case SMARTS string A
may likely be an artifact of the data set.

Adjusting the scores of significance with the ratio of
significance allows one to deal with an unbalanced data set
with an even greater skew than the NCI/DTP data set. If the
active:inactive ratio of significance were much smaller, for
example 1:100 or 0.01, the score of significance for an
inactive substance would be taken to be greater than or equal
to 0.1. Furthermore, with this strong bias in the data set
toward inactives, we would expect that there would be fewer
SMARTS strings associated with active substances and more
associated with the inactives.

The specific algorithm applied for identifying and length-
ening SMARTS strings incorporates three pruning rules at
various stages to eliminate redundancies, to improve com-
putational efficiency, and to eliminate artifacts. The workflow
of our algorithm is depicted in Figure 11. This procedure
was performed on a Dell Precision 380 workstation with 3
gHz CPU with 1 GB RAM. Runtimes for each iteration of

Figure 10. A box and whisker summary of the prediction accuracy
for the 60 random forest models developed for the NCI DTP cell
lines. Box A is the percent correct accuracy for the overall test set,
box B is that for the actives, and Box C is that for the inactives. In
each case, the whiskers extend to the extremes of the observed
accuracy over the 60 cell lines. Figure 11. Algorithm workflow.
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the algorithm were based on the size of the SMARTS string
set and ranged from to 2 min to 11 h, for sets on the order
of 100 and 20 000, respectively.

The details of the steps performed are as follows:
1. Select Initial SMARTS Strings.

For the sake of generality, elements 2-105 of the
periodic table were selected as single atom SMARTS
strings. Hydrogen was not included in this SMARTS
string set, as SMILES strings and the molecular
connectivity tables provided typically suppress hydro-
gen atoms.

2. Search & Score
A substructure search was performed against the

NCI/DTP data set using the SMARTS string set.
Scores were tabulated, and a bit string hit profile was
maintained for each individual SMARTS string across
all 42 888 compounds. A bit string hit profile consists
of a string of 42 888 1’s and 0’s, where 1 means that
the SMARTS string is found within the compound,
and 0 means that the SMARTS string could not be
found within the compound.

3. Record incremental SMARTS String Results.
If SMARTS Strings contain seven atoms and no

general bond types, then terminate the algorithm.
4. Apply Pruning Rule 1 to eliminate redundancies.

Maintain only one SMARTS string child per unique
bit string hit profile. The lengthening of SMARTS
strings is a tree process leading to the exponential
generation of child SMARTS strings. Bit string profiles

are used in order to limit branching as they serve to
identify all duplicate SMARTS strings as well as
SMARTS strings that do not hit any compounds.
Pruning will improve the efficiency of subsequent
substructural searches.

5. Apply Pruning Rule 2 to improve computational
efficiency.

If the number of SMARTS string children exceeds
24000, then drop all parent SMARTS strings having
scores in the range [0.2/X and 0.2*X]. Starting withX
) 1.5, increaseX in increments of 0.1 until the number
of SMARTS string childrenr 24 000.

6. Check Bonds to select rules for generating child
SMARTS strings.

a. Vary Bond: If the parent SMARTS strings
contain general bonds, then generate all possible
SMARTS string children by varying the bond type.
For SMARTS strings with fewer than five atoms all
six specific bond types were used. For SMARTS
strings with five atoms or more, the triple bond was
disregarded. See Table 5 for a description of the bond
types.

b. Lengthen: If the parent SMARTS strings do not
contain any general bonds (∼), then generate all
possible SMARTS string children by joining a single
atom to all the potential locations on the SMARTS
strings with a general bond. For SMARTS strings with
fewer than five atoms, the following atoms were
appended to the parent SMARTS string: B, C, N, O,
Si, P, S, F, Cl, Br, and I. These elements were selected,
as they are among the most common in the PubChem
compound data set. Table 6 shows the 14 most
common single atom SMARTS strings found in the
NCI/DTP data set based on the number of compounds
identified. Na, Sn, and Pt were not included because
our SMARTS strings only consider covalently bound
atoms. For SMARTS strings with five or more atoms,
C, O, N, P, and S were appended to the parent
SMARTS strings. We limit the number of atoms based
on the most common nonmetals in order to keep the
number of children SMART strings in check. Using
common elements allows generation of SMARTS
string children that will hit compounds in the data set.

7. Apply Pruning Rule 3 to eliminate artifacts and improve
computational efficiency.

Table 6. Most Common Single Atom SMARTS Strings in the
NCI/DTP Data Set

SMARTS strings element 42 888 compounds score

[#6] C 42 845 0.2044
[#8] O 38 674 0.1965
[#7] N 34 992 0.1967
[#16] S 11 969 0.1555
[#17] Cl 8483 0.2772
[#9] F 2557 0.2246
[#35] Br 1832 0.2820
[#15] P 1305 0.1929
[#53] I 617 0.2390
[#14] Si 349 0.2246
[#11] Na 302 0.0942
[#50] Sn 198 2.1936
[#78] Pt 189 0.4427
[#5] B 136 0.1525

Table 7. Description of Resultsa

no. of
SMARTS

atoms
SMARTS
(possible)

SMARTS
(used)

SMARTS
(hits)

Active
(only)

Active
(mostly)

Inactive
(only)

Inactive
(mostly) Score Range

Data Set
Covered

1 105 104 67 1(0) 4(3) 13(3) 0(0) 0.0313-6.25 42 888
2 6930 690 133 4(0) 11(7) 16(1) 1(1) 0.0127-23.0 42 876
3 914760 2094 540 13(1) 26(21) 88(12) 3(3) 0.0132-23.0 42 871
4 1.81E+08 10 248 2470 45(1) 73(49) 481(89) 12(12) 0.0127-31.0 42 862
5 4.78E+10 22 584 18815 52(1) 48(19) 1232(318) 36(36) 0.00873-20.0 42 752
6 5.98E+12 8150 8146 31(1) 66(55) 877(264) 83(83) 0.00532-12.5 31 762
7 8.97E+14 17 155 6470 161(1) 304(204) 1814(359) 121(121) 0.00532-18.0 21 253

a SMARTS (possible) is the total number of possible SMARTS strings. SMARTS (used) represents the set of SMARTS strings used in each
iterative search after pruning. SMARTS (hits) is the number of SMARTS strings with unique bit string profiles. Active/Inactive (only) represent
SMARTS strings identifying compounds that are only active and inactive, respectively. Active/Inactive (cutoff) represent SMARTS scoring>2.0
and<0.02, respectively. Integers within parentheses () indicate the number of significant SMARTS that have a minimum of 10 active or inactive
hits. Score Range is minimum- maximum score. Data Set Covered is the number of compounds hit out of 42 888. The significant drop in Data
Set Covered for the last two rows resulted from Pruning Rule 2.
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For SMARTS strings with fewer than five atoms,
drop all children SMARTS strings with less than 20
total hits. For SMARTS strings having scores with five
atoms or more, drop all children SMARTS strings with
fewer than 100 total hits.

8. Go to Step 2.

Table 7 describes the overall results generated by our
algorithm. It includes the data for SMARTS strings with
modifications to all possible positions at which atoms may
be added, subject to pruning as noted within the algorithm.
Table 8 gives examples of the most selective SMARTS.

We then tested the SMARTS strings from the 166-bit
fingerprints with the scoring system from this method. Based
on the ratio of significance, the individual SMARTS strings
for identifying the active and inactive compounds showed
minimal increase and decrease in relative score. We identified
all compounds that contained all active motifs and inactive
motifs, respectively. When considering collections of low
and high scoring motifs in a Boolean AND operation, a 2-4-
fold respective increase in selectivity was identified. Fur-
thermore, it was found that when combining more than five
MACCS SMARTS strings the score minimally increased or

Table 8. Some of the Most Significant SMARTS Strings

order SMARTS Total Hits Score

Active (only) [#90] 1

∞

[#8]-!@[#25] 3
[#6]-@!:[#6]-!@[#50] 16
[#6]-@!:[#6]-!@[#50]-!@[#6] 13
[#8]:[#6]-!@[#7]-!@[#7])!@[#6] 10
[#6]:[#6]-@!:[#6]()@!:[#7])-@!:[#6]:[#6] 13
[#7]-!@[#6]:[#6]-@!:[#6]()!@[#7])-@!:[#6]:[#6] 12

Active (mostly) [#79] 29 6.25
[#15]-!@[#79] 24 23.0
[#6]-!@[#15]-!@[#79] 24 23.0
[#7]-@!:[#6]-@!:[#16]-@!:[#29] 32 31.0
[#6]-@!:[#6]:[#6]-!@[#6])!@[#7] 21 20.0
[#6]:[#6]-@!:[#6]-!@[#8]-!@[#6]-@!:[#8] 81 12.5
[#6]-!@[#8]-!@[#6]-@!:[#6]:[#6]:[#6]-@!:[#6] 80 15.0

Inactive (mostly) [#16]-@!:[#8] 80 0.0127
[#7]:[#16]:[#6] 77 0.0132
[#6]-@!:[#7]-!@[#7]-@!:[#6] 80 0.0127
[#8])!@[#6]-!@[#6]-!@[#6])!@[#7] 231 0.00873
[#8])!@[#6]-!@[#6]-!@[#6])!@[#7]-!@[#7] 190 0.00529
[#8])!@[#6]-!@[#6]-!@[#6]()!@[#7]-!@[#7])-!@[#6] 189 0.00532

Inactive (only) [#12] 14

0

[#7]-!@[#27] 46
[#7])!@[#6]-!@[#5] 29
[#7])!@[#6]-!@[#7])!@[#7] 75
[#6])!@[#6]-@!:[#7]-@!:[#6]-@!:[#7] 147
[#7]:[#6](:[#6]-!@[#6]-!@[#6])-!@[#8] 200
[#6]:[#7]:[#6](-!@[#6]-!@[#6]):[#6]-!@[#8] 178

Table 9. Scoring Selective MACCS SMARTS Strings

type MACCS SMARTS String no of. Active Hits no. of Inactive Hits Score

Active *@*(@*)@* 5102 19 855 0.2570
Active *@*!@[#8].*@*!@[#8] 3192 10 256 0.3112
Active *∼1∼*∼*∼*∼*∼*1.*∼1∼*∼*∼*∼*∼*1 5589 24 358 0.2295
Active [#8]∼[#6](∼[#6])∼[#6] 4836 19 565 0.2472
Active CdC 3275 12 144 0.2697
Active [CH3].[CH3] 3853 15 978 0.2411
Active [CH3].[CH3].[CH3] 2470 9006 0.2743
Active [CH3]∼*∼*∼[CH2]∼* 2099 7013 0.2993
Active [CH3]∼*∼[CH2]∼* 1921 5691 0.3376
Active [#7]∼[#8] 804 4296 0.1872
Active Boolean AND (5 highest scoring Active) 440 1034 0.7407
Active Boolean AND (All Active) 9 21 0.7500
Active Boolean OR (All Active) 7246 35 104 0.2064
Inactive [#7]∼*∼[#8] 2595 17 823 0.1456
Inactive [#7]∼[#6]∼[#8] 2383 16 376 0.1455
Inactive [#8]∼[#6](∼[#7])∼[#6] 2123 14 314 0.1483
Inactive [#7]∼*∼[#7] 2039 13 063 0.1561
Inactive [#7]∼*∼*∼[#8] 2407 14 617 0.1647
Inactive [!#6]∼*(∼[!#6])∼[!#6] 2121 13 468 0.1573
Inactive [#16] 1611 10 358 0.1555
Inactive [#16]∼*(∼*)∼* 1458 9636 0.1513
Inactive [!#6]∼[#7] 2261 12 817 0.1764
Inactive [#7]∼[#6](∼[#6])∼[#7] 944 6456 0.1462
Inactive Boolean AND (5 lowest scoring Active) 81 927 0.08738
Inactive Boolean AND (All Active) 32 272 0.1176
Inactive Boolean OR (All Active) 5275 28 573 0.1846
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decreased; however, the total number of hits significantly
decreased. See Table 9 for details. We then tabulated the
Boolean OR incorporating all active and inactive SMARTS
strings from the MACCS example. Almost all compounds
were selected, and the score of significance for both active
and inactive sets was∼0.2.

We took the Boolean OR for the four sets of SMARTS
from this example. As our sets of SMARTS strings were
tailored to the NCI60, we expected and confirmed that they
outperform the MACCS fingerprints. As one would expect
the Active(only) and Inactive(only) sets had scores of∞ and
0, respectively. The Inactive(mostly) set hit a total of 165
active compounds and 9372 inactive compounds, yielding a
score of 0.01761. The Active(mostly) set hit a total of 2999
active compounds and 9949 inactive compounds, respec-
tively, yielding a score of 0.3014. It appears that the Inactive-
(mostly) set has been better tailored to identifying inactive
compounds due to the low threshold score of 0.02 for each
SMARTS string. From this, it can be inferred that there was
very little overlap of inactive and active compounds identi-
fied. However in the case of the Active(mostly) set, there
was obviously considerable overlap. Suppose SMARTS
string A identifies two active compounds and one inactive
compound, while SMARTS string B identifies the same two
active compounds, it identifies a different inactive compound.
If we were to use Boolean OR, tabulating a new score when
both SMARTS A and B were used together, the new score
would be equal to 1.0 as two active compounds are identified
by both SMARTS and two inactive compounds are identified,
one by SMARTS string A and the other by SMARTS string
B. Therefore, due to the low threshold score required for
the Active(mostly) SMARTS strings, we cannot group their
properties with the Boolean OR and expect significant active
hit enrichment, but rather they must be used discretely in
order to maintain scores greater than or equal to 2.0. At this
juncture, it would be wise to identify the Active(mostly)
SMARTS strings with overlapping active and inactive
compounds. Further pruning needs to be performed on the
SMARTS strings sharing the same set of active compounds
in order to obtain the most orthogonal set. This can be
accomplished by maintaining only one SMARTS string
identifying a specific set of active compounds and dropping
all SMARTS strings identifying equal sized or larger sets
of different inactive compounds.

Finally, the most significant SMARTS strings can be used
to create molecular fingerprints to give a general prediction
regarding the activity of compounds yet to be assayed. This
method may be further complemented by addressing the
activity profiles of compounds identified by multiple selective
SMARTS strings. Also one might consider creating profiles
for each of the individual 60 cancer cell line assays and
weighting the SMARTS strings based on the growth inhibi-
tion value, rather than the binary interpretation used in this
method with ‘1’ representing an active hit and ‘0’ an inactive
hit in order to give a more quantitative growth inhibition-
predictions.

CONCLUSIONS AND FUTURE WORK

In this work, we have conducted broad characterizations
of the compounds, biological activities, and gene expression
values in the NIH DTP Tumor cell line data set. We have

shown that compounds active or inactive across the 60 cell
lines tend to have structural features in common. We have
also demonstrated that a Random Forest model can be used
to predict the activity profiles of unknown compounds across
the cell lines reasonably well. Finally, we show that a novel
SMARTS-based algorithm can be used to give finer resolu-
tion structure-activity correlations than a constrained dic-
tionary-based fingerprint.

We are currently in the process of extending our data
mining to include the gene expression information, in
particular finding features that tend to be associated with
activity or inactivity in subgroups of the cell lines which
share particular gene expression profiles. We also wish to
extend our random forest models to include information from
other cell lines in our prediction of individual cell line
activities.
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