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Abstract. Access control for semi-structured data is nontrivial, as wit-
nessed by the number of access control approaches in literature. Recently,
a case has been made for expressing access constraints at finer levels of
granularity on data nodes and extending constraints to structural rela-
tionships. In this paper, we introduce a rewrite-based approach for access
constraint enforcement, based on the ACXESS framework we developed
at Indiana University. The ACXESS framework utilizes virtual security
views and introduces a set of rewrite rules that takes advantage of the
Security Annotated Schema (SAS) - an internal representation for virtual
views. It is capable of rewriting user queries against security views into
queries against the source data, while honoring the access constraints.
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XML has become one of
the most extensively used
data representation and
exchange formats. The
problem of access control
in XML has many simi-
larities to access control
in relational and object-
oriented databases. How-
ever, the semi-structured
nature of XML increases
the complexity of ac-
cess constraint specifica-
tion for XML. The tree
pattern matching nature
of XML queries further
complicates the enforce-
ment of the access con-
straints on XML data.
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Example 1. Consider a course management system used in open universities
that share exam resources using the IMS-QTI schema1. A highly simplified ver-
sion of this structure is shown in Figure 1(a). Users belonging to different access
profiles should have different access privileges: an author (instructor) should have
access to all elements of quizzes he/she writes ; a student should only have access
to current quizzes in courses that he/she is registered for, but not have access to
the solutions; if quizzes are shared among instructors of different universities,
instructors other than the authors should have access to the questions as well as
to the solutions, but potentially without the course-specific structuring.

The access constraints listed in Example 1 are not uncommon. Different access
constraint enforcement techniques with variable flexibility and efficiency can be
used to enforce the constraints [1,2,3,4]. If materialized views are used to imple-
ment the above role-based access constraints, the view schemas for the ‘student’
and ‘other-instructor’ access levels would look like those shown in Figure 1 (b).
However, it is well received that the storage and computational cost of view
construction and maintenance hinders their utility and scalability. It is critical
to develop a methodology that allows dynamic execution of queries on different
access levels without the necessity of view materialization. In [5,6] we proposed
a generalized access constraint specification and representation framework that
enabled system users to specify access constraints on semi-structured data. In
this paper, we introduce a query rewrite based access constraint enforcement
technique that provides efficient access constraint enforcement. We will briefly
review the access constraint specification language, and the security annotated
schema in section 2, then, focus on the algorithms and rules for rewrite-based
access constraint enforcement in section 3, followed by a discussion in section 4.

2 ACXESS

Original SchemaSecurity View
Specification

Security View
Construction

Security View Schema

User Query (Xpath)
Schema Derivation

Rewritten Query
(XQuery)

Security Query RewriteSecurity Annotated
Schema (SAS)

Fig. 2. The Infrastructure of the Security View
Based Query Answering System

The infrastructure of the
ACXESS framework - an
XML security infrastructure
developed at Indiana Univer-
sity, is as shown in Figure 2.
The system can be divided
into two components: Secu-
rity View Construction (on
the left) and Secure Query
Rewrite (on the right). Taking
the original XML schema and
security view specification (in
the specification language SSX) as input, the Security View Construction process
constructs a Security Annotated Schema(SAS). SAS is an internal representa-
tion in our system and it is straightforward to derive the schema of the security
1 IMS Global Consortium at http://imsglobal.org



A Rewrite Based Approach for Enforcing Access Constraints for XML 1083

view from an SAS. Rather than creating and maintaining materialized security
views, we choose to rewrite the user queries (in XPath) to queries (in XQuery)
that reflect the security constraints. The Secure Query Rewrite process (SQR)
is rule-based, and translates an user XPath query on the security view to an
XQuery expression against the original data.

We adopted the core of a graph editing language and introduced a security
view specification language (SSX) [5] in the form of a set of graph editing primi-
tives, that the system user can use to specify access constraints. The parameters
and functions of the primitives are defined as follows (parameters within square
brackets are optional):
– create(destSPE 2 , newName) creates a new element with tag ‘new-

Name’, as a child of each element that matches the destSPE in the input
schema.

– delete(destXPath) removes the sub-trees rooted at the elements that
matches the destXPath in the input schema.

– copy(sourceXPath, destSPE, [newName], [scope], [preserve]) For
each element that matches the scope, the copy primitive creates an identical
copy of the sub-trees rooted at the nodes that match the sourceXPath in the
original schema with respect to the scope, and makes them the children of
the elements that match the destSPE in the input schema.

– rename(destSPE, newName) assigns a new name to the elements that
matches the destSPE in the input schema.

A security view specification is then written in the form of a sequence of
these primitives. Each primitive takes the result of the subsequence in front of
it as input. The final result is the Security Annotated Schema(SAS) for the SSX
sequence.
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Fig. 3. SAS of the ‘other-instructor’ Security View

To facilitate
query answering
and rewrites, we
proposed an in-
ternal representa-
tion - Security
Annotated Schema
(SAS)[5] in the
form of annota-
tions to represent
the schema trans-
formation speci-
fied by an SSX se-
quence. The an-
notations include
“New Node, Delete, Scope Stamp, Dirty Stamp, and Chronological Operation
Sequence” and are associated with the element node that was modified. The an-
notations reflect the actual changes performed on the original schema structure.
2 SPE - Simple Path Expression is an XPath expression without branching predicates.
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An example SAS representation for the ‘other-instructor’ security view is shown
in Figure 3.

3 Enforcing Access Constraints Via Query Rewriting

XPath is the core language for all XML query languages, therefore we choose
to rewrite user queries in XPath. Security view construction can create new
structural relationships and to accomodate this, the rewrite process translates
an input XPath expression into an XQuery expression.

3.1 Secure Query Rewrite Algorithm

The Secure Query Rewrite process (SQR) is rule-based. To facilitate the dis-
cussion of the rewrite rules and the algorithm, we define a recursive procedure
as follows: Given an XML database D containing instances conforming to a
schema S0, a security view V (represented in the form of an SAS (Sv)), and
an XPath expression p = t1[c1]/t2[c2]. . . /tn[cn] against V , where tis are tokens
and cis are XPath expressions serving as branching predicates, the function
q = SQRSv

(p, vb, vb′) translates p to an XQuery expression q, referencing Sv

and under a specific environment, represented by a set of variable-bindings vb
(vb′ represents the new variable-bindings in q).

SQR(q:Parsed XPath) {
nexttoken = Obtain next token from input XPath
if (nexttoken = ‘‘//’’) Apply RULE 3
else if (currtoken is XPath condition c Apply RULE 1
// the nexttoken is a string now.
if (nexttoken is an element) {

if (env.curnode has no children on the desired path)
output ‘‘return ()’’

if (env.curnode is not dirty) Apply RULE 2 for HCE
else if (annotation A in curnode)

switch A {
case A = ‘uncond delete’: Apply RULE 6
case A = ‘copy’: Apply RULE 7
case A = ‘create’: Apply RULE 8
case A = ‘rename’: Apply RULE 9
}

else if (Dirty node with no annotation) Apply RULE 4
if (current element is last Token) Apply RULE 5

}
} // end SQR

Fig. 4. The SQR Algorithm

We develop an algorithm to
implement q = SQRSv

(p). The
skeleton of the rewrite algorithm
is presented in Figure 4. The algo-
rithm accepts as input an XPath
query q that needs to be rewritten.
It iterates through q and walks
the SAS tree based on the to-
kens found in q. Annotations, if
found during the tree walk, are
appropriately handled to gener-
ate the corresponding XQuery ex-
pression. In the case of a predicate
in the input XPath expression,
the predicate expression is treated as an XPath expression and the procedure is
recursively called to generate an XQuery expression for the predicate. Operators,
if encountered in a predicate, are substituted with equivalent XQuery operators
while literals are carried over to the XQuery expression. The rules and the algo-
rithm only deals with elements, however, they can be easily adapted to handle
attributes. A conceptual presentation of the rules used by SQR is provided below.

3.2 Path Rules

The Path Rules deal with the XPath expression to be rewritten, and simplify
the XPath expression by breaking it into parts, or keeping it as is, or rewriting
it into XQuery expressions, based on the access constraints.



A Rewrite Based Approach for Enforcing Access Constraints for XML 1085

Rule 1. Given an SAS Sv and an XPath expression p = p1/t1[c1]/p2 under
environment vb, where p1 and p2 are sub-XPath expressions, t1 is an element
tag and c1 is a branching predicate, taking the form of p3[op p4] (please note that
‘op p4’ is optional) where p3 and p4 are XPath expressions and op is a XPath
operator, the XQuery expression q = SQRSv

(p, vb, vb′) is defined as follows:

for $i in SQRSv
(p1, vb, vb1)

for $j in SQRSv
(t1, vb1 ∪ {i}, vb5)

where SQRSv
(p3, vb5 ∪ {i, j}, vb3) op

SQRSv
(p4, vb5 ∪ {i, j}, vb4)

return SQRSv
(p2, vb5 ∪ {i, j}, vb2)

The premise behind this rule is that every branching predicate in an XPath
expression is a valid XPath expression, and can be rewritten into an XQuery
expression and be a part of the WHERE clause in the final rewritten XQuery
expression. Therefore, we focus our discussion on rewriting a XPath expression
without predicates- Simple Path Expression(SPE), in the rest of the paper.

A ‘dirty’ stamp associated with a node in the SAS identifies that either the
node itself or its descendant(s) have been modified. Before presenting the rewrite
rule for ‘dirty’ stamps, we first define the following important notion:

Definition 1. Given an SAS Sv and an SPE expression p = t1/t2 . . . /tn, if
there exists tk, such that tk−1 has a ‘dirty’ stamp and none of tk, tk+1, . . . , tn
has a ‘dirty’ stamp, we call tk the highest clean element (HCE) of p on Sv, and
p1 = t1/t2 . . . /tk−1 the prefix path w.r.t. Sv and p2 = tk/tk+1 . . . /tn the suffix
path w.r.t. Sv.

Rule 2. Given an SAS Sv, and an SPE p under environment vb, if there exists
an HCE on Sv such that p = p1/p2 (p1 is the prefix path w.r.t. Sv, and p2
is the suffix path w.r.t. Sv), we define the equivalent XQuery expression q =
SQRSv

(p, vb, vb′) of p as follows:

for $i in SQRSv
(p1, vb, vb0)

return $i/p2

The notion of HCE enables us to leave the suffix path “as is” in the rewritten ex-
pression. Since the nodes below the HCE are not modified they can be evaluated
as a sub-expression in the resultant XQuery expression without rewrites.

Rule 3. Given an SAS Sv, and an SPE p = p1//t/p2 under environment vb,
where p1 and p2 are SPEs and t is an element tag, the XQuery expression q =
SQRSv

(p, vb, vb′) is defined as follows:

for $i in SQRSv
(p1, vb, vb0)

return{SQRSv
(t1/p2, vb0 ∪ {i}, vb1)} union

.

.

.{SQRSv
(tn/p2, vb0 ∪ {i}, vbn)}

where {t1, . . . , tn} are the paths that lead to t from the node that matches p1.
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Uncertainty due to ‘//’ can be handled by walking the SAS tree and searching
all possible paths for the node of interest. Given that as a first step, we have
assumed that the schema is acyclic, we have optimized the rewrite algorithm by
ensuring that given a pair of nodes ‘A’ and ‘B’, all possible paths from ‘A’ to
‘B’ are pre-computed and stored in the SAS. Similarly, Rule 3 can be used to
handle the wild card character ‘�’.

Rule 4. Given an SAS Sv, and an SPE p = t1/t2/. . ./tn under environment vb,
if node ty(y < n) is ‘dirty’ without any annotations then we can directly proceed
to the next token in the path. The XQuery expression q = SQRSv

(p, vb, vb′) is
defined as follows:

for $i in SQRSv
(t1/t2 . . . /ty−1, vb, vb0)/ty

return SQRSv
(ty+1/../tn, vb0 ∪ {i}, vb1)

When the tail of the XPath has a ‘dirty’ stamp, rather than stopping at the
node and returning the whole subtree rooted at the node, the children of the tail
node have to be reconstructed individually as the ‘dirty’ stamp indicates that
at least one descendant node has been modified. This is achieved by recursively
rewriting each and every child node of the node being constructed.

Rule 5. Given an SAS Sv and an SPE p = t1/t2 . . . /tn under environment
vb, if tn is ‘dirty’ and has children cld1,. . . cldm in Sv, the equivalent XQuery
expression q = SQRSv

(p, vb, vb′) is defined as follows:

for $i in SQRSv
(t1/t2 . . . /tn−1, vb, vb0)

return < tn >
SQRSv

(cld1, vb0 ∪ {i}, vb1)
.
.
.
SQRSv

(cldm, vb0 ∪ {i}, vbm)
< /tn >

3.3 Structural Modification Rules

Structural modifications due to access constraints can be captured by Delete
and New Node annotations. These annotations need to be treated differently in
the rewrite procedure.

The SSX and SAS support both conditional and unconditional delete of sub-
structures while constructing security views. If a node has an unconditional
delete annotation, the node and its descendants are no longer accessible. Any
query that attempts to retrieve them should evaluate to an empty set. The con-
dition (if any) used to delete nodes is a valid XPath expression and is rewritten
in the resultant XQuery expression, by computing its complement.

Rule 6. (Delete Rule) Given an SAS Sv and an SPE p = t1/t2 . . . /tn, if tk
(0 ≤ k ≤ n) matches to a node that has an unconditional delete annotation in
Sv, the equivalent XQuery expression q = SQRSv

(p, vb, vb′) is defined as:
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return ()

If the nodes that match to tk (k < n) are annotated with a conditional delete,
with condition cond (an XPath expression), the equivalent XQuery expression
q = SQRSv

(p, vb, vb′) is defined as:

for $i in SQRSv
(t1/t2 . . . /tk, vb, vb0)

where count(SQRS′
v
(cond, vb, vb1)) = 0

return SQRSv
(tk+1/ . . . /tn, vb0 ∪ {i}, vb2)

Here, S′
v is the SAS generated by the prefix of the access constraint specifica-

tion sequence (up to the operation before the conditional delete in question).

The New Node annotation resulting from the copy operator indicates that new
subtrees have been constructed by cloning nodes. When a query retrieves infor-
mation from a copied node or its descendants, data is retrieved from the source,
along the source path. The retrieved data is compliant to any annotations on
the descendant subtree.

Rule 7. (Copy Rule) Given an SAS Sv, and an SPE p = t1/t2 . . . /tn under
environment vb, if node ty (y < n) matches to a node that has a newNode
annotation generated by the copy operator with sourcePath t1/t2/. . ./tk/. . ./tx
and scope t1/t2/. . ./tk the equivalent XQuery expression q = SQRSv

(p, vb, vb′)
is defined as:

for $i in SQRSv
(t1/t2 . . . /tk, vb, vb0)

for $j in SQRSv
(tk+1 . . . /ty−1, vb0 ∪ {i}, vb1)

for $k in $i/tk+1/tk+2/ . . . /tx
return SQRSv

(ty+1/ . . . /tn, vb0 ∪ {i, j, k}, vb2)

New Node annotations resulting from rename and create operations indicate new
tags that did not exist in the original data. If a newly created/renamed node
appears in an XPath query, the rewrite process simply matches it and moves on
to the subtrees rooted at the node in question.

Rule 8. (Create Rule) Given an SAS Sv, and an SPE p = t1/t2 . . . /tn under
environment vb, if node ty (y < n) matches to a newNode annotation, gen-
erated as a result of a newly created node, the equivalent XQuery expression
q = SQRSv

(p, vb, vb′) is defined as:

for $i in SQRSv
(t1/t2 . . . /ty−1, vb, vb0)

return SQRSv
(ty+1/ . . . /tn, vb0 ∪ {i}, vb1)

Rule 9. (Rename Rule) Given an SAS Sv, and an SPE p = t1/t2 . . . /tn un-
der environment vb, if node ty (y < n) matches to a newNode annotation gen-
erated by renaming nodes (ancestor depersonalization), the equivalent XQuery
expression q = SQRSv

(p, vb, vb′) is defined as:
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for $i in SQRSv
(t1/t2 . . . /ty−1/tx, vb, vb0)

return SQRSv
(ty+1/ . . . /tn, vb0 ∪ {i}, vb1)

Example 2. With respect to the rewrite rules described above, consider the
query ‘/quiz//item[hint]’, which finds all items in the quizzes with a hint. When
users in different user groups issue this query, it will be rewritten differently,
based on the security constraints specified for the user group. The rewritten
queries for the user groups are as shown in Table 1. For the ‘student’ group, we
find that there are two differnt paths to ‘item’ nodes and both are reconstructed.
The results are reconstructed to hide the ‘solutions’, and the conditional delete
operation in the access control definition is taken care of by a “where” clause.
The rewrite for the ‘other-instructor’ group ensures that all the different paths
to the ‘item’ nodes are reconstructed.

Table 1. Rewritten queries for query /quiz//item[hint] for different user groups

other instructor group student group

for $q in doc("data/quizzes.xml")/quiz
return
{
for $q1 in $q/objectbank
for $q2 in $q1/item

where count(for $q3 in $q2/hint return $q3)>0
return $q2
}
union
{
for $q4 in $q/objectbank
for $q5 in $q4/section/item

where count(for $q6 in $q5/hint return $q6)>0
return $q5
}

for $q in doc("data/quizzes.xml")/quiz
where $q/Access/Startdate <= currdate
and $q/Access/Enddate >= currdate
return
{

for $q1 in $q/objectbank/item
where count(for $q2 in $q1/hint return $q2) > 0
return <item> {$q1/text} {$q1/hint} </item>

}
union
{

for $q3 in $q/objectbank/section/item
where count(for $q4 in $q3/hint return $q4) > 0
return <item> {$q3/text} {$q3/hint} </item>

}

4 Discussion and Conclusion

The complexity of the query rewrite is bound by two factors (i) the size of the
input query (ii) the size of the schema fractions that has been marked as ‘dirty’.
This ensures that SQR has a favorable evaluation time when compared to that
of post-query filtering and view materialization. Experimental analysis3 reveals
that the rewrite algorithm and the rules are effective and efficient, especially for
queries with // and wildcards and the queries targeting nodes whose access has
been denied. The rewrite rules can be shown to be sound and complete with
respect to the SAS 3.

In this paper, we proposed a rewrite-based access constraint enforcement al-
gorithm and associated rules for the ACXESS XML security infrastructure. The
proposed technique is capable of handling not only the access constraints speci-
fied by SSX, but with careful generalization of SAS, it is also capable of handling
access constraints specified by other existing access control approaches in liter-
ature. The techniques proposed in this paper assume that every XML database
has a schema and that it is acyclic. We are looking forward to extending our
work to handling recursions in schema and to tackle the more generic scenario
where partial or no schema is available.
3 Details of theorems, proofs, test cases and results are not included due to space

limitations and are available at http://www.cs.indiana.edu/∼acxess.
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