
A Methodology for Coupling Fragments of XPath
with Structural Indexes for XML Documents

George H.L. Fletcher1, Dirk Van Gucht2, Yuqing Wu2, Marc Gyssens3,
Sof́ıa Brenes2, and Jan Paredaens4

1 Washington State University, Vancouver
gfletcher@acm.org

2 Indiana University, Bloomington
{vgucht,yuqwu,sbrenesb}@cs.indiana.edu

3 Hasselt University and Transnational University of Limburg
marc.gyssens@uhasselt.be

4 University of Antwerp
jan.paredaens@ua.ac.be

1 Introduction

Supporting efficient access to XML data using XPath [3] continues to be an
important research problem [6, 12]. XPath queries are used to specify node-
labeled trees which match portions of the hierarchical XML data. In XPath
query evaluation, indices similar to those used in relational database systems –
namely, value indices on tags and text values – are first used, together with
structural join algorithms [1, 2, 19]. This approach turns out to be simple and
efficient. However, the structural containment relationships native to XML data
are not directly captured by value indices.

To directly capture the structural information of XML data, a family of struc-
tural indices has been introduced. DataGuide [5] was the first to be proposed,
followed by the 1-index [13], which is based on the notion of bi-simulation among
nodes in an XML document. These indices can be used to evaluate some path
expressions accurately without accessing the original data graph. Milo and Su-
ciu [13] also introduced the 2-index and T-index, based on similarity of pairs
(vectors) of nodes. Unfortunately, these and other early structural indices tend
to be too large for practical use because they typically maintain too fine-grained
structural information about the document [9, 16].

To remedy this, Kaushik et al. introduced the A(k)-index which uses a no-
tion of bi-similarity on nodes relativized to paths of length k [10]. This captures
localized structural information of a document, and can support path expres-
sions of length up to k. Focusing just on local similarity, the A(k)-index can be
substantially smaller than the 1-index and others.

Several works have investigated maintenance and tuning of the A(k) indices.
The D(k)-index [15] and M(k)-index [8] extend the A(k)-index to adapt to
query workload. Yi et al. [18] developed update techniques for the A(k)-index
and 1-index. Finally, the integrated use of structural and value indices has been

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 48–65, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Methodology for Coupling Fragments of XPath with Structural Indexes 49

explored [11], and there have also been investigations on covering indices [9, 16]
and index selection [14, 17].

The introduction of structural indices for XML data has lead to significant
improvements in the performance of XPath query evaluation. As was demon-
strated empirically, the performance benefits of these indices are most dramatic
when queries “match” the index definitions [10]. To date, however, there lacks
a formal understanding of this notion of queries matching indices. This leads to
some fundamental questions about using structural indices in query evaluation:

1. For which fragments of XPath are particular structural indices ideally suited?
2. For these fragments, how are its expressions efficiently evaluated with the

index?
3. Can the answers to these questions be bootstrapped to provide general tech-

niques for evaluation of arbitrary XPath expressions?

In this paper, we present a methodology for investigating such questions and
apply it to the important special case of the A(k)-indices. For question (1), we
begin by noting that the A(k)-index of a document induces a partitioning on
its nodes. Recently, an approach has been proposed for considering partitioning
XML documents based on notions of query indistinguishability of nodes and
paths, relative to particular fragments of XPath [7]. If we apply this approach to
show that there exists a fragment of XPath which induces a partition identical
to the A(k)-partition, then we can speak of an “ideal” match between the index
and this fragment. Given this ideal coupling, we can then turn to a principled
investigation of questions (2) and (3). A main contribution of this paper is the
identification of such a fragment of XPath.

Before going into the technical details of the various steps we take in our
methodology, we illustrate the general approach with a simple example coming
from relational databases. Note that the results in this example are well-known,
and as such do not add to the results of this paper.

1.1 A Motivating Example

Consider the B+-tree index on a column A of a relation R [4]. Clearly, this index
induces a partition on the tuples of R: tuples t1 and t2 in R will be in the same
partition block1 if and only if t1(A) = t2(A). We will call this partition the B+-
tree-partition on column A of R, and denote it as Btree(A, R). (For emphasis,
observe that a B+-tree index on A of R is different than the Btree(A, R)-partition.
The first is a tree data structure, whereas the second is a partition on R.)

Next, consider the relational algebra, and in particular its sub-algebra con-
sisting of the range queries. In this example, we focus on such queries as they are
specified on attribute A of R. We will denote this class of queries by RangeQ(A, R).
Its queries are of the form σ((a1≤A≤a2) or ··· or (a2n−1≤A≤a2n))(R).2

The RangeQ(A, R) algebra defines a partition on R, called the RangeQ(A, R)-
partition of R, and is defined as follows: tuples t1 and t2 in R are placed in the
1 “Block” stands for an element of a partition, not be confused with a block on a disk.
2 For simplicity, we will assume that all the ai values occur in the A-column of R.

50 G.H.L. Fletcher et al.

same block of the RangeQ(A, R)-partition if for any query Q in RangeQ(A, R),
t1 ∈ Q(R) if and only if t2 ∈ Q(R). In other words, t1 and t2 can not be
distinguished by any query in RangeQ(A, R), i.e., either t1 and t2 are both in
Q(R), or they are both not in Q(R). An important property of the RangeQ(A, R)-
partition is that for each query Q ∈ RangeQ(A, R), their exists a subset of blocks
in the partition such that Q(R) is the union of these blocks.

A natural question that arises now is to ask if the Btree-partition and the
RangeQ-partition are the same. It should come as no surprise that this is indeed
the case. This is captured in the following theorem.

Theorem 1. [Btree-RangeQ Coupling Theorem] Let R be a relation and let
A be one of its attributes. The Btree(A, R)-partition and the RangeQ(A, R)-
partition are the same.

Proof. We give a proof of this statement, not because it is difficult, but be-
cause its structure reveals the strategy that we will follow to prove an analogous
theorem for the XML case (Theorem 4).

1. Let tuples t1 and t2 be in the same block of the Btree(A, R)-partition. Then,
by definition, t1(A) = t2(A). Consider now an arbitrary range query Q.
Then clearly, if t1(A) (and therefore also t2(A)) is in the range of Q then t1
and t2 are both in Q(R), but if t1(A) is not in the range of Q, then they
are both not in Q(R). Consequently, t1 and t2 are in the same block of the
RangeQ(A, R)-partition.

2. Let tuples t1 and t2 be in different blocks of the Btree(A, R)-partition. Then,
by definition, t1(A) �= t2(A). Let a = t1(A). Then the range query labela :=
σA=a(R) has t1 in its result, but not t2. Thus t1 and t2 are in different blocks
of the RangeQ(A, R)-partition, and the proof is done.

An immediate consequence of Theorem 1 is that each range query evaluated
on R is equal to the union of a family of blocks of the Btree(A, R)-partition.

Theorem 2. [Btree-RangeQ Block-Union Theorem] Let R be a relation, let
A be one of its attributes, and let Q ∈ RangeQ(A, R). Then there exists a class
BQ of partition blocks of the Btree(A, R)-partition such that Q(R) =

⋃
B∈BQ

B.

Note that the Btree-RangeQ Block-Union Theorem can provide guidance and
insight in the processing of queries in richer relational fragments.

In the second part of the proof of Theorem 1, observe that the range query
labela has the property that it uniquely identifies the block of the RangeQ(A, R)-
partition consisting of the tuples of R that are indistinguishable from t1 by any
query in RangeQ(A, R). We will call the query labela, a labeling query and its
defining a-value a label. Now as a consequence of Theorem 2 we have that evalu-
ating a range query Q ∈ RangeQ(A, R) can be done by forming a union of such
labeling expressions applied to R.

Theorem 3. [Btree-RangeQ Label-Union Theorem] Let R be a relation and
A one of its attributes. Then for each query Q ∈ RangeQ(A, R), there is a set of
labeling queries LQ ⊆ RangeQ(A, R) such that Q(R) =

⋃
label∈LQ

label(R).

A Methodology for Coupling Fragments of XPath with Structural Indexes 51

Obviously, in practice we do not want to evaluate the labeling queries label ∈
LQ directly on R, but rather we would want a data structure that stores each re-
sult label(R). If such a data structure supports efficient look-up of the tuples in
the partition block associated with each labeling expression label, then evaluat-
ing Q can be done by simply streaming out these tuples. Of course, such a data
structure is the B+-tree index. So, in a formal sense we have shown that range
queries match ideally with B+-tree indexes, which of course is a well-known fact.

1.2 Paper Overview

We proceed as in this motivating example, for structural indices and the XPath
query language. Specifically:

– We introduce the family of P (k)-partitions, which are derivatives of the
family of A(k)-partitions. It turns out that this new class of partitions is
fundamental for establishing the results which follow.

– We then introduce a family of upward XPath algebras, U (k), and show that
the P (k)-partition and the partition induced by the U (k) algebra are the
same. As a consequence of this we have that the evaluation of a U (k) query
is equal to the union of some blocks of the P (k)-partition.

– Based on this result, we then develop guidelines for the use of a P (k)-
partition in the evaluation of general XPath queries.

– Following this, we show that for each block in the P (k)-partition a labeling
expression in U (k) can be constructed which uniquely identifies the block.
Thus, we conclude that each query in U (k) can be rewritten as the union
of some U (k) block labeling expressions.

These results indicate research directions into new data structures to support
efficient evaluation of general XPath queries.

2 Coupling Indices and XPath Fragments

In this section, we set out to apply the methodology described in the motivating
relational example to the XML case.

2.1 The XML Data Model

We begin by introducing the document data model that will be used in this
paper. Our data model is a simplified version of the XML data model wherein
we view a document as a labeled tree.

Definition 1. A document D is a 4-tuple (V, Ed, r, λ), with V the finite set of
nodes, Ed ⊆ V × V a tree of parent-child edges, r ∈ V the root, and λ : V → L
a node-labeling function into a countably infinite set of labels L.

Given a document, it is useful to introduce the concept of its paths. We de-
fine the set of paths of a document D, denoted Paths(D), as the set V × V .
So, for us a path is not a sequence of nodes, but rather a pair. This makes

52 G.H.L. Fletcher et al.

"Marketing"

n2
Department

Name

Name

Project Project

Name

Name

Lead

Lead

"D100"

"D100a"

Project

"Smith"

"D200"

n3

n1

n4 n5

n10 n11 n12

n20n19

"Sato"

Name

ProjectLead

Lead LeadName

Project

"A100"

n6

n16 n17 n18

n24n23n22n21

"Chen"

Department

n7Name

Name

"Ivanova"

Web

n0
Projects

Project n8

n9
Lead

"Dubois"

n13 n14
Web

n15

"A100b" "Adamo""A100a"

"http://""Design"

"http://"

Fig. 1. An XML document. For reference, non-leaf nodes are given unique IDs.

sense however, since a pair of nodes (n, m) ∈ Paths(D) identifies the unique
path from node n to node m in D. The set of downward-paths, DownPaths(D),
consists of the paths (n, m) where n is an ancestor of m. Similarly, the set of
upwards-paths, UpPaths(D), consists of the paths (n, m) where n is a descen-
dant of m. Furthermore, for k ∈ N, DownPaths(D, k) (UpPaths(D, k)) are those
paths in DownPaths(D) (in UpPaths(D), respectively) of length at most k. For
example, in document D of Figure 1 the path (n1, n1) is a member of both
DownPaths(D, 0) and UpPaths(D, 0), the paths (n1, n1), (n1, n4), and (n1, n9)
are in DownPaths(D, 2), and their corresponding inverse paths (n1, n1), (n4, n1),
and (n9, n1) are in UpPaths(D, 2). The paths (n9, n12) and (n1, n19) are in neither
DownPaths(D, 2) nor UpPaths(D, 2).

2.2 The A(k)-Partition of a Document

Given a labeled semi-structured document3 and a natural number k, Kaushik
et al. [10] introduced the A(k)-index for this document.

The index is built on the partition induced by a certain bi-similarity equiva-
lence relation on the nodes in the document. When specialized to a document,
as defined here, the definition of this bi-similarity equivalence is as follows.

Definition 2. Let D = (V, Ed, r, λ) be a document, n1, n2 ∈ V , and let k ∈ N.
We say that n1 and n2 are A(k)-equivalent in D, denoted n1 ≡A(k) n2, if

1. λ(n1) = λ(n2); and
2. if k ≥ 1 then

(a) n1 has a parent in D if and only if n2 has a parent in D; and
(b) if n1 has parent p1 and n2 has parent p2, then p1 ≡A(k−1) p2.

We call the partition induced by ≡A(k) on V the A(k)-partition of D.

A more intuitive reading of this definition is that nodes n1 and n2 belong to
the same block of the A(k)-partition, if the label sequences associated with their
3 A semi-structured document does not need to be a tree. In particular, it is possible

that a node has multiple parents.

A Methodology for Coupling Fragments of XPath with Structural Indexes 53

n11, n13, n20n4, n5, n9

n1
Department

n3, n10, n12, n19
Name Project Lead

n11, n13, n20

Department
n1

Name
n3

Project
n4, n5

Name
n10, n12, n19

Project
n9

Lead

n20

Department
n1

Name
n3

Project
n4, n5

Name
n10, n12

Project
n9

Lead
n11, n13

Name
n19

Lead

A(0) A(1) A(2)

Fig. 2. A(k)-indices (k = 0, 1, 2) associated with their corresponding A(k)-partitions
for the “Design” Department sub-tree in the document of Figure 1

incoming paths in D of length at most k are the same. Also note that the
A(k + 1)-partition of a document is a refinement of the A(k)-partition.

Example 1. Figure 2 illustrates (ignoring for now the edges between the blocks),
for k = 0, 1, and 2, the A(k)-partition of the Design Department sub-tree rooted
at node n1 in the document of Figure 1.

Following Kaushik et al. [10], the A(k)-index of a document D is a graph wherein
each node is a block of the A(k)-partition of D, and an edge exists from a block
B1 to a block B2 if there exists a parent-child edge in D from a node in B1
to a node in B2. So, the A(k)-index can be thought of as a representation of
the A(k)-partition and how its blocks can be related in accordance with the
document D. The A(k)-indexes for k = 0, 1, 2 are visualized in Figure 2 on
the Design Department sub-tree of the document of Figure 1. Note that if k is
equal to the height of the document, then the A(k)-index corresponds to the
1-index proposed by Milo and Suciu [13] and the strong DataGuide proposed by
Goldman and Widom [5].

2.3 The P (k)-Partition of a Document

The A(k)-partitions of a document D are partitions on its nodes. We will need an-
other family of partitions, the P (k)-partitions, which, rather than being defined
on nodes, are defined on the sets UpPaths(D, k), i.e., the sets of upward-paths of
D of length at most k. As we will see, the P (k)-partitions are more fundamental
than the A(k)-partitions for developing our results.

Definition 3. Let D be a document, let k ∈ N, and let (n1, m1) and (n2, m2)
be two paths in UpPaths(D, k). We say that (n1, m1) and (n2, m2) are P (k)-
equivalent, denoted (n1, m1) ≡P (k) (n2, m2), if

1. n1 ≡A(k) n2; and
2. length(n1, m1) = length(n2, m2).4

We call the partition induced by ≡P (k) on UpPaths(D, k) the P (k)-partition
of D.
4 As should be clear, length(n, m) denotes the length of the path in D from node n

to node m.

54 G.H.L. Fletcher et al.

Example 2. Consider the sub-tree D′ in the document of Figure 1 rooted at n4.
For k = 0, 1, we have that

1. the P (0)-partition on D′ is the set
{[(n19, n19), (n10, n10)], [(n20, n20), (n11, n11)], [(n9, n9), (n4, n4)]}; and

2. the P (1)-partition on D′ is the set
{[(n19, n19), (n10, n10)], [(n20, n20), (n11, n11)], [(n9, n9)], [(n4, n4)],
[(n19, n9), (n10, n4)], [(n20, n9), (n11, n4)], [(n9, n4)]}.
Notice that the block [(n9, n9), (n4, n4)] of the P (0)-partition is split into two
blocks of the P (1)-partition, namely [(n9, n9)] and [(n4, n4)]. This is because
n9 ≡A0 n4, but n9 �≡A1 n4.

Finally, we wish to observe that when k is equal to the height of a document D,
then the P (k)-partition corresponds to the partitions induced by the 2-index on
D proposed by Milo and Suciu [13].

2.4 The XPath-Algebra

We next present an algebraization [7] of the logical navigational core of XPath
[6] which we adopt in this paper and define the paths and nodes-semantics of
expressions in this algebra.

Definition 4. The XPath-algebra consists of the primitives ε, ∅, �, ↓, and ↑ to-
gether with the operations on expressions E1�E2, E1[E2], E1∪E2, E1∩E2, and
E1−E2. Given a document D = (V, Ed, r, λ), the semantics of an XPath-algebra
expression E on D, denoted E(D), is a subset of Paths(D). The semantics for
each primitive and each operation is given in Table 1.

Table 1. The XPath-Algebra Path-Semantics

ε(D) = {(n, n) | n ∈ V }
∅(D) = ∅
�(D) = {(n, n) | m ∈ V and λ(n) = �}

↓ (D) = Ed

↑ (D) = Ed−1

E1 � E2(D) = {(n, m) | ∃w : (n, w) ∈ E1(D) & (w, m) ∈ E2(D)}
E1[E2](D) = {(n, m) ∈ E1(D) | ∃w : (m,w) ∈ E2(D)}

E1 ∪ E2(D) = E1(D) ∪ E2(D)

E1 ∩ E2(D) = E1(D) ∩ E2(D)

E1 − E2(D) = E1(D) − E2(D)

The XPath-algebra semantics reflects a “global” perspective of expressions being
evaluated on an entire document. There is also a “local” semantic perspective,
in which expressions are viewed as working at a particular node, as follows.

Definition 5. Let E be an XPath-algebra expression and let D = (V, Ed, r, λ)
be a document. For n ∈ V , the local semantics of E on D at n, denoted E(D)(n),
is the set {m ∈ V | (n, m)) ∈ E(D)}.

A Methodology for Coupling Fragments of XPath with Structural Indexes 55

Consider the XPath query /Projects/Department/Project[./Project] that re-
trieves all the projects of departments that have a sub-project. When applied
to the document D of Figure 1, this query returns the set of nodes {n4, n6}.
An XPath-algebra expression corresponding to this query can be formulated as
Projects � ↓ � Department � ↓ � Project[↓ � Project]. According to the se-
mantics of the XPath-algebra, the global semantics of this expression on D is
the set of paths {(n0, n4), (n0, n6)} whereas its local semantics at the root node
n0 is the set of nodes {n4, n6}, which, as intended, corresponds to the result set
of the original XPath query.

2.5 Linking the P (k)-Partition to the XPath Algebra

The A(k)-indexes were introduced to support efficient evaluation of certain path
queries on XML documents. As was demonstrated empirically on a benchmark
of queries, the performance benefits of these indexes were most dramatic when
the queries “matched” the index definitions [10]. However, in that paper the
concept of queries matching indexes was not formalized. A main theme of this
paper is that we can indeed formalize this concept. More specifically, in the
remainder of this section we identify a class U (k) of sub-algebras of the XPath-
algebra whose queries ideally match up with the P (k)-partitions (and as such
with the A(k) indexes). The central idea behind this formalization comes from
showing that the P (k)-partitions are identical to the partitions induced on the
document by the U (k) algebras. These language induced partitions are defined
using equivalence relations that define a pair of paths equivalent when they can
not be distinguished by the queries of the sub-algebras. i.e., they are either both
in the answer of a query, or they are both not. Intuitively, such pairs are always
processed together during query evaluation.

In the following two sections, we define the U (k) sub-algebras and show how
the P (k)-partitions are identical to partitions induced by these algebras.

2.6 The U (k)-Algebras and Their Associated U (k)-Partitions

In the example of Section 1.1, we considered the class of RangeQ relational
queries and introduced the notion of RangeQ-partitions. In this section, we define
the U (k) XPath-algebras, and then, in analogy with this example, define the
associated U (k)-partitions.

Definition 6. We recursively define the upward-k XPath algebras, U (k) for
each k ∈ N, as follows. (Notice that the ↓ primitive can not be used in expressions
of these algebras).

1. U (0) is the set of XPath-algebra expressions without occurrences of the “↓”
and “↑” primitives.

2. For k ≥ 1, U (k) is the smallest set of expressions satisfying
(a) if E ∈ U (k − 1), then E ∈ U (k);
(b) ↑ ∈ U (k);

56 G.H.L. Fletcher et al.

(c) if E1 ∈ U (k) and E2 ∈ U (k), then E1 � E2 ∈ U (k), for � = ∪, ∩, −;
and

(d) if E1 ∈ U (k1) and E2 ∈ U (k2), and k1 + k2 ≤ k, then E1 � E2 ∈ U (k)
and E1[E2] ∈ U (k).

Example 3. As an example of U (k) expressions, note that Name � ↑ � Project � ↑
� Project is in U (2) but not in U (1), the expression ↑ � Department is in
U (1) but not in U (0), and the combined expression Name � ↑ � Project � ↑
� Project[↑ � Department] is in U (3) but not in U (2).

The following useful proposition about the U (k)-algebras can be shown by a
simple inductive argument.

Proposition 1. Let D be a document, k ∈ N, and E ∈ U (k). Then E(D) ⊆
UpPaths(D, k).

We are now ready to define the partitions associated with the U (k)-algebras.
Proposition 1 motivates us defining these partitions on UpPaths(D, k), just as
with the P (k)-partitions. In the next section we will then show that it is these
partitions that are identical with the P (k)-partitions.

Recall from the relational example, that we associated the RangeQ query
language with the RangeQ-partition. This partition was defined such that each
of its blocks grouped those tuples in a relation that could not be distinguished
by the queries in RangeQ. We define the partitions associated with the U (k)-
algebras analogously.

Definition 7. Let D = (V, Ed, r, λ) be a document, and k ∈ N. We say two
paths (n1, m1) and (n2, m2) in UpPaths(D, k) are U (k)-equivalent, denoted
(n1, m1) ≡U (k) (n2, m2), if for any expression E in U (k), it is the case that
(n1, m1) ∈ E(D) if and only if (n2, m2) ∈ E(D). We call the partition induced
by ≡U (k) on UpPaths(D, k) the U (k)-partition of D.

2.7 The Coupling of P(k) and U (k)

We establish a coupling theorem for the P (k) and U (k) partitions, in analogy
to Theorem 1, as follows.

Theorem 4. [Coupling Theorem] Let D be a document and k ∈ N. The
P (k)-partition of D and the U (k)-partition of D are the same.

Proof. (Sketch) Compared to the proof that shows that the Btree-partition and
the RangeQ-partition are the same, the proof of Theorem 4 is considerably more
involved. Nevertheless, the proof follows the same strategy. First, we show that
if two paths (n1, m1) and (n2, m2) in UpPaths(D, k) are in the same block of the
P (k)-partition, then they are also together in a block of the U (k)-partition. In
particular, we show by induction that for each expression E ∈ U (k), it is the case
that (n1, m1) ∈ E(D) if and only if (n2, m2) ∈ E(D). The proof of this fact is
given in the Appendix. Second, we show that if (n1, m1) and (n2, m2) are in two

A Methodology for Coupling Fragments of XPath with Structural Indexes 57

different blocks of the P (k)-partition, then they are also in two different blocks of
the U (k)-partition. This is shown by constructing an expression label ∈ U (k)
such that (n1, m1) ∈ label(D), but (n2, m2) �∈ label(D). The expression label
is of independent interest since it can be shown that it uniquely identifies (i.e.,
labels) the block of the U (k)-partition of which (n1, m1) is a member. More
precisely, label(D) consists of exactly those paths in UpPaths(D, k) that can
not be distinguished from (n1, m1) by the U (k)-algebra. Section 4 is devoted to
the existence and the construction of label.

As an immediate consequence, each U (k) query evaluated on a document D is
equal to the union of a family of blocks of the P (k)-partition of D.

Theorem 5. [Block-Union Theorem] Let D be a document, k ∈ N, and
Q ∈ U (k). Then there exists a class BQ of partition blocks of the P (k)-partition
of D such that Q(D) =

⋃
B∈BQ

B.

In analogy with Theorem 2, the Block-Union Theorem provides insight into the
processing of general XPath-algebra queries, as we see next.

3 XPath Query Evaluation with P (k)-Partitions

The results of Section 2 speak to answering U (k) queries directly using the
P (k)-partition structure. In this section we consider the evaluation of general
XPath algebra expressions and show how the results of Section 2 concerning
the coupling between the U (k) and P (k)-partitions can be utilized in this case.
Given an XPath expression and a P (k)-partition, the main idea is to identify
its U (k) sub-expressions or those that are easily converted to U (k) expressions
using rewrite rules. For each such expression, we are then guaranteed by the
Block-Union Theorem that its value is the union of an appropriate set of blocks
of the P (k)-partition. If we then have a method to quickly identify and return
partition blocks, we will have an efficient way of evaluating these expressions.
We return to this issue in the next section. In this section, we focus on the
development of general techniques for using P (k)-partitions in the evaluation of
arbitrary XPath algebra expressions.

3.1 Evaluating Upward Expressions

If our given XPath expression is in fact a member of U (k) then no decomposition
is necessary. However, if we consider a U (j) expression of the form E = A1 � ↑
� . . . � ↑ � Aj where j > k, then such a query is not directly supported by the
P (k)-partition. Nevertheless, we can decompose it into sub-expressions that are
in U (k). For example, consider the P (2)-partition available and the expression
E1 = A1 � ↑ A2 � ↑ � A3 � ↑ � A4 in U (4), then E1 contains sub-expressions
F1 = A1 � ↑ � A2 ↑ � A3, and F2 = A3 � ↑ � A4 which are both in U (2). As such,
they can be directly evaluated using the P (2)-partition as E1(D) = F1(D) ��
F2(D).

58 G.H.L. Fletcher et al.

3.2 Evaluating Downward Expressions

In practice, most XPath expressions use navigation just along the parent-child
(↓) axis. Consider the XPath sub-algebra D which is defined as the set of all
XPath expressions in which the ↑ primitive does not appear (and the D(k) al-
gebras defined analogously to the U (k) algebras). For such queries, we cannot
directly utilize the Block-Union Theorem. However, we can convert downward
navigation into upward navigation by using a technique which we will refer to as
“inverting expressions.” We will illustrate this technique on downward expres-
sions with and without predicate operations. For this discussion, we consider
downward expressions to be in the D(k)-algebra which is defined in complete
analogy with U (k), except that the ↓ primitive is permitted, but not the ↑
primitive.

Downward Expressions without Predicates. Downward expressions with-
out predicates can be “inverted” into expressions in corresponding upward ex-
pressions without predicates using the rewrite rules shown in Table 2.

Table 2. Inversion Rewrite Rules for D

E → E−1

ε → ε
∅ → ∅
↓ → ↑
λ̂ → λ̂

E1 ∪ E2 → E−1
1 ∪ E−1

2
E1 ∩ E2 → E−1

1 ∩ E−1
2

E1 − E2 → E−1
1 − E−1

2
E1 � E2 → E−1

2 � E−1
1 .

So, given a downward ex-
pression E ∈ D(k) without
predicates, we can rewrite E
into E−1 which is in U (k)
and also has no predicates.
We can then obtain E(D) by
first computing E−1(D) and
then considering its inverted
result. Now since E−1 is an
expression in U (k), we can
directly apply the evaluation
techniques for U (k) expres-
sions discussed above.

Downward Expressions with Predicates. Now consider the evaluation of
downward algebra expressions wherein predicate operations occur. A simple ex-
ample is the expression E2 =↓ [↓]. Applied to a document, E2 evaluates to the
document’s parent-child pairs for children that have at least one child themselves.
As above, to evaluate E2 on a document D, we could consider the concept of
inverting E2 into an expression E−1

2 ∈ U (2) such that E2(D) = (E−1
2 (D))−1.

This approach does not work here because the inversion rules in Table 2 do not
extend to include the predicate operation. In fact, we can construct a document
D2 such that for each expression F ∈ U (2), E2(D2) �= F (D)−1.

Clearly E2 is equivalent to the XPath-algebra expression ↓ � ↓ � ↑.5 Notice
that this expression is neither a downward nor an upward expression. How-
ever its sub-expression G1 =↓ � ↓ is in D(2) and its sub-expression G2 =↑
5 Incidentally, it can be shown that each expression in the D(k) algebra can be con-

verted into an alternating composition of D(k) and U (k) expressions all of which
do not use predicates.

A Methodology for Coupling Fragments of XPath with Structural Indexes 59

is in U (1). Using the inversion technique described in Section 3.2 applied to
G1, the evaluation of E2(D) can be accomplished by computing the relation
(G−1

1 (D))−1 �� G2(D), and, as indicated in this section, the evaluations of
G2(D) =↑ (D) and G−1

1 (D) =↑ � ↑ (D) can be done by utilizing the Block-
Union Theorem for the P (2) and P (1)-partitions respectively.

Given that the selectivity of a longer path is no larger than that of short
sub-paths of the path, evaluating G1 reduces the search space to the minimum
that can be obtained on such a chain expression. Starting from any given node,
upward navigation in an XML data tree, unlike downward navigation, has one
and only one route to follow, which is to reach its parent. Therefore, it is rea-
sonable to claim that the result of G−1

1 (D) is substantially smaller than that of
G2(D), and the �� operation can be further optimized by G−1

1 (D) followed by
an upward navigation.

We will now consider a slightly more complicated downward expression E3 ∈
D(3) which retrieves information about leaders of projects that have a sub-
project: E3 = Department� ↓ � Project[↓ � Project] � ↓ � Lead. E3 can be
represented as an expression pattern tree, as illustrated in Figure 3(a). The
shaded node can be interpreted as the “answer” of E3.

Department

ProjectLead

Project

(a) (c)

G4 G5

G
3

(b)

G
1

G
2

Fig. 3. Chain pattern tree for E3

Assume that the P (2)-partition is
available. Then, as shown in Figure 3(b),
there are two natural chains of length 2
present in the pattern tree of E3: G1 and
G2. There are also natural chains of length
1 as shown in Figure 3(c): G3, G4, and G5.

Using G1, G2, and G4, the expression
E3 is equivalent to the expression H1 de-
fined as follows: H1 =((G1 � ↑)∩(G2 � ↑))
� G4, and therefore, for a document D, E3(D) can be computed as follows:

E3(D) =

⎛

⎝
((G−1

1 (D))−1 �� ↑ (D))
∩

((G−1
2 (D))−1 �� ↑ (D))

⎞

⎠ �� (G−1
4 (D))−1.

All sub-expressions in this transformed expression of E3 are in U (2), and hence,
as already discussed, can be evaluated using the Block-Union Theorem for P (2).

Now assume that only the P (1)-partition is available. In this case, the longest
path expressions that can take advantage of the partitions are those of length at
most 1. Such expressions are G3, G4 and G5. Using these sub-expressions, E3 is
equivalent with the expression H2 defined as follows:

H2 = (((G3 � G4) � ↑) ∩ ((G3 � G5) � ↑)) � G4.

We have just observed how the Block-Union Theorem assists in the evaluation
of XPath expressions. However, if we want to make efficient utilization of these
ideas, we will need techniques for quickly identifying the P (k)-partition blocks
associated with a query. We turn to this issue in the following section.

60 G.H.L. Fletcher et al.

4 Labeling P (k)-Partition Blocks

In Section 2 we investigated the semantic relationship between U (k)-equivalence
and the P (k)-partition. There is also an alternative syntactic characterization
of this relationship which is critical in identifying the P (k)-partition blocks used
in evaluating a query. In particular, we have that evaluation of a U (k) query
on a document D can be done by forming a union of partition block labeling
expressions applied to D, similarly to Theorem 3 for the range queries.

Theorem 6. [Label-Union Theorem] Let D be a document and k ∈ N. Then
for each query Q ∈ U (k), a set of labeling queries LQ ⊆ U (k) can be constructed
such that Q(D) =

⋃
label∈LQ

label(D).

The Label-Union Theorem is a crucial syntactic link between P (k)-partitions and
the semantics of U (k) expressions, and is an immediate corollary of Theorem 5
and the following result.

Proposition 2. Let D be a document and k ∈ N. For each block B of the P (k)-
partition of D, an expression labelB ∈ U (k) can be constructed such that for
each pair (n, m) ∈ UpPaths(D, k) it is the case that (n, m) ∈ B if and only if
(n, m) ∈ labelB(D).

We now proceed with the proof of Proposition 2. First, we define in two steps the
labeling expressions for partition blocks. Then, we make precise the relationship
of these expressions to the partition blocks.

Step 1: Ancestor Path Expressions.

Definition 8. Let D = (V, Ed, r, λ) be a document, k ∈ N, and n ∈ V . Let the
k-ancestor label path of n be the list of labels L0, . . . , L� of the nodes on the path
from n up towards the root node r, of length � = min{k, length(n, r)}. For i � k,
the ith k-ancestor label expression of n is the U (k) expression Lk,n,i defined in
Figure 4.6

Lk,n,i =
�

L0 � ↑ � L1 � · · · � ↑ � Li[↑ � Li+1 � · · · � ↑ � L�] if i < �

L0 � ↑ � L1 � · · · � ↑ � L� � ↑i−� if i � �

Fig. 4. The ith k-ancestor label expression of node n having k-ancestor label path
L0, . . . , L�

We observe that all members of a P (k) partition block share a k-ancestor label
expression. Namely, for a block B, all elements share the expression Lk,n,length(n,m),
where (n, m) is any member of block B. This observation follows directly from
the definition of P (k)-equivalence and Definition 8.

6 Where ↑0= ε and for i > 0, ↑i= ↑ � · · · � ↑� �� �
i times

.

A Methodology for Coupling Fragments of XPath with Structural Indexes 61

A

n_b

n_c

n_a

A

A

Fig. 5. Three-node document

Example 4. Consider the P (1)-partition
of the small document in Figure 5,
wherein each node has label A:

{
[(na, na)], [(nb, nb), (nc, nc)],

[(nc, nb), (nb, na)]
}
.

As noted above, we can associate with
each block in this partition an L1,n,length(n,m) expression, for any element (n, m)
in the block, as in Figure 6.

Partition Block Expression
[(na, na)] L1,na,0 = A

[(nb, nb), (nc, nc)] L1,nb,0 = A[↑ � A]
[(nc, nb), (nb, na)] L1,nb,1 = A � ↑ � A

Fig. 6. Ancestor label expressions

Note, however, that ancestor label ex-
pressions do not necessarily uniquely
identify particular P (k) blocks.

Example 5. Continuing Example 4, we
note that expression L1,na,0 = A
for block [(na, na)] evaluates on the
document D as A(D) = {(na, na),
(nb, nb), (nc, nc)}, and hence does not
uniquely identify its block. This is due to the fact that L1,na,0 is not selective
enough. In particular, all blocks, with 1-ancestor label expressions having as a
prefix expression L1,na,0, will also appear in the evaluation of L1,na,0. For exam-
ple, the 1-ancestor labeling expression A[↑ � A] for block [(nb, nb), (nc, nc)] has as
a prefix the 1-ancestor labeling expression A for block [(na, na)], and therefore
both blocks appear in the evaluation of A. We pursue a remedy for this problem
in the next step.

Step 2: Partition Labeling Expressions. To tighten up ancestor label ex-
pressions, we need two tools. To compare these expressions, we introduce the
following notion of expression prefixes.

Definition 9. Let D be a document, i, k ∈ N, i � k, and m and n be nodes in D.
For ith k-ancestor label expressions Lk,m,i and Lk,n,i, we denote by Lk,m,i ≺ Lk,n,i

that the k-ancestor label path of node m is a prefix of the k-ancestor label path
of node n.

Example 6. In Example 5, we observed that L1,na,0 ≺ L1,nb,0.

Relationship to Partition Blocks. To precisely single out blocks of a P (k)-
partition, we introduce the following class of expressions derived from the Lk,n,i

expressions above. The trick is to eliminate all spurious node pairs introduced
from blocks with prefixing ancestor label expressions.

Definition 10. Let D = (V, Ed, r, λ) be a document and let k ∈ N. Then the
k-partition labeling expression for (n, m), with (n, m) ∈ UpPaths(D, k), is the
U (k) expression labelk,(n,m) = Lk,n,l −

⋃
n′∈V & Lk,n,l≺Lk,n′,l

Lk,n′,l, where l =
length(n, m).

62 G.H.L. Fletcher et al.

Example 7. Since L1,na,0 ≺ L1,nb,0, as we observed in Example 6, we have that
label1,(na,na) = L1,na,0 − L1,nb,0 = A − A[↑ � A], and clearly this expression
evaluated on document D of Figure 5 gives us precisely the P (1)-partition block
for pair (na, na), namely label1,(na,na)(D) = [(na, na)], as desired.

By construction of partition labeling expressions, it is easy to see that for a
given block B of a P (k)-partition of document D, each (n, m) ∈ B has the same
label. Furthermore, by an examination of the definition of labelk,(n,m), it is
straightforward to show that it is indeed the case that (n, m) ∈ labelk,(n,m)(D).
In other words, we have that for each block B, an expression labelB ∈ U (k) can
be constructed such that labelB(D) = B, completing the proof of Proposition 2.
These are precisely the labeling expressions of Theorem 6.

5 Towards Indexes: A(k)-Based, or P (k)-Based?

In Section 3, we argued that many XPath queries can be evaluated by (1) discov-
ering appropriate blocks of P (k)-partitions and (2) assembling these blocks, typ-
ically through unions and joins, into the final answer. Step (1) was accomplished
through decomposition and inversion techniques. Relative to a P (k)-partition,
these techniques yield expressions in D(k) and U (k) without predicate opera-
tions. Through the Label-Union Theorem developed in Section 4, we know that
these expressions can be associated with label expressions, which are syntactic
objects that identify the relevant blocks. Thus, to develop an index structure to
support these evaluations, we need a data structure that organizes these label
expressions and their associated partition blocks in a way that allows fast look
up. Given the simplicity of the labeling expressions, this is entirely feasible. In
fact, we are currently implementing such a index structure, and plan to report
on its performance. One of the potential drawbacks of such an index structure is
that it can be large: for a given k, its size is O(k|V |) where V is the set of nodes
of the document. However, we believe that in practice, storing such indexes will
only be necessary for small k values, and as such their size is nearly linear in the
size of the document.

Of course, it is also possible to develop indexes that are based on the A(k)-
partitions. In fact, the A(k)-index introduced by Kaushik et al. [10] is an example
of this. This index has several very desirable properties: (1) its size is O(|V |) and
(2) for expressions in U (k) without predicates wherein exactly k “↑” primitives
occur, simple navigations through the index yield their results. However, it has
also some significant limitations. For example, consider an expression without
predicates in U (j), j > k, that utilizes j “↑” primitives. Such an expression can
be written in the form E1 � E2 where E1 ∈ U (k) and E2 ∈ U (j − k). Now the
A(k)-index can determine the set of nodes that are the result of evaluating E1 on
the document. However now, starting from these nodes, E2 is to be evaluated,
and this can only be done by accessing and navigating the original document
tree. (Notice that an index based on the P (k)-partitions does not suffer from
this problem because it never requires extra navigation in the document.) A
very similar problem occurs with expressions that have predicates. Consider an

A Methodology for Coupling Fragments of XPath with Structural Indexes 63

expression in U (j) of the form E1[E2], where E1 ∈ U (k) and E2 ∈ U (j − k).
Again, the A(k)-index can support E1 well and retrieve the set of nodes that
are the result of its evaluation. But again, to process the predicate [E2], it is
necessary to navigate the original document. (Notice, again, that the P (k)-based
indexes do not suffer from this problem.)

From this discussion, we conclude that for many reasons, P (k)-based indexes
are to be preferred over A(k)-based indexes, especially when only small k’s are
sufficient.

6 Future Directions

In this paper, we take a fresh step towards establishing connections between
the theoretical study of query languages and engineering research on the design
and implementation of XML database systems. These connections hinge on a
new methodology for coupling index-induced partitions and language-induced
partitions of an XML document. To take full advantage of the P (k)-partitions
introduced here and their block labeling expressions, we next need a data struc-
ture that is capable of locating all partition blocks based on label look-up, and
in which the partition blocks that participate in the evaluation of a query are
stored close to each other and can be located with a minimum number of label
look-ups. Currently, we are focusing efforts towards the development of a data
structure which satisfies these requirements.

References

[1] Al-Khalifa, S., et al.: Structural joins: A primitive for efficient XML query pattern
matching. In: ICDE (2002)

[2] Bruno, N., et al.: Holistic twig joins: optimal XML pattern matching. In: SIGMOD
(2002)

[3] Clark, J., DeRose, S. (eds.): XML path language (XPath) version 1.0.
http://www.w3.org/TR/XPATH

[4] Comer, D.: The Ubiquitous B-Tree. ACM Comput. Surv. 11(2), 121–137 (1979)
[5] Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-

tion in semistructured databases. In: VLDB, pp. 436–445 (1997)
[6] Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath

Queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)
[7] Gyssens, M., et al.: Structural Characterizations of the Semantics of XPath as

Navigation Tool on a Document. In: ACM PODS, pp. 318–327. ACM Press, New
York (2006)

[8] He, H., Yang, J.: Multiresolution indexing of XML for frequent queries. In: IEEE
ICDE, IEEE Computer Society Press, Los Alamitos (2004)

[9] Kaushik, R., et al.: Covering indexes for branching path queries. In: SIGMOD
(2002)

[10] Kaushik, R., et al.: Exploiting local similarity for efficient indexing of paths in
graph structured data. In: IEEE ICDE, IEEE Computer Society Press, Los Alami-
tos (2002)

http://www.w3.org/TR/XPATH

64 G.H.L. Fletcher et al.

[11] Kaushik, R., et al.: On the integration of structure indexes and inverted lists. In:
ACM SIGMOD, ACM Press, New York (2004)

[12] Koch, C.: Processing queries on tree-structured data efficiently. In: ACM PODS,
pp. 213–224. ACM Press, New York (2006)

[13] Milo, T., Suciu, D.: Index structures for path expressions. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1998)

[14] Moro, M.M., et al.: Tree-pattern queries on a lightweight XML processor. In:
VLDB (2005)

[15] Qun, C., Lim, A., Ong, K.W.: D(k)-index: An adaptive structural summary for
graph-structured data. In: SIGMOD (2003)

[16] Ramanan, P.: Covering indexes for XML queries: Bisimulation - simulation =
negation. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Infor-
mation Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, Springer, Hei-
delberg (2004)

[17] Runapongsa, K., Patel, J.M., Bordawekar, R., Padmanabhan, S.: XIST: An XML
index selection tool. In: Bellahsène, Z., Milo, T., Rys, M., Suciu, D., Unland, R.
(eds.) XSym 2004. LNCS, vol. 3186, pp. 219–234. Springer, Heidelberg (2004)

[18] Yi, K., He, H., Stanoi, I., Yang, J.: Incremental maintenence of XML structural
indexes. In: ACM SIGMOD, pp. 491–502. ACM Press, New York (2004)

[19] Zhang, C., et al.: On supporting containment queries in relational database man-
agement systems. In: SIGMOD (2001)

Appendix

Structural Characterizations of U (k) Indistinguishability

We prove the following fact needed in establishing Theorem 4: on a fixed docu-
ment, for each k � 0 it is the case that P (k)-equivalence (of node pairs) implies
indistinguishability in the U (k) algebra (of node pairs).

Lemma A. Let D = (V, Ed, r, λ) be a document, k ∈ N, and n1, m1, n2 ∈ V
with m1 is an ancestor of n1 and length(n1, m1) ≤ k. If n1 ≡A(k) n2, then there
exists m2 ∈ V such that m2 is an ancestor of n2 and (n1, m1) ≡P (length(n1,m1))
(n2, m2).7 Furthermore, m1 ≡A(k−length(n1,m1)) m2.

Proof. By induction on k. For the base case, k = 0, clearly m1 = n1 and λ(n1) =
λ(n2). The statement holds for m2 = n2.

For k ≥ 1, we can assume that the statement holds for k − 1. If n1 ≡A(k) n2,
then either (1) both n1 and n2 have no parents, or (2) they both have parents p1
and p2, respectively, such that p1 ≡A(k−1) p2 (by definition of A(k) equivalence).
In case (1), clearly m1 = n1 and the statement holds for m2 = n2. In case (2),
length(p1, m1) ≤ k − 1, and by the definition of A(k) equivalence, p1 ≡A(k−1)
p2. By the induction hypothesis, there exists an ancestor m2 of p2 such that
(p1, m1) ≡P (length(p1,m2)) (p2, m2) and m1 ≡A(k−1−length(p1,m1)) m2. It readily
follows that (n1, m1) ≡P (length(n1,m1)) (n2, m2) and m1 ≡A(k−length(n1,m1)) m2.

7 And even stronger, (n1, m1) ≡P (k) (n2, m2).

A Methodology for Coupling Fragments of XPath with Structural Indexes 65

Proposition A. Let D = (V, Ed, r, λ) be a document, k ∈ N, E ∈ U (k), and
n1, m1, n2, m2 ∈ V such that m1 is an ancestor of n1 and m2 is an ancestor
of n2, and (n1, m1) ≡P (k) (n2, m2). If (n1, m1) ∈ E(D), then (n2, m2) ∈ E(D),
and vice versa.

Proof. First observe that it follows from E ∈ U (k) and (n1, m1) ∈ E(D) that
length(n1, m1) ≤ k, by Proposition 1.

The proof is by induction on k. The base case, k = 0, follows straightforwardly
from the definition of P (0)-equivalence and a simple structural induction on
expressions in U (0). Now assume that k ≥ 1, and that the statement holds for
0, 1, 2, . . . , k −1. The proof goes by structural induction on expressions in U (k).
Thus, let E ∈ U (k).

– E ∈ U (k − 1). The statement holds by the induction hypothesis.
– E =↑. If (n1, m1) ∈↑ (D), then m1 is the parent of n1. Since (n1, m1) ≡P (k)

(n2, m2), it follows in particular that m2 is the parent of n2. We conclude
that (n2, m2) ∈↑ (D).

– E = E1 ∪ E2, for E1 and E2 ∈ U (k). Suppose (n1, m1) ∈ E(D). Then
(n1, m1) ∈ E1(D) or (n1, m1) ∈ E2(D). Without loss of generality, assume
(n1, m1) ∈ E1(D). Then by structural induction, (n2, m2) ∈ E1(D), and we
conclude (n2, m2) ∈ E(D).

– E = E1 ∩E2 or E = E1 −E2, for E1 and E2 ∈ U (k). Similar to the previous
case.

– E = E1 � E2, for E1 ∈ U (k1) and E2 ∈ U (k2), such that k1 + k2 ≤
k. Suppose (n1, m1) ∈ E(D). Then there is a node w1 ∈ V such that
(n1, w1) ∈ E1(D) and (w1, m1) ∈ E2(D). By Lemma 1, length(n1, w1) ≤ k1
and length(w1, m1) ≤ k2. By Lemma A, there is a node w2 ∈ V such
that (n1, w1) ≡P (length(n1,w1)) (n2, w2), and w1 ≡A(k−length(n1,w1)) w2. Since,
k2 ≤ k − length(n1, w1), by Lemma A, a node m′ ∈ V exists with (w1, m1)
≡P (length(w1,m1)) (w2, m

′).
By (n1, w1) ≡P (length(n1,w1)) (n2, w2), and (w1, m1) ≡P (length(w1,m1))

(w2, m
′), it is (definitions of ≡P (k1) and ≡P (k2)) that length(n2, w2) =

length(n1, w1) and length(w2, m
′) = length(w1, m1).

Consequently, length(n2, m
′) = length(n1, m1), and since m′ is the unique

ancestor at this length, we conclude that m′ = m2. Thus (w1, m1) ≡P (k2)
(w2, m2). By the induction hypothesis, we can conclude that (n2, w2) ∈
E1(D) and (w2, m) ∈ E2(D) and thus (n2, m2) ∈ E(D).

– E = E1[E2], for E1 ∈ U (k1) and E2 ∈ U (k2), such that k1 +k2 ≤ k. Similar
to the previous case.

	A Methodology for Coupling Fragments of XPath with Structural Indexes for XML Documents
	Introduction
	A Motivating Example
	Paper Overview

	Coupling Indices and XPath Fragments
	The XML Data Model
	The $A(k)$-Partition of a Document
	The $P(k)$-Partition of a Document
	The XPath-Algebra
	Linking the $P(k)$-Partition to the XPath Algebra
	The $\ensuremath{\mathscr{U}(k)}$-Algebras and Their Associated $\ensuremath{\mathscr{U}(k)$-Partitions
	The Coupling of P(k) and $\ensuremath{\mathscr{U}(k)}$

	XPath Query Evaluation with $P(k)$-Partitions
	Evaluating Upward Expressions
	Evaluating Downward Expressions

	Labeling $P(k)$-Partition Blocks
	Towards Indexes: $A(k)$-Based, or $P(k)$-Based?
	Future Directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

