
IPAC - An Interactive Approach to Access Control for
Semi-Structured Data

Sriram Mohan ∗

Computer Science Department
Indiana University
Bloomington,USA

srmohan@cs.indiana.edu

Yuqing Wu ∗

School of Informatics
Indiana University
Bloomington,USA

yuqwu@indiana.edu

ABSTRACT
We propose IPAC (Interactive aPproach to Access Control for semi-
structured data), a framework for XML access constraint specifica-
tion and security view selection. IPAC clearly demarcates access
constraint specification, access control strategy and security mech-
anism (implementation). It features a declarative access constraint
specification language, a global access control strategy configura-
tion unit, and an automatic security view generation and ranking
tool. IPAC is the first system that assists the DBA in specifying
access control strategies and access constraints on XML data, and
helps the DBA in choosing the optimal plan that implements the
specified strategy and access constraints accurately and efficiently.

1. INTRODUCTION
The research focus on XML repositories is switching from pro-
viding efficient storage and query processing techniques to general
data management issues, such as access control. However, existing
techniques [1, 2, 3, 5, 10] are limited to hiding nodes and subtrees
with a few exceptions [4]. We have introduced ACXESS a query
rewrite based access control model for XML [8, 9] that is capable
of dealing with structural relationships. ACXESS utilized a graph
editing language to express access constraints and enforces access
control by rewriting user queries in XPath to XQuery with the guar-
antee that the users see only the information that they are allowed
to see. However, these techniques for access control have signif-
icant shortcomings: either the access constraints are enforced via
materialized views [4] and the performance is sacrificed, or the ex-
pressiveness of the security view is implemented by complicated
procedural specifications that rearrange XML documental struc-
tures [8, 9], with the DBAs bearing the burden of specifying access
constraints correctly and efficiently.

EXAMPLE 1. Consider the management information of a re-
search company. A highly simplified version of the XML structure
∗The authors were supported by a grant from the Indiana University
Faculty Research Support Program (IU FRSP) 2006.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

is shown in Figure 1(a). Several access control levels can be en-
visioned on the schema. The company provides the ‘public’ with
access to the lab’s name, directors, all the research topics and a
brief description, and also to the employees names and phone num-
bers, but the ‘public’ cannot find out the employees who work on a
particular research topic. This requires that the parent-child rela-
tionship between research and employee elements be blocked.

Name

Company

Name Lab

Name Director

*

*
Research

Topic Description

Employee

Phone

*

(b) Public View 1

Company

Name Lab

Name Director

*

*
Research

Topic

Employee

PhoneName

*

(c) Public View 2

Description

Company

Name Lab

Name Director

*

*

Research

*

Topic Description Employee

Name Phone Salary

(a) XML Tree Structure for a Company

Figure 1: XML Tree and Security View Structures for Example 1

Existing approaches except [8, 9] either do not have the expressive
power to extend access constraints to structural relationships [3,
10], or cannot implement them without view materialization [4] 1.
Moreover, all these techniques rely on DBAs to specify the exact
manner in which the access constraints are implemented as a se-
curity view, rather than what the security constraints should be. In
reality, there are multiple views that can implement an access con-
straint. For example, the access constraints for the ‘public’ user
group can be implemented via the security views shown in Fig-
ure 1(b) and (c). With arbitrarily complicated XML schema and
access constraints, it is not realistic for DBAs to think about ev-
ery possible implementation and decide on the best. It is critical
to exploit the computational power of modern computer systems to
explore all possible implementations and make suggestions to the
DBAs.

The quality of the security views that implement an access con-
straint vary. For instance, if a lab has exactly one research topic,
1View materialization is prone to update inconsistencies and can
be non-realistic in real life scenarios.

1147



the information about the association between the research project
and the employees can be inferred easily from security view1 (as
shown in Figure 1(b)), but not so easily from security view2 (as
shown in Figure 1(c)). The quality of a security view depends on
the criteria that defines the goodness of a view. Using measure-
ment criteria such as ‘inference’ as guidelines, the security views
can be ranked and the top-K views be presented to DBAs as system
suggestions.

Existing approaches cannot exploit multiple security views for an
access constraint specification as the access control strategy is in-
herently tied to the access constraint specification and the imple-
mentation process. Hence, existing approaches usually support
only one access control strategy(e.g. open world). Fixing the ac-
cess control strategy brings additional challenges to the access con-
straint specification process. For example, if a limited ‘public’ view
allows users to access only the names of the employees in the com-
pany data as shown in Figure1(a), under the open world strategy,
the DBA has to explicitly block access to all other subtree branches
on the path from the root to the name element, while under the
closed world strategy, the DBA can simply grant access to the sub-
trees identified by the XPath expression /Company/Lab/Research
/Employee/Name. Being able to support multiple access control
strategies not only simplifies the access constraint specification pro-
cess, but also provides an opportunity for access constraints to be
specified more efficiently.

2. INTERACTIVE APPROACH TO ACCESS
CONTROL

The difficulties, as illustrated in the example, can be resolved by
taking advantage of two well known concepts in relational databases
that have not been exploited in the area of XML security. (1) The
Power of the Declarative Language - a declarative query language
(such as SQL) specifies what the query should do rather than how
to do it. This feature brings about logical and physical indepen-
dence - a fundamental property of relational database systems and
opens the doors for system managed query processing and opti-
mization, which contribute greatly to the query performance of re-
lational databases. (2) Harvesting the Power of the Computer - The
computer is billions of times faster than the human brain in com-
putation and is adept at complicated computations and exploring
huge solution spaces in search of optimal or favorable solutions.
This provides relational databases with the ability to analyze thou-
sands of query execution plans and identify the optimal plan.

With these in mind, we propose IPAC, a framework for XML ac-
cess control that features a declarative access constraint specifica-
tion language, a global access control strategy configuration unit,
and an automatic security view generation and ranking tool. The
goal is to assist DBAs in specifying access control strategies and
access constraints on XML data, and to help DBAs in choosing the
optimal plan that implements the specified access control strategy
and access constraints accurately and efficiently.

2.1 System Architecture
In IPAC, we clearly demarcate the notion of access control strategy,
access constraints, and their implementation and enforcement. The
core of IPAC is its unique declarative access constraint specification
language, which allows the DBAs to specify what to hide/reveal,
rather than how the XML document is to be rearranged as seen in
existing systems [3, 4, 8, 9]. This not only eases the job of the
DBAs, but also leaves room for the system to suggest the top solu-

Figure 2: The Infrastructure of IPAC

tions that satisfy the access constraints. The latter task is carried out
by the candidate security view generation component, which takes
the declarative access constraint specification, access control strat-
egy in effect (configured by DBAs using the strategy configuration
component), and the schema, if available, and generates all possi-
ble security views that satisfy the access constraints. The security
views thus generated have different criteria of quality and effec-
tiveness. IPAC is capable of ranking the candidate security views,
based on a set of supported ranking criteria and/or other ranking
criteria specified by the DBA. The infrastructure of IPAC is shown
in Figure 2. In the figure, we present the candidate view genera-
tion and ranking as two separate steps. In IPAC they are combined
to further improve the performance, by adopting a more aggressive
searching algorithm that computes only the top-K candidate secu-
rity views. Only one candidate security view is selected (by IPAC
or the DBA), implemented and enforced during query evaluation.

The ACXESS system [8, 9] developed at Indiana University is used
as the back-end for security view implementation and enforcement.
IPAC utilizes the rewrite rules developed as a part of the ACXESS
system [8, 9] to rewrite user XPath queries and enforce the specified
access constraints. The focus of IPAC is to provide a clear demar-
cation between strategy and mechanism and to guarantee that the
security view being implemented satisfies the desired access con-
straints and is optimal with respect to the selected quality criteria.

2.2 Declarative Access Constraint Specifica-
tion Language

The goal of the declarative access constraint specification language
is to assist the DBAs in specifying access constraints. It is specific
enough to express access constraints that exist only in the context of
XML and yet generic enough to accommodate different access con-
trol strategies. The key feature of the language is that it provides a
declarative interface for access constraint specification and clearly
separates the constraint specification from the (specific) implemen-
tation of such access constraints on a specific XML database. Some
of the desired features enabled by this language include intuitive
human interface, automatic security view generation and tuning,
and high performance access constraint enforcement.

1148



Primitive Explanation
deny(destPath) deny/allow access to the subtrees that match destPath.
allow(destPath)
blockStruct(ancsPath, relPath) deny/allow access to the structural relationship between nodes that match ancsPath
allowStruct(ancsPath, relPath) and subtrees that match relPath.
dissociate(ancsPath, relPath1, . . . , relPathn) deny/allow access to the structural association relationship among subtrees that match
associate(ancsPath, relPath1, . . . , relPathn) relPath1 to relPathn, with respect to the common ancestor that matches to

ancsPath.

Table 1: Primitives in the Declarative Access Constraint Specification Language

The declarative language introduces a set of primitives that (i) spec-
ify the values (nodes and subtrees) to be revealed or hidden, (ii)
constrict the path along which certain values can be accessed, and
(iii) regulate the correlations among nodes and subtrees. A brief
summary of the primitives is available in Table 1. The declarative
language focuses on specifying what to hide/reveal, rather than
how to do so. It covers both values and structural relationships,
which are equally important in the context of XML.

2.3 Global Access Control Strategy Configu-
ration

Demarcation of strategy from implementation has been studied in
relational databases [6, 7]. A major drawback of existing XML
access control systems is that they have all been developed with a
specific access control strategy in mind. This entails that the access
constraints be specified in terms of the supported strategy. While
this is trivial for some access constraints, specification of other ac-
cess constraints may become quite complicated as shown in Exam-
ple 1. IPAC supports several well-known strategy templates includ-
ing (i) open world (ii) closed world (iii) denial takes precedence.
Strategies thus selected determine the interpretation of the declara-
tive access constraint specification, the derivation of authorizations,
conflict resolution, and integrity constraint checking. The strate-
gies combine with the declarative access constraint specification in
determining the set of candidate security views that are generated.

2.4 Candidate Security View Generation
The flexibility of the declarative language in conjunction with the
ability to support multiple strategies facilitates the generation of
multiple candidate security views. In IPAC we introduce a search
algorithm that searches the solution space of possible security views
corresponding to the declarative access constraint specification and
the access control strategy specified by the DBA. This algorithm
consists of three passes: (i) a scan of the primitives in the ac-
cess constraint set that annotates the value and structural relation-
ship under effect in the XML schema; (ii) a top-down scan of the
annotated XML schema tree that identifies the possible conflicts
among the access constraint primitives; (iii) a bottom-up scan of the
XML schema tree that resolves the conflicts and generates security
views that satisfy the access constraints. This algorithm guarantees
that all access constraints are accommodated. Using the notion of
subtree equivalence, the number of candidate security views be-
ing generated is finite.

EXAMPLE 2. Let us reconsider the access constraints for the
‘public’ view as described in Example 1. The declarative access
constraint specifications under both open world and close world
strategies are shown in Table 2. Multiple security views, including
those shown in Figure 1(b) and (c), are generated for both specifi-
cation/policy combinations.

Strategy Access Constraint Specification
open deny(/Company/Lab/Research/Salary)
world blockStruct(/Company/Lab/Research,Employee)
close allow(/Company)
world deny(/Company/Lab/Research/Salary)

blockStruct(/Company/Lab/Research, Employee)

Table 2: Example Declarative Access Constraint Specifications

2.5 Candidate Security View Ranking
Even though all candidate views generated satisfy the access con-
straints, the quality and the effectiveness of the candidate security
views vary, depending on the quality criteria. IPAC supports a set
of criteria including (i) the amount of information available to the
users, (ii) the complexity of the view construction, (iii) the com-
plexity of the query rewrite process for access constraint enforce-
ment, (iv) the quality of the rewritten query, and (v) potential infor-
mation leakage (inference). A security view that favors one crite-
rion may be forced to sacrifice on another. IPAC provides a ranking
configuration tool that allows DBAs to prioritize the importance of
these criteria. The candidate security views will be ranked accord-
ingly. In addition, DBAs can define their own ranking criteria in the
form of user defined functions. For clarity, the candidate security
view generation and ranking are presented as two separate steps.
In IPAC they are combined to further improve the performance, by
adopting a more aggressive searching algorithm that prunes less
attractive views early in the view generation process, searches a
smaller solution space, and generate only the top-K candidate se-
curity views. Only one candidate security view is selected (by IPAC
or the DBA) and is implemented and enforced using the ACXESS
system [8, 9].

3. DEMONSTRATION PROPOSAL
We will demonstrate the expressive power of the declarative ac-
cess constraint specification language, the quality of our security
view suggestions to DBAs and the efficiency of our search algo-
rithms. We will also demonstrate the impact of different strategies
and ranking configurations on the results, which will further illus-
trate the value IPAC brings by combining an easy-to-use interactive
interface with an efficient security implementation. In particular,
we will demonstrate IPAC, focusing on the following features.

3.1 Access Constraint Specification and Can-
didate Security View Generation

The access constraint specification interface of IPAC visualizes the
XML schema in the form of a schema tree. Access constraints are
specified in a dialog box (on the bottom) and candidate security
views are generated and also visualized in tree format (on the right
side), as shown in Figure 3. During the demonstration, visitors are
welcome to specify access constraints on any of the XML schema
provided and examine the suggested candidate security views. Vis-

1149



itors can also select the security view of their choice from the can-
didate views, and test the effectiveness of the access constraint en-
forcement by running queries and examining the results.

Figure 3: Demo: Access Constraint Specification and Candidate Se-
curity View Generation

3.2 Global Access Control Strategy Configu-
ration

One of the major contributions of IPAC is that it provides a clear
demarcation between the access control strategy and mechanism.
For every access constraint specification, the DBA can trigger the
strategy configuration tool (as shown in Figure 4) to make changes
to the access control strategies in effect for the candidate view gen-
eration process. Open world and denial-takes-precedence are im-
plemented in IPAC as the default strategies. We will showcase the
strength and flexibility of IPAC by demonstrating the impact of the
security strategies on the candidate view generation process. In ad-
dition, we will demonstrate how a security constraint specification
can be specified differently based on different access control strate-
gies in effect. The difference in complexity of the access constraint
specifications will further illustrate the value of IPAC in supporting
multiple security strategies.

Figure 4: Demo: Global Access Control Strategy Configuration

3.3 Ranking Candidate Security Views
Another significant feature of IPAC is that it provides a mechanism
for ranking the candidate security views based on multiple ranking
criteria. It also provides DBAs with the ability to be in control of
the ranking process via its ranking configuration tool (as shown in
Figure 5). Using this tool, DBAs can prioritize the ranking criteria

and specify the number of suggestions (candidate security views)
provided by the system. We will demonstrate the power of the rank-
ing tool by showing different sets of top-K candidate security views
in different ranking orders, for the same access constraint specifi-
cation with different ranking configurations.

Figure 5: Demo: Ranking Configuration

4. SUMMARY
We introduce and demonstrate IPAC, the first system that assists
DBAs in specifying access constraints on XML data and helps
DBAs in choosing the optimal mechanism for implementing and
enforcing such access constraints. IPAC features a declarative lan-
guage for access constraint specification, supports multiple access
control strategies, and provides efficient search and ranking algo-
rithms to promote the accuracy and the performance of the access
constraint specification process.

5. REFERENCES
[1] B. Carminati and E. Ferrari. AC-XML documents:

improving the performance of a web access control module.
In SACMAT, 2005.

[2] B. Carminati, E. Ferrari, and E. Bertino. Securing XML data
in third-party distribution systems. In CIKM, 2005.

[3] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML
querying with security views. In ACM SIGMOD, 2004.

[4] B. Finance, S. Medjdoub, and P. Pucheral. The case for
access control on XML relationships. In CIKM, 2005.

[5] I. Fundulaki and M. Marx. Specifying access control policies
for XML documents with XPath. In SACMAT, 2004.

[6] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access control
policies. ACM TODS, 26(2), 2001.

[7] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical
language for expressing authorizations. In IEEE Symposium
on Security and Privacy, 1997.

[8] S. Mohan, J. Klinginsmith, A. Sengupta, and Y. Wu. Access
control for XML with enhanced security specifications. In
ICDE, 2006.

[9] S. Mohan, A. Sengupta, and Y. Wu. Access control for XML
- a dynamic query rewriting approach. In CIKM, 2005.

[10] N. Seki, M. Kudo, J. Myllmaki, and H. Pirahesh. A
function-based access control model for XML databases. In
CIKM, 2005.

1150


