
Access Control for XML - A Dynamic Query Rewriting
Approach

Sriram Mohan
Computer Science Dept.

Indiana University

srmohan@cs.indiana.edu

Arijit Sengupta
Raj Soin College of Business

Wright State University

arijit.sengupta@wright.edu

Yuqing Wu
School of Informatics

Indiana University

yuqwu@indiana.edu

ABSTRACT
Being able to express and enforce role-based access control
on XML data is a critical component of XML data manage-
ment. However, given the semi-structured nature of XML,
this is non-trivial, as access control can be applied on the
values of nodes as well as on the structural relationship be-
tween nodes. In this context, we adopt and extend a graph
editing language for specifying role-based access constraints
in the form of security views. A Security Annotated Schema
(SAS) is proposed as the internal representation for the se-
curity views and can be automatically constructed from the
original schema and the security view specification. To en-
force the access constraints on user queries, we propose Se-
cure Query Rewrite (SQR) - a set of rules that can be used
to rewrite a user XPath query on the security view into an
equivalent XQuery expression against the original data, with
the guarantee that the users only see information in the view
but not any data that was blocked. Experimental evalua-
tion demonstrates the efficiency and the expressiveness of
our approach.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security

General Terms
Management, Security, Performance

Keywords
XML, Access Control, Security View, Query Rewrite

1. INTRODUCTION
XML is one of the most extensively used data represen-

tation and data exchange formats. Much of the research
on XML has focused on developing efficient mechanisms to
store, query and manage XML data either as a part of a
relational database or using native XML stores. However,
hiding sensitive data is as important as making the data ef-
ficiently available, as has been emphasized and studied for
decades in relational databases.

1.1 Motivating Example
Consider the problem of developing and conducting tests

through a Course Management System such as Oncourse1.

1Oncourse is developed as part of the Sakai project involving

Copyright is held by the author/owner.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
ACM 1-59593-140-6/05/0010.

Online tests and quizzes are stored in XML in Oncourse
using the IMS-QTI schema 2. A highly simplified version of
this structure is shown in Figure 1.

quiz

Title Author Access

Duration StartdateEnddate

objectbank

section item

item presentationhint solution

*

presentation hint solution

Assessment

hint

Student View Quiz Structure

**

quiz

Title Author objectbank

section item

item presentation

 *

presentationhint

**

Figure 1: Simplified Tree Structure for an Online Quiz

and the Security View

Example 1.1. Several access constraints can be envisioned
in the online quiz application. An author (instructor) should
have access to all elements of quizzes he/she writes (full ac-
cess). A student should only have access to current quizzes
in courses that he/she is registered for, but not have access
to the solutions (conditional and unconditional removal).
Moreover, instructors other than the authors should have
access to the questions as well as to the solutions, but po-
tentially without the course-specific structuring (conditional
and unconditional restructuring). Finally, for summarizing
purposes, a statistician may have access to all the solutions.
But even for someone who may have permission as both a
student and as a statistician, he/she should not be able to
figure out the solution to each individual question (removal
of association). If materialized views are used to implement
the above role-based security policy for the student view, the
view generated would be as shown in Figure 1(b).

All the security constraints in Example 1.1 are not uncom-
mon, yet, none of the existing techniques support them with-
out actually generating or materializing the “views”. How-
ever, given that the data may constantly change, and that
usually there are multiple security levels in a system with
each level containing multiple security views, even incre-
mentally maintaining the security views is sometimes non-
realistic in a real-time system. An alternative is to maintain
only virtual security views and enforce the access constraints
via query rewrites, as proposed in [1]. However, the security
view specification language needs to be enriched for DBAs
to be able to define views similar to those in Example 1.1.

University of Michigan, Indiana, MIT, Stanford, OKI and the
uPortal Consortium.
2IMS Global Learning Consortium - http://www.imsglobal.org

251

1.2 System Infrastructure
Original SchemaSecurity View

Specification

Security View
Construction

Security View Schema

User Query (Xpath)
Schema Derivation

Rewritten Query (XQuery)

Query RewriteSecurity Annotated
Schema (SAS)

Figure 2: The Infrastructure of the Security View Based

Query Answering System

The infrastructure of our security-view based query an-
swering system is as shown in Figure 2. Taking the origi-
nal XML schema and security view specification sequence in
SSX as input, the Security View Construction compo-
nent (on the left) constructs a Security Annotated Schema
(SAS). SAS is an internal representation in our system.
The security view schema can be trivially obtained from
an SAS and it is the only schema that is made available to
the corresponding user group. In our system the security
views are not materialized by default. The Secure Query
Rewrite component (on the right) rewrites the user queries
(in XPath) into equivalent target queries (in XQuery) against
the original schema, using the information in the SAS. These
rewritten queries are then evaluated against the base data.

2. SECURITY SPECIFICATION AND EN-
FORCEMENT

Given security constraints such as those in Example 1.1
and other similar cases, we introduce our Security Specifica-
tion Language for XML (SSX) in the form of a set of graph
editing primitives.3 In SSX each primitive takes an XML
schema tree as input, and outputs an XML schema tree.
The parameters and functions of the primitives are defined
as follows (parameters within square brackets are optional):

create(destSPE, newName) creates a new element
with tag ‘newName’, as a child of each element that
matches the ‘destSPE’ in the input schema.

delete(destXPath) removes the sub-trees rooted at the
elements that matches the ‘destXPath’ in the input
schema.

copy(sourceXPath, destSPE, [newName], [scope],
[preserve]) : For each element that matches the ‘scope’,
the copy primitive creates an identical copy of the sub-
trees rooted at the nodes that match the ‘sourceXPath’
in the original schema with respect to the ‘scope’, and
makes them the children of the elements that match
the ‘destSPE’ in the input schema. If a new name is
provided, a new element tag is assigned to the root
element of the copied sub-trees. The default value for
‘scope’ is ‘/’. ‘Preserve’ specifies if the copy primitive
should preserve (the default) or break the document
order between instances being copied.

rename(destSPE, newName) assigns a new tag to the
elements that matches the ‘destSPE’ in the input schema.

A security view specification is then written in the form
of a sequence of these primitives. Each primitive takes the
result of the subsequence in front of it as input. The final

3SPE - A Simple Path Expression is defined as an XPath expres-
sion without branching predicates.

result is the security annotated schema (SAS) for the SSX
sequence.

quiz

Title Author Access

Duration Startdate Enddate

objectbank

section

item

item
presentation hint solution

*

* *

presentation hint solution

Assessment

Dirty

Delete S#=1
Conditional=false

Dirty
Delete S#=2

Conditional=false

Dirty

Delete S#=2
Conditional=false

Dirty

Delete S#=3
Conditional=false

Dirty

Delete S#=4
Conditional=true

Condition=/
quiz([not(startdate<

currdate and
enddate>cudate]

Nodes quiz, section, item, item are
also marked dirty because their

descendants have been modified

Figure 3: The Security Annotated Schema for the Stu-

dent Security View shown in Fig 1

To facilitate query answering and rewriting, we propose an
internal representation - Security Annotated Schema (SAS)
in the form of annotations to represent the schema trans-
formation specified by a SSX sequence. Annotations are
associated with the element node that was modified and re-
flects the actual changes performed on the original schema
tree structure. SAS introduces the following annotations to
reflect the SSX primitives that specify the access constraints:

Delete
Newnode
Scope Stamp and Dirty Stamp
Chronological Operation Sequence#

We introduce algorithms to automatically construct the
SAS from the SSX primitives. The security annotated schema
for the student view is shown in Figure 3 and the security
view for the same can be trivially derived from the SAS.

Rather than creating and maintaining materialized secu-
rity views, we choose to rewrite the user queries (in XPath)
to queries (in XQuery) that reflect the security constraints
and are evaluated against the source data.The Secure Query
Rewrite process (SQR) is rule-based, and is defined via a re-
cursive rewrite function that translates an user XPath query
on the security view to an XQuery expression against the
original data.

Experimental evaluations reveal that our approach is ef-
fective and efficient. A complete discussion of SSX, SAS and
query rewrites(SQR) and the algorithms and rewrite rules
are available at [2].

3. CONCLUSION
We introduce a framework for specifying and represent-

ing complex security constraints for XML and enforcing the
security constraints during query evaluation, via the query
rewrite process. This framework is the first to introduce
the capability to specify and enforce complicated security
policies on both sub-trees and structural relationships in an
XML document.

4. REFERENCES
[1] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML

querying with security views. In SIGMOD, 2004.
[2] S.Mohan, A.Sengupta, Y.Wu, and J.Klinginsmith.

XML access control, at
http://www.cs.indiana.edu/∼acxess.

252

