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While human beta-testers instinctively try to find a balanced gaming style, an AI implementation is able to quickly find exploits in the game
system.

Abstract

Fun in computer games depends on many factors. While some fac-
tors like uniqueness and humor can only be measured by human
subjects, in a strategical game, the rule system is an important and
measurable factor. Classics like chess and GO have a millennia-old
story of success, based on clever rule design. They only have a few
rules, are relatively easy to understand, but still they have myriads
of possibilities. Testing the deepness of a rule-set is very hard, espe-
cially for a rule system as complex as in a classic strategic computer
game. It is necessary, though, to ensure prolonged gaming fun.

In our approach, we use artificial intelligence (AI) to simulate hours
of beta-testing the given rules, tweaking the rules to provide more
game-playing fun and deepness. To avoid making the AI a mir-
ror of its programmer’s gaming preferences, we not only evolved
the AI with a genetic algorithm, but also used three fundamentally
different AI paradigms to find boring loopholes, inefficient game
mechanisms and, last but not least, complex erroneous behavior.
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1 Introduction

1.1 Motivation

Developing a state of the art computer game today requires the in-
vestment of a lot of money and time. To minimize the risks of such
an investment it is necessary to evaluate the possible success of the
product at an early stage. Aside of factors that are not controlled
by the developers, such as marketing, one wants to ensure that the
game is attractive to the players, that it creates fun. This again
depends on a combination of several factors, one being the actual
game, or to be more precise: the game mechanics. If the game
appears to be unbalanced, or unfair, it might not be well received.
One way to avoid this problem is to copy existing game mechan-
ics and then obfuscate that by moving them to a different theme
setting. Another way, to ensure the quality of innovative game me-
chanics, normally involves a lot of game testers, thus costing time
and money.
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1.2 Idea

Our case study evaluates a different approach, where AIs are used
to evaluate the game mechanics for critical errors. AIs are fast and
cheap to operate, and they do not need a graphical representation,
if a well defined interface exists. So, they can be used on early non-
graphical prototypes. The costs are minimal as most games require
the development of an AI anyway to serve as an opponent for the
player. Our idea is to employ a genetic algorithm to adapt the AI
and then analyze their winning strategies to find flaws in the game
mechanics. The aim is not to show that AIs are able to determine if
a game is actual fun to play, but if they are capable of finding flaws
in the games that would ruin the game for human players.

1.3 Related Work

AI research shows, that it is possible to use genetic algorithms to
improve the performance of AIs in computer games [Ponsen et al.
2005]. Several works exist, that explore the different strategies in
designing and adapting AIs, such as reinforcement learning [An-
drade et al. 2005], or coevolution [Demasi and de O. Cruz 2003].
These works also illustrates that AIs can be applied to different
game mechanics, such as action games or real time strategy games.
Also, the underlying model or paradigm of their approaches varies
from the control of single units to high level decision making, sim-
ilar to our approach of using and comparing several models. But
unlike us, they solely focus on improving the game play of the AIs,
to make them more challenging, or human like opponents.

The question of what makes a game fun is also discussed in [Koster
2005], although it does not introduce a formalism to approach it
systematically. A good overview and synthesis of the current game
definitions is presented in [Juul 2003]. Metric measurements of
game fun were also attempted by [Yannakakis and Hallam 2006],
introducing psychological qualities such as curiosity into an AI, and
measuring it’s satisfaction. Our approach now tries to combine the
evolution of better AIs with the measurement game features related
to fun.

1.4 Overview

For a systematic analysis it is necessary first to define what a com-
puter game actually is, which parameters it has, and how they can
be measured. This will be done in the first section, where we also
discuss how those parameters correlate with the player having fun.
We focus especially on the negative cases, since it is more con-
vincing to argue, what a player will definitely not enjoy. This idea
was tested during the development of ”Rise of Atlantis”1, a turn
based strategy game developed at the TU Braunschweig to investi-
gate several questions related to game development.

The following three sections introduce the key aspects of the game,
and how those are important to our project. First, an overview of the
game mechanics is given. The game was designed to reach a level
of complexity that makes it impossible to find an optimal strategy,
both by mathematical analysis and by evaluation of an experienced
player. For space constraints only the key aspects are explained in
more detail.

The next section describes the general program structure of the
game, describing how to interface the AI with the game server with-
out using a graphical representation. The advantages of a client-
server approach in combination with our method are discussed, and
we show that the AIs are only able to get the same amount of in-
formation that a player would receive. The graphical interface was

1http://www.rise-of-atlantis.de

mainly developed as a case study for a different question, but serves
us as a tool to interface with the game.

The AI section presents the three types of AIs that were used to
evaluate the game mechanics of ”Rise of Atlantis”. It describes
in detail how the AIs were evolved with genetic algorithms, and
how we determined the fitness of the resulting AIs. We then take a
look at the resulting strategies and examine them to find the critical
flaws in the game mechanics of ”Rise of Atlantis”. Several errors of
different types are presented and discussed. The paper closes with
some conclusions.

2 Theory of Games

This section will provide some of the theoretical background
needed to analyze a game. The Encyclopaedia Britannica defines
games as ”a universal form of recreation generally including any
activity engaged in for diversion or amusement and often establish-
ing a situation that involves a contest or rivalry”. We use a less
holistic definition from Juul [Juul 2003], that not only defines what
a game is, but does so by naming several features a game has.

2.1 Definition

Juuls definition [Juul 2003] identifies games by six parameters.

1. Fixed Rules: A game has to be described by a set of unam-
biguous rules. This is also an absolute necessity, if a game is
programmed on a computer, since everything has to be sys-
tematically described before implementation.

2. Variable and Quantifiable Outcome: A game has to have more
then one possible ending, which are distinguishable by the
players.

3. Valorisation of the Outcome: Some of the outcomes have to
be better then others.

4. Players Effort: The actions of the player have an effect on the
game, usually it is harder to achieve a more positive outcome.

5. Attachment of the player to the outcome: The player wants to
achieve the better outcome. If he does, it makes him feel good

6. Negotiable consequences: The game itself should not have
consequences on the world, apart from winning or loosing.
Even so, consequences can be assigned to the different ends
of the game, by betting.

2.2 Strategy Games on Computers

This definition also includes the special case of a turn based strat-
egy computer game. The fixed and unambiguous rules, which are
necessary to implement a game on a computer, also determine the
other five factors of this definition. They are normally split into
three groups of rules, regarding the interaction between players, be-
tween the player and the game and describing the inner workings
of the game. The first set of rules, which governs the interaction
between the players is neglected, our focus lies on the second two
groups.

The rules that govern the interaction between player and world are
equivalent to the interface on a computer game. To formalize this,
we assume that every turn the player picks an action from a finite
number of options. If this is extended to assume that several choices
per round are made, and that not doing anything can be an option,
this formalism is able to describe most interactions with turn based
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computer games. But for the case of a strategic game, this for-
malism appears natural, since it is the skill of decision making that
dominates this game, rather then agility or fast reactions.

The third set of rules that governs the inner workings of the game
is associated with the game mechanics. It determines most of the
games features, and improving its quality is our goal.

2.3 Measurable Parameters

Since the player is attached to the outcome, most games are played
in order to win the game, meaning to achieve one of the better out-
comes for the players. In many cases, this is difficult because the
valorisation of the different outcomes if different for the players,
and thereby a conflict is generated. Overcoming this conflict and
still being able to win in spite of non favourable opponents creates
a feeling of fulfilment and fun, and is therefore desirable when cre-
ating a game. The goal here is to determine those parameters that
would spoil this process.

Naturally, a player tries to use a strategy that would increase his
chances of winning. So first of all, such a strategy has to exist. That
means, some of the actions the player take have to be better then
other, at least for the given situation. If this is not the case, or if
the player never has the necessary information to do so, the game
becomes completely random and the player is not able to put any
effort into the game, since his actions don’t really change anything.

So some actions have to be better then others. But if one action,
or a certain combination of actions is always better then others, the
player will eventually learn of this, and always pick this action. We
will call this a dominant strategy. This is also adverse to the idea of
a player effort, because the player will realize, that he is not really
making smart decision during the game in order to win it, but is
just executing a strategy that leaves him no choice. His actions are
again without effect, the outcome is predetermined.

A similar problem poses an action, which is never beneficial. This
”inferior choice” is not as problematic as a dominant strategy, but
it also limits the choices a player can make. Therefore all actions
should at least be useful in certain circumstances. Every game fea-
ture should be part of a successful strategy.

Therefore game designers should avoid dominant strategies and in-
ferior choices. If the inner workings of the game are kept secret, it
is harder for the player to discover such strategies. But if they are
eventually found, the game is still spoiled. Complex games make it
hard, even if the player knows the rules, to determine what a dom-
inant strategy is, but it also makes it hard for the game designer to
check if those strategies exist.

Finding such strategies is a multidimensional search problem,
which genetic algorithms are able to approximate. So a genetically
evolved AI, whose fitness function is defined by how well it plays
the game, would consider a dominant strategy a local maximum. So
if several AIs adapt a certain strategy and are then always able to
beat the other AIs, their strategy can be considered dominant. Even
if a certain game feature or action is chosen much more frequent
then others a strong hint exist that this action might be to powerful.
Respectively, if AIs never use a certain game feature, this feature is
an inferior choice.

Another parameter that can be measured is the time a game would
last if played by a human player. Since the game should not infringe
upon the real life of the player, this time should be limited to a
manageable length.

Figure 1: Both units were ordered to move. The green unit is faster
and thereby escapes the attack.

3 Game Mechanics

To test our theories we designed a case study that was conducted
during the development of the game ”Rise of Atlantis”. This section
will present a short overview of the game mechanics and its basic
features. The main goals here are to show that the game is too
complex to find an optimal strategy with a simple mathematical
analysis, and to explain some of the details that we will refer to in
the results section.

”Rise of Atlantis” is a turn-based strategy game set in a pre-
industrial world with some fantasy elements. The game world is
represented as a grid of game tiles, each game tile being of a cer-
tain terrain, and possibly containing resources and local population.
The player’s goal is to hire people, explore the territory, amass re-
sources and increase his power in order to either complete the goals
set by the storyline, or to overcome his opponents.

3.1 Concurrent Turn Execution

The idea of a turn based game was in our case inspired by letter
games that were common in the last century. Players would send
in their turn to a game master, who would then evaluate them and
send reports out to the players. In our game, every turn the player
chooses the actions his troops should undertake, and those are then
send to the server. The server evaluates the commands, places them
in an order determined by the kind of action and the properties of
the agent performing them, and then tries to execute them. Nor-
mally, there is no uncertainty, if an order can be executed, only
when other players are involved the agents might fail. If, for exam-
ple, a troop is send to attack an enemy unit but this unit was moved
away in the same turn and is faster, the attack can not take place
(cf. Fig. 1).

3.2 Interaction with the world

The interaction of the player with the world happens only through
his agents, either single heroes, or troops of people he commands.
All the actions the player can take are actions one of his agents
can perform. There are two kinds of agents, heroes and regular
troops. Regular troops are used for gathering resources, building
structures, fighting enemies, processing goods and other tasks that
are more efficient with several people (cf. Fig. 2). They can consist
of a different amount of people and can be hired in villages.

Heroes are single individuals that can do all the things troops of
people can do, but do so less efficiently, since they are alone. How-
ever, they have additional abilities that allow them to hire people,
prospect for new resources, lead armies into battle, perform various
kinds of magic and rally villages so they join your side. Since all
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Figure 2: The player interacts with the world through his units.
Each turn they consume money and food, but they can perform var-
ious actions such as harvesting and fighting.

the action in the world are performed as orders given to the units,
all a player has to do is to give an order of what to do in the next
round to every unit. This is very convenient for our AI testing, since
it allows us to offer a limited amount of choices (the set of possible
orders) for a finite set of agents to the AI to decide.

3.3 Unit Skill System

There are only two basic types of units, heroes and troops, but with
time they can specialize by developing their skills. Both types gain
skills in two ways by executing an activity that is related to that
skill, or by practicing it in a school. Heroes learn faster and also
have a higher skill cap. There are two main advantages of higher
skills. First, all actions performed with that skill are increased in
efficiency. While a group of people harvests wood, they gain skill
points in the category wood, which increases their productivity. At
certain point levels, they also gain additional bonuses and extras,
such as the ability to plant trees and a bonus for using axes in battle.

Since heroes have a higher skill cap, some abilities and bonuses can
only be reached by them. Also, some abilities require a high skill
in more than one category. To avoid having too many skills, several
actions are grouped under the same skill. A unit skilled in gathering
wood is also a good carpenter. The main result of this is that as the
game progresses, and the units gain more and more experience, the
options for the player and the commands he can give grow more
complex. There is also a trade-off to be considered: does the player
want to have only few skilled units, or rather a large mass of cheap
troops.

3.4 Resources

There is a wide range of resources available in the game world,
which can be harvested. Some like wheat or wood grow back, while
other, such as ore and gems will eventually be depleted. Some, such
as ore, also have to be discovered first and then the player has to
build a special building, a mine, to harvest them. The resources
are used for either building new structures that enhance the players
abilities, give his agents new options or are used to produce tools
and weapons, that have similar effects. In general, all goods can
also be traded to the local villagers to gain some money, which is

one of the two basic resources. Money and food is used every turn
by the agents, and if they do not receive enough they get unhappy or
unhealthy respectively. Every person uses up one unit of food and
troops uses up one piece of gold per person, while heroes demand
100 pieces of gold. So, to have a lot of people under you command,
you would need a lot of food, while someone who wants to have a
lot of heroes would need a lot of gold income.

3.5 Settlements

Settlements, even though they can not be built, play an important
part in the game. Players can either persuade them with diplomati-
cally skilled heroes to join sides, or take them by force. The second
option will then create a fight and part of the population will be
diminished. Either way, if the player gains control, the villagers
will then allow him to recruit troops and heroes from its people,
construct buildings in the settlement, and pay taxes every turn. The
settlements thereby create a steady stream of income needed to sup-
port the troops.

The player can also sell and buy goods in settlement, where prices
depend on local supply and demand. The settlements have an inven-
tory of goods, just like the agents, and every turn they use up goods
and produce others, depending on the local environment they are
situated in and what their needs are. So a settlement in the middle
of the forest might not be the best place to sell wood. Even if allied
with the player, the settlements still have a high grade of autonomy.
The agents can take actions to influence the settlements, but there
is no complete control. Especially if the player takes actions the
villagers dislike, such as sending their people to battle where they
die, or not paying their salary. The settlement will become unhappy
and eventually will stage a revolt. Then the player is faced with the
choice of suppressing his settlements or keeping them happy.

3.6 Asynchronous Diplomacy

When playing with other human players a direct diplomatic ex-
change is not possible due to the turn based nature of the game.
So, as another feature, all diplomatic exchange is conducted in a
matter of offers and responses. The game offers several levels of
diplomatic relations one can declare toward another player. The
best one is being allied, where another player is able to use other
player’s facilities like his own. The levels then decent from neutral,
to trade embargo, to closed borders and war. In the state of war, all
your units attack the units of your enemy. Since you can change
your status with the execution of your turn, it is possible to change
you status to war, with a player that has another status toward you.
So, your units will attack his, and he will be ambushed.

The same goes for peace, once two players are at war. Both sides
have to change back to peace, otherwise the fighting will continue.
In the late game, another powerful group will appear, that is suppos-
edly a common enemy of the players. Some of the players will then
get the offer to betray their allies, and win together with this fac-
tion. The element of asynchronous diplomacy adds to the suspense,
because allies can betray one another at every turn.

4 Program Structure

Genetic evolution demands the AIs to play thousands of games as
fast as possible. In order to do so, they have to interface with the
game, or more specifically the game mechanics. This section de-
scribes how the game program is structured, and how that allows
the AIs to interface with the program.

In a turn based strategy game the interaction with the game can be
formalized as choosing an action from a given set of actions at every
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Figure 3: UML package diagram of the game’s internal structure,
showing how both clients for AI and human players interact with
the server.

turn. In our game those decisions are the specific orders given to all
units under the player’s control. Note, that the order to do nothing
is also an order, and will be assumed as the default order if no other
is given.

The diagram in Figure 3 shows the basic modularization. The game
was realized as a client server application. The module ”World-
Data” on the server side contains all game data about the world and
the players. The server module called ”GameLogic” represents the
rules, and is responsible for the evaluation of each turn. When all
players hand in their turns, it executes their effects on the model in
”WorldData”. Two kinds of clients were created, graphical ones for
the human players, and non-graphical for the AIs. In both cases,
they receive their data from the ”Parser” module that encodes the
relevant game data in an XML file that would then in turn be used
to update the world data on the clients. The module ”Parser” only
encodes the data accessible to the player through his units, so the AI
does not receive more information than a normal player. The AIs
and the players then give orders to their units in their ”WorldData”
Module after examining the game situation. Those are transmitted
back to the server, again in the form of an XML File.

This modularization has several advantages. First, the AI as well as
players can be constricted from viewing the complete world state
of the game, thus preventing cheating. The communication of the
orders in the form of a specified XML file makes it possible to play
by TCP, email or any other kind of communication that is able to
transport that file. It also gives a well specified format for the AI
to express their decisions. It is also possible to completely omit the
graphical representation, if only AIs are playing; accelerating the
game in order to speed up the evolution process.

A genetic evolution of that complexity takes a lot of time. A high
number of complete games have to be played to evolve even a sin-
gle generation. Several generations are necessary to achieve even a
basic level of evolution. All this takes considerable time, and it is
not only the decision making of the AIs that slows down the pro-
cess. Also the speed in which that decision can be transmitted and
processed must be taken in account. Having a fast implementation
of all factors included should not be neglected either.

5 Graphics

Although a graphical client does not necessarily belong to the basic
requirements of the game, such a client was implemented at an early
stage of the development process. The graphical client ensures that
all programmers can easily inspect the current game state and com-
pete with the AI. We also used the graphical game client to conduct
a before-and-after comparison of the game with human players. To
do so, some of the game mechanics that were designed to make the
game accessible to AIs now had to be visualized to human players.

In another project that was part of the development of ”Rise of At-
lantis” a concept was created that allows efficient data representa-
tion, which also addresses the two most troublesome aspects of its
game mechanic. The need to visualize the concurrent turn execu-
tion of orders, and the presentation of the different orders a unit can
execute.

To address the first issue, we switched between two distinct screen
layouts. The first layout presented the actual game state and allowed
interaction with the game entities, such as giving orders. The sec-
ond layout contains a wide screen display of the game world and
shows the game progress in between rounds by following an auto-
matically compiled timeline. The player can jump back and forth
in this timeline layout to inspect all visible in-game events and he
may even return to this timeline view when he entered the interac-
tion layout.

In order to present all possible orders in a single, coherent view, the
amount of information displayed was linked to the position of the
camera. When the player zooms out and overlooks several game
tiles in a birds-eye view, only very basic orders, such as movement,
are possible. When viewed from a closer distance, the camera au-
tomatically changes its viewing angle, so that a single game tile is
presented in an almost isometric view. More details of the scene
are revealed and thus, the orders where the unit would interact with
them are accessible by clicking the corresponding objects. By do-
ing so it was ensured, that the player would have access to the same
amount of possible orders the AIs had, without getting confused.

6 Genetic Optimization

Genetic algorithms are optimization of search algorithms that have
been inspired by biological evolution [Goldberg 1989]. The idea is
to have a genome space that is equivalent to the search space. Indi-
vidual solutions are assessed by an evaluation function, also called
fitness function. Fit individuals are allowed to procreate and are
changed either through mutation or recombination. Much of the
terminology used with genetic algorithms is taken from biology as
its historical roots are in the simulation of evolutionary processes.
Today they are used in many areas including artificial creativity
[Pereira 2006], bioinformatics [Hill et al. 2005] and all general op-
timization problems without a clear direct approach.

6.1 Mathematical Definition

A genetic algorithm belongs to the category of random-walk al-
gorithms. Given a multi-dimensional search space and a fitness
function f(~x) the goal of the random-walk algorithm is to find the
global maximum of the function f . A classic random-walk algo-
rithm starts at a randomly determined point in the search space and
from there on tries to find higher ground (e.g. the hill-climbing al-
gorithm). Genetical algorithms vary this theme by starting at mul-
tiple places at once and sharing information on the heights glob-
ally, randomly trying to find even higher grounds. The point in the
search space is represented through a set of chromosomes carried
by each individual.
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The genetic algorithm can be split into four phases: initialization,
selection, reproduction and termination. In the initialization phase,
random individuals are generated as the first generation. Next, for
each of these individuals, the fitness function is calculated and the
less fit individuals are removed from the process.

There are two ways to create new genomes, mutation or recombina-
tion (crossover). Mutation is modelled by randomly picking chro-
mosomes and changing them. Recombination takes at least two fit
individuals. Their genomes are split randomly and the pieces are
recombined to form a new individual. Selection and reproduction
are then repeated until the termination criterion is met, which might
be anything from a target number of generations or fitness over lack
in fitness increase to computational time constraints.

6.2 Using Genetic Algorithms to Train the AIs

The main problem in applying this method to our game it that the
fitness function cannot be calculated directly. There is no explicit
function that gives a fitness value for each individual. For the se-
lection process, however, that is not exactly necessary. The fitness
function is only used to compare the fitness of two individuals, but
that can be done just as well by letting them compete against each
other. This method of indirectly determining the fitness of the in-
dividuals is called ”coevolution” and is one of the main advantages
of genetic algorithms over classical search algorithms [Koza 1991].

Our implementation of the genetic algorithm with coevolution
works as follows. Let G be the maximum generation size and S
be the minimum generation size. During initialization, G individu-
als are build randomly. The individuals are randomly pitted against
each other in a match. The losing individual is deleted. When
the generation size reaches its minimum S, the reproduction be-
gins. From the survivors again two are chosen randomly. They
are crossed, using a random one-point-crossover and mutated at a
rate of 1/numberofgenes, which on average results in one muta-
tion per generation. We stopped the process after about 24 hours of
computation time, with S = 32 and G = 128.

When mapping behavior to a vector space, the naive approach is to
give the reaction to all possible input possibilities. For ”Rise of At-
lantis”, this approach would be fatal as even the map has more than
trillions of variations. Instead of dictating the reactions to the input,
we chose to use AI behavior models, for which the genetic algo-
rithm provides the parameters. The three behavior models, we used,
are introduced in section 7. All three follow a different paradigm.

7 AI paradigms

When building an AI, basic design questions have to be answered,
before even considering implementation, optimization and integra-
tion. While studying typical decision-making processes in human
players, we noticed that there are different paradigms concerning
strategical and tactical play.

In the next three sections, we will discuss the AI paradigms we
used for optimization of the game and their advantages and disad-
vantages.

7.1 Swarm AI

The most basic paradigm is that of swarm behavior. Every entity is
seen independently and tries to perform best from its limited point
of view. Their decisions are based on primitive motivations like
hunger, loneliness, curiosity, fear and anger. It is randomly decided
what motivation to pursuit. As you can see in figure 4, the motiva-
tions give motivation points toward the different actions, which add

Figure 4: Organisational diagram for the Swarm AI

Figure 5: Organisational chart for the Councillor AI

up to the probability distribution of the actions. The precise param-
eters are determined by the genetic code. While most motivations
are determined individually, like hunger and loneliness, others are
set as global parameters like anger and fear.

Although each entity decides on their own, their behavior does not
have to be egoistic. In fact, entities may give food away when meet-
ing another entity with fewer resources. Each individual’s prime
goal is to win the game. They do not do, however, explicitly plan
or coordinate on a global level.

We did, however, notice emergent behavior that did benefit the
whole group. The individual’s aversion to loneliness, leads to mov-
ing clusters like unit groups, which proved to be very effective in
both war scenarios and resource management.

Other advantages where more technical in nature. The implemen-
tation of a motivation system is very simple. New actions and even
new motivations can be added quickly, when the game logic is ex-
tended or changed. In our test games, the swarm AI usually beat its
opponents, not only because its implementation is simpler, hence
more robust, but also because it learned much faster. Since, we re-
stricted learning time and the swarm AI could play faster due to its
simplicity and could thus run through more generations.

7.2 Councillor AI

The Councillor AI acts similarly to a Cabinet. The Councillors
are specialized in topics like war, infrastructure, expansion and re-
source gathering. Each of the Councillors has a wish list of sec-
ondary goals, like ”build workshop” or ”more soldiers”. The exact
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Figure 6: Workflow of the Reactive AI

content and priorization of these wishes is determined by the ge-
netic makeup and some situational markers. Also, the Councillors
are prioritized based on situation and genes, which influences the
global priority of their wishes.

According to the priority of each wish, needed resources are dis-
tributed, missing resources are set on the resources gathering list
or transported. Unlike the swarm AI, resources can be allocated
even when the goal is not reachable in the current turn. That way,
resources can be saved for more expensive buildings.

Besides resources, wishes need units to be fulfilled. They are as-
signed jobs to units like gathering and exploring. When redistribut-
ing the jobs according to the priorization, the algorithm tries to
maximize the units staying in a job to take full benefit of the learn-
ing system of ”Rise of Atlantis”.

Unlike the swarm AI, this system needs a lot of handicraft, by for-
mulating the wishes and splitting them into jobs intelligently. The
main advantage is that decisions are easy to understand for humans
and predictable. It makes a nice opponent and could easily be used
as a recommender system for new players. The main disadvantage
is that many crucial decisions are made hard-coded, without influ-
ence of genes, which seriously hampers the flexibility needed in
the play testing phase, when rules are still changing. Tactically, we
noticed occasional micro-management mistakes that were not cov-
ered through the jobs and wishes. The gameplay worked very well
for building quickly an infrastructure, but did not cope well with
sudden changes, rare situations and attacks.

7.3 Reactive AI

Much like the Councillor AI, the Reactive AI decides globally on
how to proceed. Unlike the Councillors, it focuses much more on
reacting to situations, than following its own plans. As you can
see in figure 6 the decision process is split into four steps. The
Commander analyzes the game report and looks for certain pat-
terns, called situations. Typical situations are enemies on the bor-
der, resource scarcity and lacking exploration. From the detected
situations, the Consultant generates general solutions or hints by
consulting the genes, together with an alarm level of the situation.
Next, the Commander sorts the hints by the weights given to them
in the gene and their alarm level. The Micromanager converts the
hints greedily into actual commands. Unused resources are given
standard tasks that do not require much movement.

Again, the main problem is the amount of hard-coded intelligence
required to make this AI run. This increases calculation time and
decreases flexibility. The Reactive AI did a much better job of re-
acting to attacks and tactical micro-management than the Council-
lor AI.

8 Results and Discussion

In this section we will present the general results of the case study
and discuss some of the findings in more detail. The AIs adapted
well to the game mechanics and already twenty generations after
the initialization the genomes would perform significantly better
then the randomly initialized genomes. This suggests that the hard
coded parts of the AIs were well chosen, giving the AIs enough
flexibility to adjust, but also restricting them enough so they can
evolve successfully.

It also shows, that the game mechanics, as a minimum, are not com-
pletely random itself, and that certain strategies improve the odds of
winning. The next step is to look for dominant strategies, inferior
choices and bugs.

8.1 Dominant Strategies

One example for a dominant strategy was the overproduction of
grain. One of the AIs found a strategy in which it would hire as
much troops as possible, and use all of them to harvest grain, an
openly available and regrowing resource. The grain was then partly
eaten, and the rest was sold for money at the closest settlement. The
resulting money was enough to hire more troops, and the AI was
thus able to increase its troops exponentially. The mechanism that
adjusted the prices in settlements depending on supply and demand
should have prevented this. Selling increasingly huge amounts of
grain to the villagers, which would never use them up, should have
decreased the prices dramatically and made this unprofitable. Un-
fortunately, the regular price for grain was only two gold units, and
a price for anything could never fall below one gold piece. A change
of this lower bound made the strategy disappear completely.

This illustrates, how a somewhat complex dominant strategy that
involves several different actions (hiring troops, harvesting grain,
transporting it to the settlement, selling it) could be successfully
identified. An experienced player could have found that strategy as
well, but might then have been forced to repeat those rather boring
actions over and over, and control an exponentially large amount of
troops. It was decided that this strategy is not beneficial for game-
playing fun and it was thus removed from the game.

In a later evolution, many AIs decided to hire more troops in the
beginning than they could sustain in the long term to gain a short
term benefit in resources and protection. Since that strategy was not
essential to win a game and actually seemed like a fun strategy for
players, giving them more to do in the beginning, it was left as a
viable possibility in the game.

8.2 Inferior Choices

The AIs where also able to identify several choices as inferior, and
did not use them at all. For example, after additional cost and re-
quirement for the production of iron where introduced, most AIs
dropped the production of those good depending on iron completely
from their strategies. Even so they where capable to produce iron
goods, as was seen before the cost of the ore processing steps were
increased. Something similar happened to the use of horses. In
one version, their training depended on building a stable and the AI
stopped to produce horses, because it was not profitable anymore.
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Apart from that, the statistics could be used to investigate which
features of the AI used. For most options, it could even be deter-
mined to what extend or frequency a certain feature was used. Most
of the AIs, for example, settled for a moderate approach to explo-
ration. No exploration appears as an obviously bad choice, since it
limits the player’s options heavily. But a maximum of exploration
also proves to be bad, since it entails the risk of loosing several units
due to the lack of support form the main troops, and early contact
to the enemy.

A different factor of the game mechanics that could be determined
was the actual time it would take a player to play a game. On aver-
age it took the AIs 300 turn to complete a game. This is too long,
considering that a player would need 2 minutes for a turn the game
would last 10 hours. It also revealed that especially the early build-
ings and tools took way to long to produce.

8.3 Bug Detection

Another interesting result we discovered during the case study was
the ability of the AIs to identify bugs in the game mechanics mod-
ule. Since the AIs were more likely to get ”killed” if they lost a
game, being able to crash the game was an advantage for the genetic
selection process. Therefore, several AIs developed ways to crash
the game. One was particular memorable, because it involved the
combination of several complex actions to crash the game. These
would have been hard to find by conventional beta testing, since
it involved several phenomena human players would instinctively
avoid.

Every troop unit has an integer number that represents the number
of people in that troop. If, for any reason such as combat or bad
health, a person in that unit dies, that number is decreased, if the
number of people reaches zero in that way, the unit is erased. The
problem was that if a unit was created as a troop of zero people, the
reduction of one person put the counter to -1, and the unit would not
be erased. So zombie units where created, which produced food and
gold every turn, could not die and caused the game to crash in battle
simulations. Naturally, units of that size should no be possible to
produce, but the AI found a way. By not giving a hero food for
a longer time, the unit gets very close to death, and its efficiency
in different tasks suffers. When this hero hires a troop unit in a
settlement, the amount of hired people is calculated in regard to the
hero’s general efficiency, which could yield a result of zero people.

9 Conclusions

In this paper, we studied the usefulness of using genetically opti-
mized AIs as playtesters. More specifically, we compared the per-
formance of three different AI paradigms in this situation. Each
AI was designed and programmed by 6 to 7 undergraduate students
over a time period of three months.

As discussed in section 8, the evolving AIs where able to develop
winning strategies, revealing both dominant and inferior strategies.
None of those strategies were obvious in superficial human play
test, we conducted before training. It fact, many of those strategies
used rather boring and repeated moves, or neglected certain aspects
of the game. Human beta-testers usually try to avoid both. Degrad-
ing the value of those strategies made the game more interesting,
by not forcing the players to use them in order to be effective.

Implementing the genetic algorithm was relatively fast and easy,
given that the AI had been designed for it from the start. Since an
AI had to be developed for the game anyway, the additional cost
of making it optimisable was relatively low. Working with an un-
finished and changing game logic was quite a challenge, though.

While the SwarmAI could be changed relatively easy, both groups
with more complex AIs had a hard time adjusting their AIs to the
changes. To our surprise, the simplest AI became also the most ef-
fective, both in terms of finding strategies and bug detection, simply
because they could run more and faster than the more complex AIs.
Also, it turned out, that the most important ability of AIs is not to
have the most efficient micro-management, but to react to threats
and actions from the opponent and the surrounding area.

In conclusion, we believe this case study to be convincing proof of
concept for our initial thesis. The human play tests we conducted
before and after the modifications actually show the game is now
more fun to play.
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