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Abstract

Configuring large networks can be very complex. A network administrator typically
has a set of high-level policies in mind when creating a network configuration, but
implementing the configuration onto existing hardware often requires specifying many
low-level details. As a result, configuring a network is currently a very error-prone
process, and misconfigurations resulting in network outages and security vulnerabili-
ties occur frequently in practice. We present a formally verified compiler from high-
level network policies to low-level executable routing rules, to simplify the process of
correctly configuring networks and enforcing network policies.
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Chapter 1

Introduction

Network administrators frequently need to create and enforce routing policies across

a network. For instance, when configuring an Internet service with load balancing,

it might be necessary to ensure that the load balancer can communicate over the

network with each origin server, while also preventing origin servers from receiving

any other packets from outside the network.

As the complexity of a network increases, implementing a high-level policy can be

extremely error-prone, particularly if the implementation is carried out manually. In-

correctly blocking a network connection can result in a system outage, and incorrectly

allowing a connection can expose private information or render a system vulnerable

to attacks such as server-side request forgery. Indeed, bugs in network configurations

routinely cause problems in practice (e.g. [15, 16]).

To avoid these problems, it is helpful to use a tool that automates some of the

reasoning required for manual network configuration, allowing a network administra-

tor to operate a network at a high level of abstraction without being concerned about

low-level details. An ideal tool would be robust enough to provide strong correctness

guarantees, while also being expressive enough to fulfill the complex requirements of

real-world networks. While this ideal is difficult to achieve, several recent projects

have proposed a variety of tools and abstractions that substantially reduce the effort

required to manage a network.

VeriFlow [7] is a runtime network analysis tool that detects the violation of
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network-wide invariants as they occur, ensuring that networking problems can be

detected quickly. For example, one might use VeriFlow to ensure that a particular

destination in a network remains reachable, and to raise an alert if this invariant is

ever violated. VeriFlow operates on a “live” network at runtime, allowing it to test

invariants without requiring access to the precise configuration details of network

components.

While the ability to detect invariant violations at runtime is undoubtedly useful,

it is often preferable to prevent invariant violations from occurring in the first place.

VeriCon [3], VMN [11], and Kuai [9] apply model checking to network behavior,

with the goal of proving that specified invariants cannot be violated under a formal

model of possible network events. NetKAT [1] and “Decentralizing SDN Policies”

[10] provide a formal basis for implementing network policies by optimally sending

forwarding rules to distributed physical switches.

As an alternative to formally verifying very complex network configurations, some

projects have focused on simplifying the programming model for large networks to

reduce the risk of implementing bugs. Frenetic [5], SNAP [2], FatTire [12], and Mer-

lin [14] introduce abstract languages describing the behavior of entire networks and

compile the languages to executable rules running on distributed hardware. These

languages vary in expressive power and purpose. Frenetic and SNAP’s programming

models aim to allow the creation of imperative networking programs, where Fre-

netic locates all program state at a controller, and SNAP provides a mechanism to

distribute program state throughout the network. FatTire allows the user to specify

paths through a network and automatically generates fault-tolerant implementations.

Similarly, Merlin allows the user to declare constraints on network resources (e.g. a

maximum bandwidth or reachability requirement between two switches) and auto-

matically compiles these constraints to compliant implementations.

These projects significantly decrease the difficulty of configuring networks for

many common use cases. However, some gaps in the existing work merit another look

at the problem. Declaring the invariants of an entire network in a single program-

ming model substantially reduces mental overhead in implementation, but existing
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tools for declarative compilers (such as NetKAT, FatTire, and Merlin) provide fairly

limited expressive power for network policies. Additionally, FatTire and Merlin are

not formally verified, creating a risk of bugs in the respective compilers.

To address these gaps, we present a verified compiler for network policies. The

compiler accepts as input a high-level network policy in a functional language, and

it outputs executable routing rules along with a proof that the rules implement the

policy.
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Chapter 2

Compiler Architecture

Our main contribution is a proof-generating compiler, mostly written in Coq, from

abstract network policies to executable routing rules.

To aid in understanding the compiler, we first provide a brief overview of Coq and

OpenFlow.

2.1 Overview of Coq, Gallina, and Ltac

Coq is a “proof assistant”, i.e. a programming language that acts as a tool for creating

mathematical proofs. Coq itself is composed of two smaller languages, called Gallina

and Ltac.1

Gallina is a dependently typed, strongly normalizing, pure functional language

based on the Calculus of Inductive Constructions [6]. Using the Curry-Howard Cor-

respondence, a user can create a proof of a mathematical statement in Gallina by

constructing an inhabitant of a specified Gallina type.

To aid in the construction of proofs, a Coq user typically uses Ltac [4], a dynam-

ically typed scripting language designed for manipulating Gallina terms. Notably,

although Ltac provides an expressive mechanism for manipulating Gallina terms, it

does not allow the “rules” of Gallina to be broken; if an Ltac script succeeds, it pro-

1We only provide a brief overview of Coq here. More information and resources about the
language can be found at the project homepage https://coq.inria.fr/.
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duces a valid Gallina term. As a result, Ltac allows the creation of proof-generating

compilers which are not proven correct. In other words, a proof-generating compiler

that uses an Ltac script may sometimes fail to output anything, but if it does produce

an output, the output will be accompanied by a proof of correctness.

Throughout this text, we will include code snippets containing Coq code when

discussing some of our formal models and correctness conditions. Understanding these

code snippets is not a requirement for understanding the surrounding prose, but our

intent is that they may aid in comprehending the finer details of the compiler. The

full source code of the compiler, including associated proofs and tests, can be found

at https://github.com/mit-plv/network-configurations.

2.2 Overview of OpenFlow

OpenFlow is an open protocol for communication between a network controller and

a set of network switches. The OpenFlow specification [18] defines a binary format

through which controllers can communicate with and install rules on switches. The

simplest OpenFlow rules might specify that all packets that arrive at a switch should

be forwarded to a certain location, or all packets that match a specific IP address

mask should be forwarded to another location. The protocol also supports primitives

such as timeouts and counters, which allow a controller to (e.g.) specify that a routing

rule should only be in effect for a specific amount of time.

2.3 Components of the Compiler

The internal structure of the compiler consists of three main components:

1. The largest part of the compiler is the backend: a total dependently typed

function, expressed in Gallina, that accepts as arguments a topology, a policy,

and a set of proof obligations ensuring that the inputs to the compiler are valid.

2. In order to help satisfy these proof obligations, the compiler contains a small
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frontend consisting of Ltac scripts. The user of the compiler is expected to pro-

vide certain inputs as Gallina terms, and these Ltac scripts typically automate

most of the process of proving the correctness of the inputs.

3. The output of the compiler backend is an abstract representation of an Open-

Flow controller, as well as a proof that the controller produces correct network

behavior according to the abstract network model. The abstract controller rep-

resentation is then compiled with the final piece of the compiler, a small unver-

ified conversion layer written in OCaml which performs I/O and serialization.

The result is an executable binary that can run on a real network.

High-Level Structure of the Compiler

Topology/Policy

Backend

Frontend

Executable Controller

Proof of Validity for
Abstract Controller I/O Layer

 Abstract Controller

 Proof of Validity for
Topology/Policy
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Chapter 3

Modeling the Network

3.1 Topologies and Networking Basics

A typical network contains a set of hosts, or devices that may need to communicate

with each other. To facilitate communication between hosts, networks also contain

switches which connect to hosts and to each other.

hostA
switchW

switchX

hostB

hostC

switchY

switchZ

For example, in the figure above, suppose hostA is a server that needs to send a

message to hostB, a database. hostA would accomplish this by sending one or more

packets containing information to an adjacent switch, such as switchW. switchW can

then forward the packet to another adjacent switch, such as switchY. Since switchY

is adjacent to the intended destination of hostB, switchY could then forward the

packet directly to hostB. At this point, hostB has received the message and can take

action as appropriate.
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hostA
switchW

switchX

hostB

hostC

switchY

switchZ

The collection of hosts, switches, and links between them defines a network topol-

ogy. More formally, we model a network topology as a finite directed graph, where

each node in the graph is tagged as either a host or a switch. For simplicity, we

require that every host in the network has an outgoing edge to at least one switch.

Each outgoing edge from a node is labelled by a locally unique sixteen-bit integer

representing a port. Port numbers are unique on a per-node basis. (For example, any

particular node can have at most one outgoing edge on port 5, but the network as a

whole can contain multiple edges on port 5 in different locations.)

Context {Switch : Set}.
Context {Host : Set}.

Inductive Node :=

| SwitchNode : Switch→ Node

| HostNode : Host→ Node

.

Definition Port : Set := word 16.

Definition network topology := Node→ Node→ option Port.

Record valid topology (topology : network topology) := {
no duplicate ports : ∀ node outgoing1 outgoing2 ,

match topology node outgoing1 , topology node outgoing2 with

| Some port1 , Some port2 ⇒ port1 = port2 → outgoing1 = outgoing2
| , ⇒>
end;

valid port numbers : ∀ switch1 node2 ,

match topology (SwitchNode switch1 ) node2 with
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| Some port⇒ port 6= natToWord 16 0

| None⇒>
end;

no isolated hosts : ∀ host,

∃ switch,

topology (HostNode host) (SwitchNode switch) 6= None

}.

Using this formalization, we can represent the example topology used above (with

port numbers chosen arbitrarily):

Inductive ExampleHost :=

| hostA

| hostB

| hostC

.

Inductive ExampleSwitch :=

| switchW

| switchX

| switchY

| switchZ

.

Definition example topology node1 node2 :=

match node1 , node2 with

(* hostA <--> switchW edge *)

| HostNode hostA, SwitchNode switchW⇒ Some (portNo 1)

| SwitchNode switchW, HostNode hostA⇒ Some (portNo 2)

(* switchW <--> switchY edge *)

| SwitchNode switchW, SwitchNode switchY⇒ Some (portNo 3)

| SwitchNode switchY, SwitchNode switchW⇒ Some (portNo 4)

(* ... other edges omitted for brevity ... *)

| , ⇒ None

end.

From this simple example topology, we make two basic observations:

1. The decisions made by switches in a network are very important to ensure the
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correct function of the network as a whole. For example, if switchW erroneously

forwarded hostA’s packet to switchZ instead of switchY, then the packet would

end up in a “black hole” where it could no longer reach its intended destination

of hostB from switchZ. In effect, hostA would be rendered entirely unable to

send messages to hostB, because none of its packets would arrive.

2. If desirable, a certain set of switches in a network can collaborate to ensure

that a specific pair of hosts is never able to communicate, by simply dropping

(refusing to forward) any packets sent between the two hosts.

We are far from the first to make these observations; using network switches to

block specific connections is the main purpose of network firewalls, which have seen

widespread usage for decades. However, these observations motivate the idea of a

network policy, i.e. a mechanism for regulating the connections on a network by

controlling the switches.

3.2 Network Policies

In a typical network, it is important that messages between certain pairs of hosts are

allowed, and that messages between other pairs of hosts are disallowed. For example,

consider the following network:
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hostA
switchW

switchY

hostB

hostC

hostD

hostE

switchX

Suppose hostB is a public-facing server, hostA is an untrusted client for that

server, and hostC is a database connected to that server. It is likely desirable that

hostA can send messages to hostB, and hostB can send messages to hostC. However,

for security reasons, it might also be desirable that hostA cannot send messages di-

rectly to hostC. To ensure that these requirements are followed, it might be necessary

to install nontrivial routing logic on the switches between hostA, hostB, and hostC.

This set of requirements is an example of a static network policy, i.e. a static

declaration of which pairs of hosts are allowed to connect to each other, and which

pairs are not.

An example of a static policy

(hostA, hostB): allowed
(hostB, hostC): allowed

(hostA, hostC): disallowed
...

More formally, we define a static policy as a computable predicate over network

flows, where a network flow is an ordered pair of hosts in the topology that might
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attempt to connect to each other.

Record flow := {
Src : Host;

Dest : Host

}.

Definition static network policy := flow→B.

While static network policies are relatively simple to reason about, many real-

world networks have requirements which cannot be expressed through static policies.

In the previous diagram, suppose hostD is an external server, and hostE is a potential

client for that server on an internal network. Initially, it might be undesirable for

hostD to be able to send messages to hostE, since this would require untrusted

packets from hostD to be able to enter the internal network. However, it might be

acceptable for hostE to initiate a connection with hostD, at which point hostD would

need to send a message back to hostE in order to provide a response. In other words,

it might be permissible for hostD to send a message to hostE only if hostE has sent

a message to hostD at some point in the recent past.

More generally, this example suggests that the set of permissible network flows

should be able to change over time based on the packets that have previously been

sent over the network. To account for this use case, we define a dynamic policy

as a labelled transition system where each state produces a static policy, and state

transitions are triggered by successful packet transmissions in the network.
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An example of a dynamic policy

(hostA, hostB): allowed
(hostA, hostC): allowed

(hostB, hostA): disallowed
(hostC, hostA): disallowed

...

(hostA, hostB): allowed
(hostA, hostC): allowed
(hostB, hostA): allowed

(hostC, hostA): disallowed
...

Packet received:
A -> B

(hostA, hostB): allowed
(hostA, hostC): allowed

(hostB, hostA): disallowed
(hostC, hostA): allowed

...

Packet received:
A -> C

...

...

...

Note that as the network topologies and dynamic policies increase in complexity, it

becomes substantially more difficult to create an ad-hoc description of how each switch

should operate while still satisfying all of the necessary constraints. For example,

in the running example it is not immediately clear what the behavior of switchY

should be over time. (Should it blindly forward all packets and leave another switch

with the responsibility of policy enforcement? Should it take responsibility for policy

enforcement between certain pairs of nodes, but not others?) Under this view, it is not

surprising that bugs occur so frequently when manually configuring highly complex

networks.

3.3 Assumptions about Network Structure

In our model of a network, we make several simplifying assumptions.

1. All of the switches in a network topology are under the control of a single

network administrator.

Our compiler produces a set of routing rules for every switch in the topology, and

the correctness of the system depends on all of the switches behaving according

to those routing rules. (In some real-life networks, some switches might be

operated by a third party, making it difficult to install custom logic on those

switches. These scenarios are considered out-of-scope for our model.)
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2. Network topologies are assumed to be completely static; no switches or hosts

can be added or removed at runtime.

In large real-life networks, this assumption typically does not hold; links to

switches can occasionally go down, and a network is typically expected to be

resilient to a single switch failing. However, there is substantial existing work

(e.g. VMN [11], FatTire [12]) on the issue of reliable fault tolerance for link

failures. To simplify our model, we assume no link failures can occur. A user of

our compiler would likely choose to combine it with something like FatTire [12]

before deploying it in a network where link failures are a concern.
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Chapter 4

IR layers of the Compiler Backend

We now begin our discussion of the architecture of the compiler itself, starting with

the compiler backend. The compiler contains several intermediate representations of

network routing rules, starting with highly abstract specifications of routing behavior

and gradually moving down to concrete implementations.

4.1 The next node Relation

At a high level of abstraction, the task of our compiler is to decide, given any switch

and packet, the set of locations where the switch should be permitted to forward the

packet. We encode this decision in a general representation of a set of routing rules,

called a next node relation. For any given switch, and any given network flow for a

packet arriving at that switch, a next node relation defines a predicate on nodes that

determines whether the given node is to be considered a valid hop from the switch.

Definition next node := Switch→ flow→ Node→ P.

Intuitively, a next node relation can be considered to represent the routing be-

havior of an entire network at a fixed point in time.

It should be noted that the routing decisions of a next node relation are inhabi-

tants of Coq’s Prop type (represented by P in the snippet above), which can contain
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arbitrary logical propositions. As a result, routing decisions are not directly com-

putable from next node relations in the general case. (For example, a next node

relation could specify that a particular packet should be dropped if and only if P

equals NP; such a relation would be valid but very difficult to work with.) Later, we

will consider a variant of next node which requires relations to be decidable.

The next node relation allows us to define a correctness condition for routing

behavior given a particular topology and static policy, before considering more com-

plex questions about network policy implementation (e.g. decentralization of routing

decisions). We define a next node relation to be correct when all of the following

conditions hold:

1. The next node relation respects the topology, i.e. it only specifies that a switch

should forward a packet to a node if there exists a link between the switch and

the node in the topology.

2. For all network flows allowed by the current static policy, and all switches

connected to the source of the flow, there exists a path from the first switch to

the destination host such that each switch in the path can forward packets for

that flow to the next node in the path, when making routing decisions based

on the next node relation.

Note that this claim is stronger than requiring such a path to exist between

the source and destination host, because it requires the path to exist regardless

of where the host decides to send the packet on the first hop. The compiler

produces executable rules that run on network switches, but has no control

over the behavior of network hosts. Therefore, when evaluating the correctness

of the compiler, we require the system to behave appropriately regardless of the

decisions made by hosts.

3. For all network flows disallowed by the current static policy, there is no path

from the source of the flow to the destination of the flow when making decisions

based on the next node relation.
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4. The next node relation prohibits “black holes”. In other words, if a switch can

forward an allowed packet to a particular location, the packet will eventually

reach its destination from that location after a finite number of hops.

5. The next node relation prohibits cycles. In other words, for any switch s there

exists no nonempty path from s to s for which all hops in the path are allowed

by the next node relation.

6. The next node relation never forwards a packet from a switch to a host unless

that host is the intended destination of the packet.

Record next node valid

(topology : network topology)

(policy : static network policy)

(next : next node)

:= {
all hops in topology : ∀ here current flow hop target,

next here current flow hop target→
topology (SwitchNode here) hop target 6= None;

path exists only for valid flows : ∀ current flow first switch port,

topology (HostNode current flow.(Src)) (SwitchNode first switch)

= Some port

→ (

(policy current flow = true)↔
∃ path, is next node path next path first switch current flow

);

no black holes : ∀ here current flow hop target,

policy current flow = true

→ next here current flow hop target

→
match hop target with

| HostNode dest⇒
dest = current flow.(Dest)

| SwitchNode next switch⇒
∃ path,

is next node path next path next switch current flow

end;
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all paths acyclic : ∀ path here current flow,

is next node path next path here current flow

→ NoDup (here :: path);

forwards to correct host : ∀ here current flow end host,

next here current flow (HostNode end host)

→ end host = current flow.(Dest)

}.

4.2 Generating Valid next node Relations

Having defined the conditions under which a given next node relation is considered

valid, we now discuss how a valid relation could be constructed. We consider a

function that attempts to find a path in the topology between a given switch and a

given destination host.

Definition all pairs paths := Switch→ Host→ option (list Switch).

Note: Our Gallina encoding of a path here only includes intermediate hops and

omits the endpoints. This avoids the need to store a heterogeneous list, since the

intermediate hops are always switches and the destination endpoint is always a host.

However, when discussing paths in prose here, we will include both the hops and the

endpoints for clarity.

Given such an all-pairs paths generator, we can generate a next node relation as

follows: at each switch s, check whether the current flow is allowed by the policy. If

it is, allow the switch to forward only to the first node on the path from s to the

destination host.

Definition all pairs paths next node generator

(paths : all pairs paths)

(topology : network topology)

(policy : static network policy)

here

current flow

hop target
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:=

policy current flow = true ∧
match paths here current flow.(Dest) with

| Some (hop target’ :: )⇒ hop target = SwitchNode hop target’

| Some []⇒ hop target = HostNode current flow.(Dest)

| None⇒⊥
end.

Intuitively, this implementation of a next node relation simply works by trying to

compute a path in the topology from every switch to every host, and making routing

decisions locally at each switch based on the computed path from that switch to the

destination.

4.2.1 Avoiding Routing Cycles

Perhaps surprisingly, this routing strategy is not always valid. Consider the following

example:

hostA switchW
hostBswitchX

switchY

Suppose a given all pairs paths implementation decides that the path from

switchW to hostB should proceed through switchX (i.e. the path [switchW;

switchX; hostB]), and the path from switchX to hostB should proceed through

switchW (i.e. the path [switchX; switchW; switchB]). Both of these paths are

valid on their own, but generating a next node relation from these paths will cause

a packet from hostA to hostB to bounce between switchW and switchX indefinitely.

(At switchW, the next step on the path to hostB is switchX, and at switchX the

next step on the path to hostB is switchW.)

This anomaly arises because an all pairs paths implementation is not necessar-

ily consistent. At each switch, we consider the entire path to the destination host,
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and forward a packet to the next switch along that path. But once the packet reaches

the next switch, it might be forwarded according to an entirely different path to the

destination.

While sending a packet in a loop forever is certainly undesirable, we consider the

absence of a consistency requirement in all pairs paths to be a useful allowance. In

real networks, switches do not typically need to be aware of every hop that a packet

will take to its destination; instead, they can just forward the packet based on some

heuristic and let the other switches in the network decide on the subsequent hops.

Therefore, we solve this problem without introducing a global path consistency re-

quirement, by instead requiring that the all pairs paths implementation generates

decreasing costs. An implementation is said to generate decreasing costs when there

exists a global cost function mapping each edge of the topology to a positive integer,

such that the path cost to the destination from the first hop of a path is always less

than the path cost from the start of the path.

For example, consider the following topology with a cost assignment to each edge:

hostA switchW1

hostB

4

switchX
3 2

switchY

2 2

As before, suppose the given all pairs paths implementation specifies that the

appropriate path from switchW to hostB is [switchW; switchX; hostB]. The total

cost of this path is 5 (it has one hop with cost 3, and one hop with cost 2).

Since the first hop on the path leads to switchX, the decreasing-costs requirement

ensures that the path from switchX to hostB must have a total cost less than 5.

This rules out the anomalous path [switchX; switchW; hostB] discussed before,

since that path has cost 7 with our current choice of cost assignments. However, the

all pairs paths implementation could still generate the path [switchX; switchY;

hostB] or simply [switchX; hostB], since they have costs of 4 and 2 respectively.
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Note that at this point, we are unconcerned about whether an all pairs paths

implementation selects an optimal set of paths in order to minimize costs; in fact,

an all pairs paths implementation can be created independently of a cost function.

We only require that there is some cost assignment for which path costs monotonically

decrease on all switch-to-host paths.

Given such a cost assignment, it is relatively simple to show that the resulting

routing rules prohibit cycles, by induction on the path cost for each switch/host pair.

Definition generates decreasing costs

topology

(paths : all pairs paths)

costs

:=

only positive costs topology costs ∧
∀ src dest,

match paths src dest with

| Some (hop target :: cdr)⇒
match paths hop target dest with

| Some path⇒
match

path cost topology costs hop target dest path,

path cost topology costs src dest (hop target :: cdr)

with

| Some remaining cost, Some original cost⇒
remaining cost < original cost

| , ⇒⊥
end

| None⇒⊥
end

| ⇒>
end.

4.2.2 Ensuring Enough Paths are Generated

Not all topologies are strongly connected; in some cases, there is no possible path

from a particular switch to a particular host. We account for this possibility by

defining all pairs paths implementations to return option (list Switch) rather

than list Switch; an implementation can explicitly fail to generate a path for a
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particular switch-host pair by producing None for that pair. If there is no path

between a particular switch and a destination host, the switch will simply never

forward any packets for flows with that destination.

Since our overall goal is to ensure that packets allowed by the current policy will

always reach their destinations, we therefore need to ensure that this scenario will

never occur for packets allowed by the current static policy. To accomplish this, we

impose the following restrictions on all pairs paths implementations:

1. If the flow (src, dest) is allowed by the current static policy, then for every

switch sw adjacent to src, the all pairs paths implementation generates a

path for the switch-host pair (sw, dest).

2. For any switch sw, if the path from sw to dest is sw :: hop :: cdr, then the

all pairs paths implementation generates a path for the switch-host pair

(hop, dest).

From these constraints, the proof of path existence follows by induction on the

initial path from sw to dest.

Record all pairs paths valid topology policy paths := {
paths in topology : ∀ src dest,

match paths src dest with

| Some path⇒ is path in topology topology src dest path

| ⇒>
end;

paths exist for valid flows : ∀ current flow first switch port,

policy current flow = true

→
topology

(HostNode current flow.(Src))

(SwitchNode first switch)

= Some port

→
match paths first switch current flow.(Dest) with

| Some ⇒>
| None⇒⊥
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end;

paths move closer to destination : ∃ (costs : edge costs),

generates decreasing costs topology paths costs

}.

4.3 Deterministic next node Functions

Using the all pairs paths abstraction, we have shown that we can create a

next node relation that satisfies our validity requirements. The next node relation

specifies that packet transitions are nondeterministic and are not computable in the

general case, which makes next node somewhat unwieldy to work with. We special-

ize the general next node relation to dec next node, a computable, deterministic

function that decides where a switch forwards any particular network flow.

Definition dec next node := Switch→ flow→ option Node.

Definition dec next node valid topology policy dec next :=

next node valid topology policy (λ here current flow hop target⇒
dec next here current flow = Some hop target

).

We can generate valid dec next node functions in the same manner as valid

next node relations using an all pairs paths implementation.

4.4 Routing Tables

Given a valid dec next node function, we define a set of routing tables as a mapping

from each switch to the enumeration of all allowed flows that could end up at that

switch, each combined with the following node that packets for that flow should be

forwarded to from that switch.

Definition routing tables := Switch→ list (flow * Node).
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We define a set of routing tables to correctly implement a dec next node function

if the following two constraints hold:

1. The tables match the given dec next node function; a switch has a particular

flow/node pair in its tables iff the dec next node function dictates that the

switch will forward the given flow to the given node.

2. The tables are well-formed (with each flow corresponding to at most one for-

warding destination).

Record routing tables valid

(tables : routing tables)

(dec next : dec next node)

:= {
no duplicate entries : ∀ here,

NoDup (tables here);

entries match next node result : ∀ here current flow hop target,

dec next here current flow = Some hop target

↔ In (current flow, hop target) (tables here)

}.

Note that the routing tables valid condition only ensures that a set of routing

tables correctly implements a dec next node function, but does not ensure that the

corresponding routing decisions are semantically reasonable according to any policy.

(We continue to use the dec next node valid condition to show semantic correctness

at this point.)

To generate routing tables from dec next node functions, we simply enumerate

all possible flows in the network at each switch, and add an entry to the corresponding

table in each case where the dec next node function would produce an output for

that flow. Of course, enumerating all pairs of flows in the network requires for the

first time that the network has a finite number of hosts. (Hosts and switches are

defined as inhabitants of the Set type in Gallina, which in general can be infinite.

However, we have no practical use for abstract topologies whose hosts are defined
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as, say, the set of natural numbers.) To generate all flows, we therefore require the

compiler frontend to provide an explicit enumeration of all members of the Host set.

4.5 OpenFlow Actions

At this point, our policy is suitable for direct conversion to OpenFlow. In order to

accomplish this, we need to formally model some of the OpenFlow specification. Since

we assume that the compiler has full control over all switches in the network, we also

have full control over all of the OpenFlow data being sent through the network. As

a result, we only need to formally model the subset of OpenFlow that the compiler

actually produces; the remainder of the OpenFlow spec will not appear on the network

and is therefore not necessary to model here.

At a high level of abstraction, a network using OpenFlow typically works as fol-

lows:

• Each switch in the network is connected to a controller. Connections between a

switch and a controller can exist independently of the network topology between

switches. (The graph of switch-controller connections comprises the control

plane, whereas the graph of switch-switch and switch-host connections com-

prises the data plane.)

• At any given point in time, a switch has a set of flow entries that determine

how the switch should respond to a particular type of incoming packet.

• Each flow entry contains of a set of matchers that determine whether the rule

should apply to any given packet based on data in the packet header. A filter

typically takes the form of “match all IP packets”, or “match all IP packets

with a specific host IP address”.

• Each flow entry also contains a set of actions that determine what the switch

should do with a packet if it determines that the current rule applies to that

packet. An action typically takes the form of “forward this packet out a partic-

ular port”, or “forward this packet to the controller”.
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• At any point in time, a controller can send a message to a connected switch

instructing it to modify the set of flow entries in use.

Our formal model of OpenFlow flow entries roughly matches the given description,

with a few modifications. First, we only consider matchers that use exact matches

on source and destination IP addresses. For the purposes of this model, we ignore all

non-IP packets.

Definition ipv4 address : Type := word 8 * word 8 * word 8 * word 8.

Record ipv4 packet := {
IpSrc : ipv4 address;

IpDest : ipv4 address

}.

Record header fields matcher := {
IpSrcMatcher : option ipv4 address;

IpDestMatcher : option ipv4 address

}.

Second, instead of allowing a list of zero or more actions in a flow entry, our formal

model requires exactly one action of three possible “pseudo-actions” corresponding

to a subset of possible OpenFlow behaviors.

Inductive openflow pseudo action :=

| ForwardToSwitch : Port→ openflow pseudo action

| ForwardToDest : Port→ openflow pseudo action

| Drop

.

Record openflow flow entry := {
header fields : header fields matcher;

action : openflow pseudo action

}.

These three constructors for openflow pseudo action correspond to three pos-

sible lists of concrete actions produced by the compiler. The Drop pseudo-action
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produces an empty list of actions (i.e. indicating that a given packet should not

be forwarded anywhere). The ForwardToSwitch pseudo-action produces a list with

one action, which forwards the packet to the given port. The ForwardToDest pseudo-

action produces a list with two actions, where one of the actions forwards the packet to

the given port, and the other action forwards the packet to the controller (to trigger a

state transition in the current dynamic policy). The conversion from a pseudo-action

to an action occurs in the unverified OCaml layer of the compiler; for the purposes

of our formal model, we treat the three pseudo-actions as routing primitives that

provide the given behavior by construction.

With this model, we can now compile our routing tables directly to OpenFlow,

by simply converting each entry in a routing table to a flow entry.

4.6 Correctness of Generated OpenFlow Entries

4.6.1 Modeling the Network

The correctness of the compiler is evaluated on an abstract model of a packet traveling

through a network.

1. A host src can arbitrarily attempt to send a packet to another host dest.

Initially, the packet resides at src in the NotYetSent state.

2. From the NotYetSent state, src then emits the packet by sending it to any

adjacent switch sw. The packet then resides at sw in the EnRoute state.

3. From the EnRoute state, a switch sw can either:

• Forward the packet to another switch sw’, provided that an edge exists

from sw to sw’ in the topology. The packet then resides at sw’ in the

EnRoute state.

• Forward the packet to a host endpoint, provided that an edge exists from

sw to endpoint in the topology. The packet then resides at endpoint in

the ReceivedAtHost state.
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• Drop the packet, causing it to move to the terminal Dropped state.

4. Finally, from the ReceivedAtHost state, a host endpoint can move the packet

into the Arrived state, provided that endpoint is the intended destination of

the packet (endpoint = dest).

Inductive openflow network packet state :=

| NotSentYet

| EnRoute : Switch→ openflow network packet state

| ReceivedAtHost : Host→ openflow network packet state

| Arrived

| Dropped

.

Inductive openflow network step :

openflow network packet state→ openflow network packet state→ P :=

| EmitPacketFromSrc : ∀ port src host first switch,

src host.(host ip) = packet.(IpSrc)

→ topology (HostNode src host) (SwitchNode first switch)

= Some port

→ openflow network step NotSentYet (EnRoute first switch)

| ForwardPacketToSwitch : ∀ port current switch new switch,

get matching action packet current switch.(entries)

= ForwardToSwitch port

→ topology (SwitchNode current switch) (SwitchNode new switch)

= Some port

→
openflow network step

(EnRoute current switch)

(EnRoute new switch)

| ForwardPacketToDest : ∀ port current switch dest host,

get matching action packet current switch.(entries)

= ForwardToDest port

→ topology (SwitchNode current switch) (HostNode dest host)

= Some port

→
openflow network step

(EnRoute current switch)

(ReceivedAtHost dest host)

| DropPacketAtSwitch : ∀ current switch,

get matching action packet current switch.(entries) = Drop
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→ openflow network step (EnRoute current switch) Dropped

| AcceptPacket : ∀ dest host,

dest host.(host ip) = packet.(IpDest)

→ openflow network step (ReceivedAtHost dest host) Arrived

.

Each switch uses only the source and destination IP address of a packet in order

to determine where the packet should be sent, and whether it should be allowed. We

assume that each host has a single, unique IP address which is already known to all

other hosts that might attempt to contact it. (In effect, this would typically require

the existence of a working DNS infrastructure, which is largely orthogonal to our

requirements.)

For example, when hostA sends hostB a packet, our model dictates that it starts

out by creating a packet in the NotYetSent state which has a source IP address of

hostA’s IP, and a destination IP address of hostB’s IP. As the packet travels through

the network, the switches would need to make a determination about how to process

the packet based on its IP. Since network policies express constraints on hosts rather

than constraints on IP addresses, we require the user to provide an injective mapping

from hosts to IP addresses.

Given this model, a set of routing rules on switches is defined to be correct if the

following conditions hold for all packets:

1. The packet system never gets “stuck” or ends up in a cycle, i.e. it always reaches

the Arrived or Dropped state after a bounded number of steps.

2. If the flow represented by a packet is allowed by the static policy, the packet

always reaches the Arrived state. If the flow is disallowed, the packet always

reaches the Dropped state.

Fixpoint always reaches state after bounded steps

desired state

num steps

current state
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: P :=

desired state = current state ∨
match num steps with

| 0⇒⊥
| S num steps’⇒

(∃ new state, openflow network step current state new state) ∧
∀ new state,

openflow network step current state new state

→ always reaches state after bounded steps

desired state

num steps’

new state

end.

Record valid openflow entries

(topology : network topology)

(policy : static network policy)

(host ip : host ip map)

(entries : switch openflow entry map)

: P := {
packets arrive iff allowed : ∀ packet src node dest node,

src node.(host ip) = packet.(IpSrc)

→ dest node.(host ip) = packet.(IpDest)

→ ∃ num steps,

always reaches state after bounded steps

host ip

entries

topology

packet

(

if policy {| Src := src node; Dest := dest node |}
then Arrived

else Dropped

)

num steps

NotSentYet;

existent ports : ∀ switch,

all ports exist topology switch switch.(entries)

}.

To show that the compiler outputs a valid set of OpenFlow entries given a static

policy, we prove the stronger claim that any valid dec next node function will result

in valid OpenFlow entries. (Recall that we previously showed the compiler generates

40



valid dec next node functions via the all-pairs-paths mechanism.) We separate the

proof into two cases depending on whether a given packet is allowed by the policy.

4.6.2 Correctness for Allowed Packets

First, we show that allowed packets always eventually arrive at their destinations.

We use the fact that if a next node relation is valid, then there must exist a path

through the network from the packet source to the packet destination, for which

which each hop is a valid routing decision under the given next node relation. Since

each hop under the dec next node function is deterministic, there must be exactly

one such path for each starting switch adjacent to the source host, and the packet

will simply move along that path until it reaches the destination. (This requires a

fairly straightforward conversion from the semantics of routing tables to the modeled

semantics of OpenFlow.)

4.6.3 Correctness for Disallowed Packets

Next, we show that disallowed packets are always eventually dropped. Analogously

to the previous case, we use the fact that if a next node relation is valid, then the

next node relation does not map any path through the network from the source to

the destination. We can use this to show that disallowed packets never reach the

Arrived state. (A packet can also never reach the ReceivedAtHost state because

a valid next node relation never forwards a packet to the wrong host.) Since the

next node relation never produces a cycle in a topology, a packet can never appear

at the same switch multiple times on a route. Since there are a finite number of

switches in the network, we can show that the packet must eventually be dropped by

induction on the number of unvisited switches.

An alternate proof strategy could use the fact that next node relations never con-

tain cycles to achieve the same goal without relying on deterministic routing choices.

This strategy could make the proofs more amenable to future modifications to the

compiler. However, since the compiler relies on routing choices being deterministic
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for other reasons, we did not pursue this proof strategy.

4.7 Modeling Stateful Policies

4.7.1 Transition Systems for Dynamic Policies and Con-

trollers

At this point, we have shown that the compiler produces correct results for any given

static network policy. We now expand the system to be able to support dynamic

policies in addition to static policies.

Recall that dynamic policies can specify that the set of allowed flows must change

at runtime, based on packets that have been sent through the network in the past.

This necessitates that the OpenFlow controller occasionally update the set of routing

rules on switches. We formally model a dynamic policy as a deterministic labelled

transition system, where each state transition is triggered by a packet being sent in

the network. We allow the dynamic policy to keep track of any arbitrary state, and

require only that a static policy can be generated from that state at any given point

in time.

Record flow transition system {state} := {
Initial : state;

Step : state→ flow→ state

}.

Record dynamic network policy {policy state : Set} := {
policy system : flow transition system policy state;

policy state decider : policy state→ static network policy

}.

In our model, we assume that whenever a switch forwards a packet to a host

(i.e. when the packet enters the ReceivedAtHost state), the switch simultaneously

and instantaneously forwards the packet to the OpenFlow controller. The controller
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receives the packet, updates some internal state, and generates a new set of OpenFlow

entries based on the updated internal state. Finally, the controller sends the updated

OpenFlow entries to all of the switches in the network.

More formally, we define a controller to be another transition system with its own

internal state:

Record network controller {controller state} := {
controller system : flow transition system controller state;

controller state decider :

controller state→ switch openflow entry map

}.

4.7.2 Policy Validity

Some combinations of network topologies and static policies are trivially unsatisfiable.

For example, if a static policy specifies that a flow must be allowed between two hosts,

and the hosts are disconnected in the topology, it is trivially impossible to generate

a network configuration that routes packets between the hosts.

More precisely, a topology-static policy pair is satisfiable iff every for every flow

(src, dest), the topology contains a path from src to dest. A user can prove that

a given static policy is valid by generating a valid all pairs paths instance for that

policy.

Checking the validity of a dynamic policy is somewhat more involved, because

the set of flows allowed by the policy can change over time. As a result, the user is

required to prove that a given all pairs paths instance is valid under every possible

state of the dynamic policy.

In the previous section, we defined a dynamic policy as a transition system that

can change state as a result of any flow. However, it is important to note that some

transitions are not actually possible. At any given point in time, if a packet is not

allowed by the static policy currently in effect, then the packet will necessarily be

dropped by a switch before reaching its destination. As a result, the packet will never
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enter the ReceivedAtHost state, so it will never trigger a state transition for the

dynamic policy or the controller.

Allowing these impossible transitions makes it significantly more difficult (and

sometimes impossible) to prove the validity of a policy, because it requires the creator

of the policy to prove that the policy would remain valid even under transitions that

cannot occur in practice.

To make these proofs more tractable, it is important to refine the transition sys-

tem model to rule out impossible transitions. We accomplish this by wrapping the

transition system in a “filter” that prevents it from changing state in response to

certain flows.

Definition filter transition system

{state}
(predicate : state→ flow→B)
(sys : flow transition system state)

:=

{|
Initial := sys.(Initial);

Step := λ current state next flow⇒
if predicate current state next flow

then sys.(Step) current state next flow

else current state

|}.

With this abstraction, we can restate our policy validity condition. Rather than

requiring the policy to be valid under any transitions of the policy system, we instead

require the policy to be valid under any transitions of a filtered policy transition

system, where the only possible transition labels are the flows allowed by the current

policy.

Inductive trc

{state : Set}
(step : state→ flow→ state)

: state→ state→ P :=

| TrcRefl : ∀ (start : state), trc step start start
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| TrcFront : ∀ start mid dest sent flow,

step start sent flow = mid

→ trc step mid dest

→ trc step start dest

.

Definition invariant

{state : Set}
(sys : flow transition system state)

(condition : state→ P)
:= ∀ new state,

trc sys.(Step) sys.(Initial) new state

→ condition new state.

Definition dynamic policy valid paths :=

let filtered policy sys :=

filter transition system

policy.(policy state decider)

policy.(policy system) in

invariant filtered policy sys (λ current state⇒
all pairs paths valid

topology

(policy.(policy state decider) current state)

paths

).

We can then model the entire dynamic controller and network by applying the

same filter to both the policy and controller system, and have both systems run in

lock-step. This is the final model on which we evaluate correctness of the compiler

as a whole; the compiler is considered to produce correct output if and only if the

current state of the controller generates valid OpenFlow entries for the current static

policy, at every possible state of the network.

Definition join transition systems

{A}
{B}
(sys1 : flow transition system A)

(sys2 : flow transition system B)

:=

{|
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Initial := (sys1 .(Initial), sys2 .(Initial));

Step := λ current state next flow⇒ (

Step sys1 current state.(fst) next flow,

Step sys2 current state.(snd) next flow

)

|}.

Definition controller implements policy

{controller state : Set}
(controller : @network controller controller state)

:=

let joined sys :=

filter transition system (λ current state next flow⇒
policy.(policy state decider) current state.(fst) next flow

) (

join transition systems

policy.(policy system)

controller.(controller system)

) in

invariant joined sys (λ policy and controller state⇒
let (policy state, controller state) :=

policy and controller state in

valid openflow entries

topology

(policy.(policy state decider) policy state)

node ip

(controller.(controller state decider) controller state)

).

Since we can already generate correct OpenFlow entries for any given static policy,

this model makes it relatively simple to create a first-pass implementation of a correct

controller. We can simply:

1. Simulate the dynamic policy transition system within the controller in order to

determine the static policy that should be in effect at any given point in time.

2. Generate OpenFlow entries for that static policy, and send the entries to all of

the switches.

In other words, while our model allows a controller to keep track of state separately

from a dynamic policy (e.g. to allow for optimization by omitting irrelevant state),
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it is not necessary to have separate state in the controller for a baseline correct

implementation.

Definition dynamic controller paths := {|
controller system := policy.(policy system);

controller state decider := λ state⇒
(

generate openflow entries

(

exhaustive routing tables generator

(

all pairs paths dec next node generator

paths

topology

(policy.(policy state decider) state)

)

all nodes

)

host ip

topology

)

|}.

The proof of correctness for this dynamic controller is straightforward via induc-

tion on the trc relation.

4.8 Limitations of the One-Packet-at-a-Time Net-

work Model

4.8.1 Comparison to Real Networks

Our model of a network has a few shortcomings. These issues could provide an

interesting avenue for future work.

1. The model only tracks a single packet in the network at a time, and assumes a

new packet only enters the network after the previous packet leaves. Of course,

in real-life networks, many packets can be in flight simultaneously. As a result,
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in practice the set of routing rules on switches could change while a packet is

somewhere between two hosts. This has some implications for correctness:

• If the expected path through the network between two hosts is changed

while a packet is in flight, the packet could end up getting routed to a

black hole and dropped even if it would be allowed by both the old and

new static policy (before and after the updates on the switches).

• Of greater concern: If the enforcement mechanism for disallowed packets is

moved to an earlier point in the packet’s path after the packet has already

passed that point, then the packet could be successfully routed even if it

would be disallowed by both the old and new static policy.

2. Updates from a controller are assumed to propagate to switches instantaneously.

In reality, there is some latency between the time when a packet arrives at a

controller, and the time when appropriate updates are installed on switches.

This delay could result in a packet being processed by different switches with

outdated versions of a particular policy.

Currently, the compiler implements neither mutable paths nor centralized fire-

wall enforcement, so it is not expected to suffer from the issues described above.

However, our definition of correctness is not strong enough to guarantee re-

silience to these issues. Combining our model with a versioning system for

policies, such mechanism introduced by Reitblatt et al. [13], would likely ad-

dress this issue.

4.8.2 Efficiency

The efficiency of our network model also leaves some room for future improve-

ment. In practice, it is undesirable for a switch to send a packet to the controller

for every single packet that reaches its destination, since this creates substan-

tial bandwidth overhead. It would be better for a packet to only be sent to the

controller if the packet would actually cause the dynamic policy to transition
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to a new state (since the controller does not need to be aware of packets that

don’t change the state).

This enhancement seems like it would be feasible with only a small change to the

network model, although it would introduce some computation complexity for

the controller. At any given state, the controller could simulate every possible

flow in order to determine which packets, if subsequently sent in the network,

would cause the controller to transition a different state. Then the controller

could instruct switches to skip sending packets back to the controller unless the

packets match one of the flows that would cause a state change. This brute-

force approach would have at least quadratic runtime complexity in the number

of hosts, since there are a quadratic number of possible network flows.

The quadratic runtime complexity here is not fundamental to the problem;

it is simply a side effect of making the user-provided policy system opaque

to the compiler backend. By allowing introspection of user-provided dynamic

policies, the compiler backend could more efficiently determine which flows cause

transitions to different states. Since Gallina terms cannot perform meaningful

reflection over other Gallina terms, such a solution would either require the

user to use an embedded language to specify policies, or it would require the

compiler backend to pattern-match on user policies with something like Ltac.
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Chapter 5

Components of the Compiler

Frontend

5.1 Overall Architecture and User Interface

In discussing the architecture of the compiler backend, we have identified several

cases where the user is required to prove certain properties about their input. (For

example, in order to invoke the compiler backend, the user must provide a proof that

their topology is valid.)

Proofs can be time-consuming to create, so it is desirable to minimize the amount

of work that a user needs to do in order to meet their proof obligations. Of course,

we cannot entirely eliminate proof obligations for input validity by proving a general

case, because some user-provided inputs are in fact invalid, and the compiler would

be unable to generate correct output for invalid inputs. Instead, we provide Ltac

scripts that attempt to automatically generate proofs, or large portions of proofs,

when given valid inputs. Ideally, these scripts greatly reduce the amount of work

that a user needs to do in order to use the compiler.

Recall that the compiler is proof-generating rather than proven correct. In general,

determining whether a proof exists for any given proposition is undecidable. As

a result, while our Ltac scripts can produce proofs for a restricted subset of valid

inputs, there will always be cases where the input is valid and the compiler frontend
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nonetheless fails to generate validity proofs. (However, by construction there are no

cases where the input is invalid and the compiler frontend successfully generates a

validity proof.)

In the cases where the input is valid but the compiler frontend fails to generate

a proof, a user can still run the compiler if they manually construct a validity proof

with Ltac.1 In this scenario, the compiler will still produce a proof of correctness for

its output.

As a result, the frontend is best understood as a mechanism that aims to make the

compiler easier to use in common cases, but it is not fundamental to the system and

can be ignored or augmented by the user if necessary. We will see that the frontend

is composed of multiple independent components, allowing a user to use some parts

of the frontend but not others.

5.2 Comparing the Compiler Frontend Architec-

ture with Alternative Designs

At first glance, it may seem unappealing that our compiler sometimes requires users to

manually write proofs. One might imagine a different design in which we require poli-

cies to be provided in a restricted language that allows for decidable proof generation.

This alternative approach would allow us to ensure that the compiler always succeeds

for valid inputs without any manual proof steps (in effect, allowing the compiler to

be proven correct rather than proof-generating).

However, we consider it to be important that users can declare policies in a high-

level functional language such as Gallina, for several reasons:

• First, it is useful for the policy language to have substantial expressive power.

By necessity, some network systems have policies depending on complex invari-

ants, which might not be expressible in a restricted language. Our approach

allows users to specify policies as arbitrary Gallina predicates. In effect, we trade

1A user can alternatively declare the validity of their input as an axiom instead of proving validity,
but this is not recommended because it somewhat defeats the point of using a verified compiler.
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a small amount of convenience for greater expressive power. (We note that the

“simple” cases where such expressive power is unneeded are also roughly the

cases where the compiler frontend can successfully automate proofs anyway.)

• Second, user-provided policies are part of the trusted computing base for our

system, making it prudent to minimize the risk of bugs in policies. While we

can prove that the output of the compiler satisfies a given policy, we cannot

prove that a given policy accurately expresses the user’s intent. We believe that

our use of a high-level functional language reduces the risk of specification error,

because it allows policies to be declared at a level of abstraction that closely

corresponds to the user’s mental model. If we instead required policies to be

provided in a restricted lower-level language, a user would first need to convert

their mental model of the correct behavior into the low-level policy language,

and manually reason about whether the conversion was correct.

In effect, the undecidable “compilation” from a high-level mental model to a

proof of input validity still needs to occur regardless of our input language. By

requiring the user to construct input validity proofs in Coq, we simply auto-

mate some of the logical reasoning that would otherwise have been performed

mentally in an error-prone manner. The result is that in comparison to many

existing systems with untyped input languages, our user interface substantially

reduces the number of cases where input bugs can appear.

5.3 Proof Obligations

5.3.1 Topology Validity

We require the user to provide a network topology, as well as a proof that the topology

is valid. Recall that a topology is considered to be valid if no host has two outgoing

connections on the same port, and each host is connected to at least one switch.

In order to show that no host has two outgoing connections on the same port,

we can simply use a brute-force approach of enumerating all hosts, enumerating all
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nodes adjacent to each given host, and verifying that the outgoing port numbers are

not equal. Similarly, we can show that each host is connected to at least one switch

by simply using “nested loops” to enumerate all hosts and switches.

Note that since validity proofs only need to be constructed once at compile time,

we are largely unconcerned with the runtime complexity of constructing proofs. (To

optimize user experience, it is somewhat desirable for proof construction to take no

more than a few seconds. Beyond that metric, however, we have not placed a high

priority on performance optimization of proofs beyond informally ensuring that they

run in polynomial time. There is likely to be substantial room for improvement in

our proof performance.)

5.3.2 Policy and All-Pairs-Paths Validity

We require the user to provide a dynamic network policy and an all pairs paths

implementation, along with a proof that the all pairs paths implementation is

valid for any reachable state of the dynamic policy. Recall that an all pairs paths

implementation is considered to be valid if its paths follow edges in the topology,

it provides paths for all allowed flows in the current static policy, and it generates

decreasing costs.

We provide an Ltac script that runs the Floyd-Warshall algorithm with path recon-

struction on the user’s topology in order to generate an all pairs paths implemen-

tation. We allow the user to provide a set of edge costs for use in the Floyd-Warshall

algorithm, which can optimize the set of chosen paths to account for real-world link

costs. While the Ltac script is expected to generate shortest paths (weighted by the

provided edge costs) between each pair of nodes, we do not provide a proof that the

path costs are indeed optimal.

After generating the all pairs paths implementation, our Ltac script can prove

that its paths follow the edges in the topology by exhaustively verifying that this

is the case for every step of every generated path. We can similarly show that the

all pairs paths implementation generates decreasing costs by computing the path

cost at each step of each path, and ensuring that the cost decreases after moving to
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the next node along the path.

Finally, we need to prove that for every reachable static policy, the

all pairs paths implementation generates a path for every flow allowed by that

static policy. (Since our Ltac script will always generate a path if a path exists, this

is equivalent to proving that if any reachable policy state allows a particular flow,

then there is a path in the graph between the source and destination of the flow.)

If the user’s topology happens to be strongly connected, then this proof is trivial

because a path exists between every pair of nodes.

However, if the topology is not strongly connected, then this proof is significantly

more complex. We cannot use exhaustive search because a user-provided dynamic

policy can be an arbitrary transition system, with a potentially infinite state space.

Instead, we require the user to supply a condition as an invariant for their dynamic

policy, as well as a proof that the condition implies the desired goal at any given

state, and a proof that the condition is indeed an invariant of the system.

5.3.3 Host-IP Address Mapping

The user is required to provide an injective mapping from hosts to IP addresses. We

prove that the user’s mapping is injective by exhaustively enumerating each distinct

pair of nodes and showing that the corresponding IP addresses are also distinct.

5.3.4 Enumeration of Nodes

The user is required to provide an explicit list of hosts and nodes in the network, as

well as a proof that their list indeed contains all nodes, and a proof that their list

contains no duplicates. In the simplest case where the Switch and Host types are

provided as a set with only nullary constructors, we can start from the proof goal that

every switch and host is in a particular list, and then use refinement with existential

variables to enumerate all constructors and add them to a list one at a time. Then

all that remains is to show that the generated list contains no duplicates, which is

trivial because the list has no free variables.
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We do not provide a proof script for cases where Switch and Host have construc-

tors with arguments. However, such a script seems feasible to create if all constructor

argument types are themselves enumerable.
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Chapter 6

I/O Translation Layer

The final piece of the compiler is an I/O layer written in OCaml. In order to send

messages to external OpenFlow switches, an OpenFlow controller needs to run actions

with side effects (e.g. by invoking syscalls). Coq provides no direct mechanism to

perform actions with side effects, so we cannot run an OpenFlow controller directly

from Coq. Instead, we use Coq’s extraction feature, which allows Gallina code to be

exported to a language like OCaml with proof terms omitted. We then compile the

generated OCaml code with our I/O layer in order to run it on a real network.

Broadly speaking, the I/O layer involves serializing our formal datatype for an

OpenFlow controller into a format that can be sent over the wire. The OCaml con-

troller listens for messages from switches, simulates the abstract controller model

generated from the Coq code while keeping track of state, and then sends Open-

Flow messages back to switches to produce the updated network state. To simplify

the controller, we use the set of OpenFlow bindings for OCaml created for use in

Frenetic [5].

6.1 Evaluation of the I/O Layer

Our I/O layer is effective as a proof of concept for running our abstract network rules

on a real network. However, some modification would likely be necessary before using

our controller at scale. For example, in order to update the set of OpenFlow flow
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entries on the network at runtime, our OCaml controller simply deletes all flow entries

on all switches, then computes a new batch of flow entries for the updated state and

sends all of these entries to the appropriate switches.

This behavior was chosen in order to simplify the OCaml controller while devel-

oping the Coq model, but it would likely be too inefficient to use in a large network.

A better solution would likely involve computing a diff between the old and new set

of flow entries at any given switch, and only sending addition and deletion messages

for flow entries that changed.

6.2 Impact of Unverified Components on Correct-

ness

Unlike the components of the compiler written in Coq, our OCaml I/O layer is not

formally verified. This introduces a risk that the correctness of the compiler could be

compromised by a bug in the I/O layer. To minimize this risk, we generally tried to

include and verify as much logic as possible in Coq instead of OCaml.

Even with these efforts, there were some cases where it was possible to move logic

to Coq but we did not do so. For example, our OCaml code includes a library that

performs serialization and deserialization between OpenFlow objects and a binary

format, based on the semantics described in the OpenFlow spec. Fundamentally, this

serialization does not involve any kind of I/O, and we could have implemented it

in Coq and proven its correctness. However, we did not do this in the interest of

prioritizing other concerns.

Additionally, the correct behavior of the compiler depends on the correctness of a

number of external components which are necessarily external to the controller. For

example, we assume the controller’s operating system, and the hardware that it runs

on, have no bugs that affect the behavior of the controller. We also assume that all

of the network switches are actually connected in the manner specified by the user’s

abstract network topology, and that no one has cut the cables.
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A bug in any of these components could, in theory, create incorrect behavior when

placed in a real network. There are ongoing efforts in other projects to formally verify

an entire software/hardware stack, and we hope these efforts make it easier in the

future to create a verified system with fewer assumptions on correct infrastructure.

However, we consider these issues to be out-of-scope for our compiler. In general,

any formally verified system models some assumptions about components in the real

world, and may work incorrectly if those assumptions are violated. Even with these

caveats, we believe our compiler still significantly decreases the risk of bugs when

configuring a network, by simply reducing the number of places where a bug could

feasibly appear.
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Chapter 7

Evaluating the Compiler in

Practice

To test the behavior of the compiler in practice, we first generated contrived sam-

ple network topologies by hand. We modeled the corresponding topologies in Coq,

created a basic policy for them, and ran the necessary inputs through the compiler

frontend. Then we used the Mininet [8] tool to simulate our network in practice. We

ran the compiler backend, compiled the result with the OCaml I/O layer, and veri-

fied that the network behaved as expected on a few simple packet communications.

These tests were useful for improving the compiler frontend and addressing modeling

problems.

We found a few minor issues when evaluating the tool on a real network:

• In a few cases, our model of an OpenFlow network inadvertently differed from

the OpenFlow spec. For example, at one point our model allowed two switches

to be connected on port number 0 and assumed that forwarding would happen

as normal. In reality, port 0 is not a valid port number in OpenFlow,1 so the

network did not behave as expected even though the compiler was ostensibly

proven correct. As with any formal-verification project, while we can prove

correctness with respect to a particular model, it is important to separately

1See Section 3.1 of the errata for OpenFlow v1.0.1 [17]
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ensure that the model accurately reflects the real world for the relevant purposes.

• While our topology model allows for one-way links between nodes in a topology,

Mininet only supports two-way links out of the box. As a workaround for this

issue, we simply represented one-way links in our topology with two-way links

in Mininet, potentially influencing the correctness of our tests. (This issue is an

inconvenience for testing the compiler, but it does not influence the correctness

of the compiler itself because topologies are provided by the user. If a real-world

topology only contains two-way links, then the user could simply use two-way

links when specifying the topology in Gallina.)

• We found that our network would sometimes unexpectedly drop packets due

to delays in controller behavior. For example, at one point we evaluated a

network policy where packets from hostA to hostB were always allowed, and

packets traveling in the opposite direction (from hostB to hostA) were only

allowed if hostB had previously received a packet from hostA. At first glance,

it might appear that running something like ping hostB from hostA should

work without any problems, since the echo packet is always allowed, and the

echo response packet would start being allowed after the successful transmission

of the echo packet. However, in practice we found that the response for the first

ping packet would always be dropped, because hostB would always emit a ping

response before the OpenFlow controller was able to update the routing rules

in the network. After the first ping packet, subsequent pings were successful,

as expected.

In other words, our model assumed that switches and controllers communi-

cate synchronously and instantaneously, when in fact they communicate asyn-

chronously and with some delay. In this particular case, we do not consider the

loss of a single packet to be a major problem; it is generally understood that

networks sometimes unexpectedly drop packets, and hosts should use reliable

protocols like TCP to account for the possibility of dropped packets. How-

ever, this issue suggests a fundamental limitation of the one-packet-at-a-time,
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synchronous network model.
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Chapter 8

Conclusions and Future Work

We present a verified compiler from high-level abstract network policies down to low-

level routing decisions. This compiler can be used to generate executable routing rules

on real-world switches through a very expressive policy language, and a set of proof

scripts that ensure the absence of certain types of errors in the input. The executable

routing rules are accompanied by a formal, machine-checked proof of correctness,

and can be automatically run on a real network through compilation with a prebuilt

generic controller.

While we believe the tool is already useful today in many cases, there are substan-

tial avenues for future improvements that could make the tool more expressive, more

correct, and more efficient. (Some of these potential improvements are described in

more detail in other sections.)

• We could enhance the policy language and our network to allow for policy

changes that expire after a certain amount of time.

• We could update the compiler implementation to apply routing enforcement

more efficiently, by centralizing routing decisions to a smaller number of

switches. We could also generate more efficient sets of routing rules at each

given switch (for example, by creating a single routing rule for an IP mask

rather than creating a different routing rule for each host). In combination,

these changes would likely improve network throughput by reducing the amount
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of redundant computation needed at each switch.

• We could update the compiler implementation to allow for routing decisions

at each switch that depend on something other than the source/host IP ad-

dresses. For example, this could allow a switch to act a load balancer by evenly

distributing packets among multiple possible routes.

• We could broaden our network model and correctness analysis to account for

the reality that real-world networks process multiple packets simultaneously,

and have asynchronous control-plane communication.

• We could enhance our network model to cover additional real-world use cases,

such as network address translation or reasoning about the behavior of uncon-

trolled third-party switches.

• We could make our I/O layer more efficient by avoiding the redundant trans-

mission of routing rules that switches already have.

Ideally, all networking tools would be powerful enough to provide very strong

correctness guarantees, and also ergonomic enough to achieve widespread adoption.

While significant progress has been made towards this goal in the past decade, there

is still a great deal of work to be done. As the world comes to depend on the stability

and security of networks, it becomes increasingly important that our networks are

robust enough to support the world’s needs.
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