
Pomona College
Department of Computer Science

Mechanized Semantics for Word Expansion in the
POSIX Shell

Austin Blatt

April 29, 2018

Submitted as part of the senior exercise for the degree of
Bachelor of Arts in Computer Science

Professor Michael Greenberg, advisor

Copyright c© 2018 Austin Blatt

The author grants Pomona College the nonexclusive right to make
this work available for noncommercial, educational purposes, pro-
vided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission
of the author. To disseminate otherwise or to republish requires
written permission from the author.

Abstract

The POSIX Shell is the default command line interface with
which computer scientists interact. This paper describes the
creation of an executable semantics for word expansion in
the POSIX Shell. Word expansion is the first of two steps
in the evaluation of a POSIX shell command. By devel-
oping a model of its operational semantics we formalize its
execution. This formalization furthers our understanding of
how the POSIX Shell operates, and is a step in the direc-
tion to creating a full formal model of the POSIX Shell. Our
executable semantics were developed in Lem, which can be
compiled to Coq for proofs and OCaml for execution.

i

ii

Contents

Abstract . i

1 Introduction 1
1.1 The POSIX Shell . 1
1.2 Lem . 2

2 POSIX Shell Overview 5
2.1 Interesting Edge Cases . 8
2.2 Bugs! . 9

3 POSIX Word Expansion Semantics 11
3.1 Word Expansion . 11
3.2 Symbolic . 14

4 Mechanized Semantics 17

5 Related Work 21
5.1 Background . 21
5.2 Defining the Operational Semantics 23
5.3 Modelling Memory . 29
5.4 Comparison . 30

6 Future Work and Conclusion 31
6.1 Future Work . 31
6.2 Conclusion . 32

Bibliography 33

iii

iv

Chapter 1

Introduction

1.1 The POSIX Shell

The POSIX shell (“the Shell”) is the standard, and most popular, command-
line interface by a large margin. A command-line interface is an interactive
means of controlling the file system and processes of a computer by using
various utilities such as mv and cp for moving and copying files respectively.
The POSIX shell is used for a wide range of tasks including an interactive
command-line interface, shell scripts, and even system start up scripts for
operating systems. As such, the Shell controls critical pieces of software and
is crucial to the operation of a computer. Other shells exist, such as zsh,
but our model focuses on the POSIX specification due to its prevalence.

Unlike common programming language, the POSIX shell specifies no
real memory model apart from simple shell variables. The main “data” that
the POSIX shell interacts with is the file system. This makes it inherently
dangerous. In a standard programming language, errors only damage data
in memory (unless you then write that data to disk). In many cases this
is the desirable use case because in-memory data types can be much more
complex than the shell’s data type, which can only represent strings. But at
some point a programmer may need more direct access to system data and
processes. In that case, the programmer needs to access the computer via
the Shell. As we’ll discuss further in Chapter 2, some of the features of the
POSIX shell have edge cases that can have permanent, damaging effects on
the file system.

In order to investigate the semantics of the shell we created a mechanized
small-step semantic model of shell expansion. Our long-term goal is to create
an executable operational semantics for the Shell, and this paper describes

1

the semantic model of Shell expansion. As described in Chapter 6, we need
to formalize the process of Shell evaluation as well before it will be a full
model of the Shell semantics.

The process of creating a semantic model of a programming language,
including the Shell, is an important undertaking. Very few users of the Shell
will interact with the Shell specification. It is a dense prose, and if you are
not intimately familiar with the organization of the specification, a piece of
important information relating to your use case could be located essentially
anywhere. This leads to the strategy of learn by example, which will take
less time than a reading of the specification. But the specification is still the
ground truth, and an operational semantics can aid in our understanding of
a language and the addition of new features (or the modification of existing
ones). The semantic model provides a basis for using proof assistants to
verify language features [Kre15]. Krebbers’ work in creating an operational
semantics for C, semantic models of other languages, and a short history
of attempts at formalizing programming language specification is given in
Chapter 5.

The main contribution of our work is an executable semantic model of
Shell expansion. This model was developed from a close reading of the
POSIX standard, which is mostly prose that mixes a description of parsing,
evaluation and definitions of utilities such as mv and rm. Our methodology
of modelling the POSIX shell is described in Chapter 3.

1.2 Lem

Lem is a language developed by Peter Sewell intended to simplify writing
large-scale semantic models [OBZNS11]. The language can be compiled
into Ocaml (an executable functional programming language), or Coq, and
Isabelle/HOL (theorem provers). We wrote the semantics for the POSIX
shell in LEM for the potential to integrate with SibylFS, a model of the
POSIX file system also developed by Peter Sewell [RST+15]. By integrating
with this model, we would present a full model of the POSIX standard,
from file system APIs to command-line interface. As of now, our model
implements a simplified model of the file system.

Using LEM, we have developed a mechanized semantics for POSIX shell
word expansion. Mechanized semantics are useful in their ability to quickly
determine “how does this program execute?” and “what does this program
do?”. For a human, these are challenging questions to answer. Take a look at
a simple example for the POSIX shell, echo $x. Most people familiar with

2

the shell will be able to tell you what this program does, it prints the value
of x to standard output. For larger shell-scripts, it will take careful analysis
of the code regardless of the individual’s prior experience with POSIX. The
question of how this program does what it does is more subtle. The exe-
cution of this program depends on, at a minimum, three different sections
of the POSIX standard. Shell Introduction (2.1) to determine the order of
evaluation, Word Expansion (2.6) to determine how $x is expanded, and
Shell Commands (2.9) to determine how the echo utility operates [IG18].
These sections are written in English prose that has to be interpreted in or-
der to determine how the command evaluates. By developing a mechanized
semantics of this process, we have created a tool that will quickly compute
the answer to both questions.

The development of a mechanized semantics is also a useful exercise to
determine where differing implementations have interpreted the standard’s
prose in differing ways, and to find examples where implementations have
made mistakes in their interpretations. We found a bug (Section 2.2) in a
widely-used shell implementation in just this manner.

3

4

Chapter 2

POSIX Shell Overview

The following examples are intended as an overview of word expansion, so
the information in this section can be found in the POSIX specification
(Section 2.6 Word Expansions) [IG18]. At the highest level view, the Shell
is a program that takes in a list of strings, which the Shell calls Words, and
evaluates a command. As an example, rm file1 will be parsed by the Shell
as a list of two strings rm and file1. The first string will be interpreted
as the command to execute and the remaining strings are its arguments.
rm is a built-in utility that, given the argument file1, will remove file1

if it exists in the current working directory. There are actually many ways
to remove that file, x="file1"; rm $x will remove that same file, and so
will x=0; rm file$((x=x+1)). In fact, even rm fi`echo le1` will remove
file1. In all three cases, we have succeeded in removing the file, so what’s
different about these various ways of removing file1?

The second command shown, x="file1"; rm $x, removes the file through
parameter expansion. Parameter expansion is the process by which the Shell
expands a variable into its value. In this command it is simple, x will expand
directly to file1 and the rm utility will remove it. It is possible to format a
parameter expansion to control its output. The command rm ${x="file1"}
MAY remove file1. If x is already set to another value, the Shell will at-
tempt to remove that file instead, but if x is unset, this will remove file1

and the end state will be identical to the original command where the file
file1 is removed and x has the value file1.

The next example above, x=0; rm file$((x=x+1)), removes the file
using arithmetic expansion. First, x is assigned to zero, but keep in mind
that this is the string "0". Then, prior to executing the command, arithmetic
expansion must occur on $((x=x+1)). Since x was just set to 0 in the Shell,
this arithmetic expansion will evaluate, assign the result of the arithmetic

5

evaluation (in this case 1) to x and substitute 1 into its place in the original
command. Therefore, this command will also execute as rm file1. Note
that the end state is slightly different, the shell variable x is set to 1 instead
of file1. This could be useful if we had another file, file2, that we wanted
to remove next. Another call to rm file$((x=x+1)) would remove that file.

In our final and least clear example, rm fi`echo le1`, we have used
command substitution to remove the file. Command substitution allows a
command to be nested inside of another command. The command echo

le1 will print the string le1 to standard out, and by the specification of
command substitution, the control code (everything between and including
the backticks), will be removed and replaced with the standard output of
the command. Therefore, the command we end up running is rm file1 just
like all the other examples, but no variables have been set.

If file1 exists at your user’s home directory, it can be removed with rm

~/file1. This is the forth, and final, example of control code expansion,
tilde expansion. There are two cases of tilde expansion, ~ and ~username.
In the first case, the tilde character will expand to the value of the HOME

shell variable (so it is equivalent to the parameter expansion $HOME). In the
second case, the Shell will look up the home directory of username in the
user database. In my shell history, tilde expansion is most commonly used to
reload my Bash configuration file with source ~/.bash profile. A close
second is cd ~, but in this case the tilde is entirely irrelevant. According
to the specification of the cd utility, “[i]f no directory operand is given and
the HOME environment variable is set to a non-empty value, the cd utility
shall behave as if the directory named in the HOME environment variable was
specified as the directory operand”. This means that the following three
commands are equivalent cd, cd ~, and cd $HOME.

The four previous commands constitute control code expansion. A con-
trol code is a string input to the shell that is delimited by special characters
(e.g. the dollar-sign $, backticks `, and the tilde ~) that allows the shell to
identify it as something that needs to be subject to expansion. After a con-
trol code has been expanded, there are three additional stages of expansion
that it can go through. These stages will finalize the results of expansion as
fields, expand patterns to match file names, and remove quotes.

First, field splitting will look at the strings that were a result of expanding
control codes for IFS characters, and create separate fields from strings
that are delimited by an IFS character. IFS is a special shell variable that
contains the internal field separator characters. By default, or if the IFS

variable is unset, whitespace will result in field splitting (e.g. space, tab,
and newline characters). Since field splitting only occurs on the results of

6

control code expansions, in the above example, x="file1"; rm $x, after $x
has been expanded to file1 field splitting will occur on the string file1,
but will not occur on rm. The string, file1, does not contain any IFS

characters, so the final result is two fields rm and file1. However, it would
be possible for that parameter expansion to result in more than one field,
even though it contains no whitespace, if IFS was set to a string containing
a character found in file1 (e.g. IFS=e would result in three fields rm, fil,
and 1 with the e removed because it was consumed as a field separator).

But wait, how did rm and fil become two separate fields when space was
no longer a field separator? The short answer, the field separator between
rm and $x is created during parsing, which is something our model does not
attempt to describe. The long answer, as quoted from section 2.3 (Token
Recognition) of the POSIX specification, which contains 10 rules for token
recognition in parsing, “7. If the current character is an unquoted <blank>,
any token containing the previous character is delimited and the current
character shall be discarded.” I include that, not because anyone should read
that once and come away with a feeling of enlightenment, but to highlight
the difficulty in understanding the prose in the POSIX specification. A few
questions might come to mind after reading that, what is a <blank>? Those
unfamiliar with parsing a programming language may also wonder, what
does is mean to delimit a token? And why are we discarding the current
character? The Shell specification does not clarify this, but a <blank> is a
space or tab character. They use this to differentiate the two from newline
characters in regards to parsing comments. According to this rule, during
parsing of the command, rm and $x will be identified as two separate tokens
and the space character between them will be discarded. The result for Shell
expansion, and our model, is that it will start with two separate words and
even changing the IFS won’t effect the final fields generated.

After field splitting, pathname expansion, which also occurs on unex-
panded strings, expands special characters such as ? and * to valid file
names. Pattern matching occurs via a regular expression syntax described
in the POSIX specification, with a few filesystem-related caveats. The pat-
tern *, in most regular expressions, matches anything. But if you try it out
in the Shell, it will only match the files in the current directory. Pathname
expansion requires two characters to be matched literally, a <slash> char-
acter must always be matched with a literal slash, and if a file name begins
with a <period>, the period must be matched literally. If pathname expan-
sion does not match a file, the string that was entered as the patten is left in
the command without change. If pathname expansion finds files that match
the pattern given, it replaces the pattern with the files that matched, with

7

each file being its own field. For example, mv * ../dir/ will expand to
n+ 2 fields, where n is the number of files in the directory (that don’t begin
with a <period>). In this respect, the * character is the same as typing out
all the filenames in the current directory, just less tedious.

Quote removal is the final stage of expansion. Unlike standard program-
ming languages where quotes delimit strings, quotes remain a part of the
string until quote removal. In Shell expansion, quotes control field splitting.
They are also used to prevent the expansion of characters ~ , *, and ?, but
this is not encapsulated by our model because it is handled during pars-
ing. In the previous section, we described that rm $x will be parsed as two
words, but could expand to more than two fields. If we instead wrote rm

"$x", we can now be sure that the final result of expansion is two fields, rm
and the result of expanding $x. This is because field splitting will not occur
on an expansion inside quotes. After this stage, quotes are removed. This
has some interesting edge cases that we will discuss in the next section.

2.1 Interesting Edge Cases

The edge-cases that we will go over here are a result of field separation
mistakes. Strings we intended to act as a single argument will be interpreted
as two. Errors such as this arise as a side effect of field splitting because
field splitting must be handled at every use site of control code expansion.
This means that when assigning to a variable, you cannot say “this should
always be one field”. If I assign x="a b", and I am intending for every use
case of this string to be a single field, any time I expand $x I must remember
to quote it ("$x") or it would expand to two fields.

This can lead to extraneous deletions when used with the rm utility we’ve
been using as an example. Let’s imagine a directory with three files file1,
file2, and file1 file2. So we have a file that we’ve named with a space
character in it. Most computer scientists will know this is a bad idea, but
let’s find out why. Since I know I shouldn’t have a file named that, I’d like
to delete it. In my shell environment, I have a variable x that was set by the
command x="file1 file2". So I run rm $x to delete it. The command
will execute and terminate without error. Much to my dismay, when I look
at the remaining files, I realize that not only did I fail to delete the file I
intended to, but I deleted both files that I wanted to keep. The only file
remaining in the directory is file1 file2.

Let’s dive into what went wrong. First, when I assigned file1 file2

to x, I quoted the string so that the space would not split the string into

8

two fields during assignment. Assignments can only be given a single word,
a second field would be interpreted as a command name. But when I went
to use x, I failed to quote its expansion. Therefore $x expanded to file1

file2 and during field splitting this string was separated into two fields,
file1 and file2. The result was that the rm utility was asked to remove
two files, one named file1 and the other named file2. Both files existed,
so the rm utility removed those files and completed “successfully”. If I
had quoted correctly, e.g. rm "$x", the rm utility would receive a single
argument, file1 file2, and remove the file I had intended to delete.

A similar edge case can be encountered with pathname expansion and
the mv utility. You might run, the command mv * dir to move files in
the current directory into another, but imagine for a second you ran the
command mv *. If you happen to be a professional writer of shell scripts
and don’t think you’d ever make such a mistake as this, imagine you were
instructing someone on the command they should run, and they left off the
directory. Most of the time this will error, but sometimes this will succeed
and in some cases it will result in file(s) being deleted. This command will
run to completion in two cases. First, it will succeed if there are two files in
your directory, but it will delete one of the files. Let’s say you have two files
named a and b and you execute mv *. Pathname expansion will expand *

to two fields, and the resulting command that is executed is mv a b. This
is the command that “moves” a to b. In this process you renamed the file a

and lost your file reference to b, so you will find it quite difficult to retrieve
the file and its contents (even though the file may still reside on disk).

This command will also evaluate and succeed in a second case, when
there is at least one file and one directory in the current directory and in
sorted order (specified by your Shell locale) the last item is a directory. In
this case, it will move all files and directories in the current directory into
the last directory and may or may not have deleted any files. You will only
delete files if one of the files or directories that was moved into the last
directory has the same name as a file in the last directory. The move utility
performs no checks on overwriting already-existing files, so it is imperative
that you are careful when moving files.

2.2 Bugs!

In the process of creating our mechanized semantics, we also found a bug
in a widely used shell, Dash. Finding bugs in existing implementations is
a notable contribution that will occur as a result of creating mechanized

9

semantics. As has been shown in previous sections, the POSIX specification
is dense prose that is not always clear. It is also long. As published in
IEEE Std 1003.1-2017, the Shell specification is over 1000 lines long [IG18].
There are only three groups that will read the specification in detail, the
authors, developers of shells such as Bash and Dash, and researchers creating
mechanized semantics.

In an attempt to create a semantics of a language (or a compiler for
that language), a detailed reading of the specification is required. In our
process we consulted the POSIX specification before writing any code, if
a feature was undefined or we wanted to test its behavior we would verify
our understanding of the specification against two Shell implementations,
Bash and Dash. This meant that we were not only reading portions of
the POSIX specification closely, but we were formulating the specification
into small-step operational semantics while testing the functionality of two
implementations. This resulted in a fairly detailed testing of both shells
against the specification focusing initially on simple cases and gradually
moving to edge cases and exceptions to certain rules. This may not be
the workflow of everyone who extracts operational semantics from a prose
specification, but it seems a fairly standard, and logical, workflow. As we
found out when we found the bug in Dash, it is important not to assume the
existing implementations are correct and always fall back on the specification
as the ground truth in order to develop an accurate model.

Dash is a shell that was developed to speed up the execution of shell
scripts used in the process of Debian start-up. Dash claims that it is roughly
four times faster than Bash, and it became the default script execution
shell for Ubuntu, in 2006, and Debian, in 2014, and subsequently all of the
operating systems built off Debian as they upgrade to Debian 6.0 [Deb].
Apart from a speed increase, one of the main goals in developing Dash was
a more POSIX-compliant shell than Bash.

The bug in Dash is in regards to its handling of arithmetic expansion.
The command we will run is echo $((x=x+2)). In general, this command
will add 2 to x and then print that new value of x to standard output. This
command will fail if x is not set to a numerical value (you can’t add 2 to the
string foo). But what will happen when x is unset? The specification says
that x should default to 0, so the result of the command above would be 2.
The result in dash is an error (exit code 2) and the error message Illegal

number.

10

Chapter 3

POSIX Word Expansion
Semantics

The POSIX standard makes a clear distinction between its two phases of
execution, word expansion and command evaluation. Word expansion’s goal
is to turn user inputs into fields. With the user inputs expanded into their
final state, the shell then evaluates the given command. At this point, our
shell model for command evaluation is incomplete so we will treat commands
abstractly.

3.1 Word Expansion

The first phase of the Shell is word expansion, which aims to turn user input,
Words, into Fields that will be used in evaluation. The types used by our
model are described in Figure 3.2 below. In general, POSIX shells perform
the seven steps of word expansion in a single left to right pass over the
input string. You’ve seen examples of each of these steps in Chapter 2. Our
model is built off the same seven steps of word expansion, but the steps
are performed in four stages (see Figure 3.1). The first four cases describe
control code expansion, and the following three are field splitting, pathname
expansion, and quote removal. This four stage model, which is diagrammed
in Figure 3.1, is useful to visualize because it forms the basis for the type
system specified in Figure 3.2 that the rest of this chapter will be spent
explaining.

In order to model word expansion, we represent the POSIX Shell AST
using the types specified in Figure 3.2. Word expansion is a process that
expands Words into Fields. We use the Dash parser to obtain words, which

11

can be one of five things. Words, at their simplest, are a string followed by
more words, s; ws. These words come separated by initial field separators,
, which are the initial space and tab characters present at parsing. Words

that come out of the Dash parser may also be control codes, represented
with k . The fifth type represents a symbolic word, λ. These are not part of
the POSIX shell or normal shell implementations, but this type is used in
our semantics in order to represent an undetermined result (e.g. the result
of a command).

3.1.1 Control Codes

The interesting type of a word is a control code, which represents something
that needs to be expanded before evaluation. First we have types that
represent tilde expansion, ~ and ~s. A single ~ will expand to the current
users home directory (e.g. /Users/username) while ~s will expand to the
home directory of the user s ((e.g. ~ root expands to /var/root).

Next, we see ${s | φ} , which is the type representing a paramter ex-
pansion where s is the name of the shell variable to lookup and φ is one of
a number of lookup formats that provide a way to control the result when s

is set, set to null, or unset. The default format, •, will lookup the value of
s in the shell environment and substitute its value, or the null string if the
variable is not set. If you’d like to specify a default value, -w will substitute
the value of s in the shell environment, if it exists, otherwise it will substi-
tute w . The :-w format is identical to the prior default value format, but it
is the null default format, so it will substitute w if s if unset, or if s is set to
the null (emtpy) string. Three other format pairs follow the same structure
as the previous pair of formats. First =w is the assign format, which will
assign the result of expanding w to s if s is unset, whereas :=w will assign
w to s if s is unset or it is set to null. Otherwise, both return the value of
s. Next we have a pair of error formats, ?w and :?w . Following the pattern
of the previous two pairs, ?w will error (and exit) if s is unset and :?w will
error (and exit) if s is unset or set to null. The final pair functions slightly
differently, they are the alternate value (+w) and null alternate value (:+w)
formats. The alternate value format will substitute w unless s is unset,
when it will substitute null. The null alternate value operates similarly, but
it will only substitute w if s if set and not null. The # format will return the
numerical value of the length of s without performing any other expansion,
if s is unset, it returns 0 as a string.

The final four parameter expansion formats are shortest and longest pre-
fix and suffix formats. All prefix and suffix operators take a word argument

12

w that is first expanded, which could even result in nested parameter ex-
pansion. The result is then interpreted as a pattern that is matched against
the value of s in the environment. That matching part of the value, if any
exists, is removed and the remaining is substituted in as the result. Two
suffix matches exist, %w will match the shortest suffix and %%w will match
the longest suffix. Two similar formats exist for #w , the shortest prefix,
and ##w , the longest prefix. Let’s take the example of, s = ”aabb”. If the
format used is %b*, which matches zero or more b’s, the resulting string is
aab. If the longest suffix operator, %%w had been used instead, it would
match and remove both b’s. The same is true for the shortest and longest
suffix formats when used with the pattern a*.

Not all outputs will exist in shell variables before you want to substitute
it in to your current command, for that reason the shell provides the ability
to nest commands $(ws) is also provided. The command is executed in a
sub-shell and the result (standard output) is substituted into the current
command. In order to model this functionality in full, we would need a
model of command evaluation, so for now it is left abstract and its return
value represented by the symbolic result, λ.

In our model, there are three control code types that are not part of
the POSIX specification. These paramters are used when further expan-
sion inside a paramter expansion is necessary before performing the action
specified by the parameter expansion format such as assignment, pattern
matching, or arithmetic expansion. For example, if a parameter expansion
such as ${s | :=w} results in an assignment to s, the original parameter
type is replaced, in its entirety, by ${s assign expws;ws} . The word, w ,
is expanded in incremental steps to an expanded word e. Once all of w has
been expanded, it can assigned to s. For a similar purpose, our model uses
${s match ss sm expws;ws} to expand w into a pattern before it will be
matched against the value of s. The substring side, either prefix or suffix, is
remembered with ss. This runtime technicality also remembers whether or
not it will find the the shortest or the longest possible matching present in
the substring mode, sm. The final special control code used in our model is
created when ${x | ?w} or ${x | :?w} trigger an error. Before the pro-
gram can error and exit, it must expand w and print the result to standard
out.

3.1.2 Expanded Words

The result of expanding control codes is expanded words. This is an inter-
mediate type used by the model to keep a record of important pieces of

13

information for the final three steps of word expansion. First, field splitting
will need to know which strings are the result of a control code expansion
as described above. Field splitting will not occur on a string unless it is
the result of a control code expansion, therefore control code expansions
as described in the previous section 3.1.1 generate exp s for types where
a string type can be found and λ when the control code was a command,
which produces an unknown (symbolic) result. The symbolic type represents
a unknown value due to commands being left abstract. Quoted strings are
also exempted from field splitting, which is tracked by "s". Strings that are
not a result of control code expansion, s and existing field separators , are
unaffected in this phase.

3.1.3 Intermediate Fields

After field splitting, the type becomes a bit more simple, with a list of inter-
mediate fields A string is either a quoted string, "s" or an unquoted string,
s and we track field separators created from non-whitespace characters, c
, separately from whitespace field separators, . Pathname expansion will
step through our list of intermediate fields and for any unquoted strings,
attempt to expand the any regular expression patterns to filenames.

As the final step of word expansion, quote removal, needs to produce
fields as a result. This means that both field separator types and the "s"

types must be removed. For a quoted string, as the name implies, the quotes
are removed and it is treated as a regular string.

3.2 Symbolic

The symbolic type, λ, shows up throughout the types above. A symbolic
word could be anything, since we have not implemented command evaluation
we cannot know the output of a command. The symbolic type allows us to
continue to make progress on the parts that are not commands. As we
complete the model for expansion, fewer symbolic types will be generated.
Currently utilities such as echo, mv, rm all have symbolic results but their
operation is specified by the POSIX specification so in a complete model
of the shell these utilities must be modeled. Even so, we will always need
a symbolic type. Not all commands have been specified by the POSIX
shell, in fact most have not. By including a symbolic type, we can correctly
handle, but ignore the results of command substitution when the command
evaluated is not specified by POSIX.

14

Figure 3.1: Operation Semantics Flowchart

15

Syntax

Strings s ∈ Σ∗ where Σ is, e.g., UTF-8
Parameter formats φ ∈ Φ ::= • | -w | :-w | =w | :=w

| ?w | :?w | +w | :+w | #
| %w | %%w | #w | ##w

Control codes k ∈ K ::= ~ | ~s | ${s | φ} | $(ws) | $((ws)) | "ws"
| ${s assign expws;ws}
| ${s match ss sm expws;ws}
| ${s error expws;ws}

Fields f ∈ F ::= [] | s; f
Word w ∈ W ::= s | k | | λ
Words ws ∈ WS ::= [] | w ; ws
Expanded Word expw ∈ EXPW ::= | exp s | s | "s" | λ
Expanded Words expws ∈ EXPWS ::= [] | expw; expws
Intermediate Field intf ∈ INTF ::= | c | s | "s"
Intermediate Fields intfs ∈ INTFS ::= [] | intf ; intfs
Commands ::= λ
Patterns ps ∈ P ::= w | w |ps

System state sys ∈ Sys = 〈fs,P, ρ〉
Filesystem state fs ∈ FS
Process state P ∈ Proc
Shell state ρ ∈ Env

Figure 3.2: Syntax

16

Chapter 4

Mechanized Semantics

The mechanized semantics for POSIX word expansion operate by stepping
through the expansion process and recording a trace of system and program
state. The program state is recorded as the various types described in Chap-
ter 3. For example, the record of control code expansion will be recorded
by multiple entries of Expanded Words and Words as Words are gradually
expanded in to Expanded words. The field splitting step is recorded as a
step from Expanded Words to Intermediate Fields. Pathname expansion is
a step that may change the values of intermediate fields, but not the types,
and finally quote removal will finalize the type of fields.

Since we are only interested in modeling the expansion and evaluation
aspects of POSIX, the input to our mechanized semantics is received di-
rectly from the Dash parser. An OCAML shim connects this parser to our
executable model. This means that certain things understood as features of
the POSIX shell are not explicitly modelled by our semantics. As we cov-
ered in Chapter 2, space and tab characters are always interpretted as field
separators, regardless of IFS value, when they are entered by the user. If
you analyze our mechanized semantics you won’t see that feature described
anywhere because it is handled during parsing. Instead, you’d have to no-
tice that the input to our model is, Words, and a field separator is a Word.
A field separator is also an Expanded Word and is stilled tracked in an
intermediate field. Only when we construct the final Fields result do we
drop the field separator type. This is because at the very end, we no longer
need to track field separators for evaluation, so our model is a list of strings,
all of which were separated by field separators in the Intermediate Fields
representation.

Each trace entry in generated by the step expansion function. This

17

function takes as its input the current state of expansion, and based upon
the information given, performs a single step of expansion, returning the
result. The trace is generated by successive calls to this function and the
recording of each output. Each output is tagged with the step of expansion
that generated it which aids in being displayed by the visualization tool.

The step expansion will initally receive words, which is will immedi-
ately begin expanding. All four control code expansions must happen at the
same time because changes to the system state in one control code expansion
can affect the next (e.g. echo $x=5 $((x+2)) will expand to echo 5 7 if
the assignment to x occurs). If we did not process control code expansions
in left to right order, we could not properly handle this feature. This, and
the fact that control code expansion can result in nested expansion, means
that many of the steps taken by the model will be as a result of expanding
control codes. This differes from implementations of the POSIX shell, which
perform all seven expansions in a single left to right pass. This means that
each Word input goes through each of the four expansion states (control
code expansion, field splitting, pathname expansion, and quote removal. By
using separate types at different phases, the model can process the input in
multiple left to right passes and generate a trace of expansions that shows
all field splitting, all pathname expansions, and all quote removal steps in
one step each.

While our model did not have to implement the POSIX parser, it did
need to implement an arithmetic parser. Arithmetic expansion uses a run-
time parser-evaluator to turn strings into arithmetic expressions. Since our
variables are stored as strings, that means the same expansion method can
be used to expand $x and $(($x+2)). The nested $x is first expanded and
the string 5+2 is given to the arithmetic parser. You’ll notice in other exam-
ples, I omitted the $ inside the nested parameter expansion. Both styles are
specified by the POSIX shell, but they will produce slightly different traces
in our model.

Our step semantics treat arithmetic parsing and evaluation as a black
box and does not record the steps taken. The result is that $(($x+2))

will produce trace steps that $((x+2)) will not. This is because prior to
arithmetic parsing, the string contained undergoes control code expansion.
This means that our model will record a trace of the parameter expansion $x.
But the parser does not identify x as a control code, and so leaves the string
unchanged. When the arithmetic parser-evaluator attempts to evaluate this
string it will realize it cannot parse it as a number and attempt to look up
its value then. Since this parameter lookup occurs inside the “black box” of
arithmetic parsing and evaluation, no trace of it will be recorded.

18

Pathname expansion (and pattern matching inside parameter expansion)
required the implementation of a regular expression parser, which suffers
similar limitations in the trace provided as arithmetic expansion. Much like
the contents of arithmetic expansion, the contents of a pattern match will
undergo control code expansion. For example, x=foo; $x* will expand $x

to foo before attempting to match with the pattern foo*. Since this was
a control code expansion its steps will be traced. The process of matching
a pattern to a string is the “black box”. This regular expression matcher
does not track its steps, it only produces a result in the form of “matched”
or “did not match”.

Quote removal is simple because the model has tracked quoting with
special types throughout the process. The real work of modelling quotes
happens in tracking them appropriately throughout the process and pre-
venting field splitting from occuring when it should not. Quotes will also
prevent certain other special characters from expanding. For example, "~"
is not expanded in tilde expansion and "*" does not undergo pathname ex-
pansion. Both of these cases are handled by the parser because the tilde
character must be the first character in its word (but in the above case, the
quotation mark is) and patterns must be unquoted, but due to the mixed
definitions of parsing and evaluation in the POSIX specification, care should
be taken in ensuring the Dash parser behaves as we would expect it to in
cases such as these.

19

20

Chapter 5

Related Work

5.1 Background

The development of a programming language most commonly begins with an
implementation of that language. The development of the C programming
language began in 1969, and by 1972 a sizable part of the Unix operating
system was written in C. Over the coming 18 years, C would be implemented
on many different systems with no standard to follow. This created an
ecosystem where the type of C you were programming in was dependent
on which implementation your system had on it. It was not until 1989, 20
years after the development of C began, that the first standard specification
would be published. This became known as Standard C, C89, or C90 (all of
which refer to the same language) [Rit93].

The C language is not the only language with this developmental tra-
jectory, the early stages of graphical web browsers had significant conflicts
due to differences in JavaScript implementations. JavaScript began as an
implementation inside of Netscape’s Mosaic browser (in 1995) in order to
give web developers the ability to create more dynamic web pages. In or-
der to keep up with the competition, Microsoft soon included a version of
JavaScript in Internet Explorer 3 that was based on a reverse engineering
of Netscape’s work. This inevitably lead to major differences in the two
browsers. Most websites found it too expensive to develop a page com-
patible with both browsers’ JavaScript implementation so they resorted to
applying “best viewed in Netscape” or “best viewed in Internet Explorer”
labels to their sites. This lead to the immediate need for standardization,
which was provided by the standard specification of ECMAScript in 1997.

These standard specifications are usually written as a combination of
English and psuedocode and as such are verbose and difficult to read. In or-

21

der to better understand a specification, programming language researchers
aim to develop a formal model of the specification. A formal model con-
sists of mathematical definitions for how a program’s Abstract Syntax Tree
(AST) executes. Formal models can take many forms, some are designed to
help create formal proofs of how a program executes, some are designed to
produce an “oracle” against which compiler writers can verify their work.
These goals then influence the type of formal model that is designed.

5.1.1 Formal Models

A formal model can take many forms, as Ellison & Rosu describe in their
brief overview of previous work on the C language, for the first attempt at
a formal model of C Gurevich & Huggins used Abstract State Machines,
other work used a custom-made temporal logic, Norrish defined a formal
semantics using the HOL theorem prover [ER12, Nor98]. The downside to
these were that they did not produce an executable version of this model.
For the C language this paper will mainly focus on the memory models and
operational semantics of Ellison & Rosu and Krebbers both of which are
written in Coq, which can be translated into an executable Ocaml program
[ER12, KW15]. For JavaScript, Gardner [BCF+14] creates a Coq specifica-
tion (JSCert) that is extracted to an Ocaml executable (JSRef). The formal
model created for the POSIX shell that is described in this paper is written
in Lem [OBZNS11], a language that can be compiled to Coq (for proofs)
and Ocaml (for execution).

5.1.2 Coq

By formalizing results in the Coq proof assistant, the designers of formal
models can have confidence that their semantics are mathematically well-
formed, but it does not guarantee that the program semantics defined are
the correct. Constructing the semantics requires careful reading of the spec-
ification. One of the main advantages of creating in executable from the
formal semantics is to provide further confidence in the correctness of the
semantics by running tests against the executable semantics. During devel-
opment of a formal model, it will be beneficial to run unit tests to ensure
the pieces of model are functioning as specified. Once the model is ad-
vanced enough, they can be tested (in combination with a parser) against
a compiler’s test suite. Individual compilers have test suites to ensure that
the many implementations across different systems all behave in a similar
manner. These test suites provide large, and often complicated, tests that

22

c
e1 eval n1 e2 eval n2 n = n1 + n2

e1 + e2 −→ n
(SIMPLEPLUS)

a formal semantics can be run against. For C, the obvious choice would
be the GCC test suite, Ellison & Rosu [ER12] test against what is called
the “GCC torture test suite”, which is a subset of the GCC test suite that
contains many of the edge-cases that GCC compilers have missed over the
years.

5.2 Defining the Operational Semantics

Every formal model needs to define the semantic rules. These rules describe
how the language’s AST will execute by defining step evaluation rules. In
order to get to the AST, formal models will frequently make use of an ex-
isting compiler’s parser. Ellison & Rosu [ER12] and Krebbers [KW15] both
make use of the CIL parser for C, Gardner [BCF+14] relies on a JavaScript
parser taken from the Google Closure Compiler, and our mechanized seman-
tics for the Shell uses the parser for Dash, a POSIX-compliant shell that is
the standard command interpreter for Linux.

After obtaining the AST from the parser, a formal model is not required
to stay limited to the structure of the tree. In order to simplify the model, it
is often helpful to use one or more intermediate representations of the AST
with more information available to the model. Ellison and Rosu choose to
operate directly on the C language AST [ER12]. Similarly Bodin and Gard-
ner operate directly on the JavaScript AST [BCF+14]. Whereas Krebber
uses both an intermediate abstract syntax that is created from the result of
the CIL parser and a core syntax, which is a simplification of the custom
abstract syntax that ensures a weak type-safety [KW15].

Now that we have the AST (potentially in a modified form) we can begin
to define evaluation rules for the various types of AST elements. Defining
evaluation rules can seem straight-forward in the beginning, but it frequently
proves quite complicated. For example, lets take a look at the standard def-
inition for addition as a semantic step rule presented by Greenberg [Gre17].
The SIMPLEPLUS rule defined below says that if e1 evaluates to a number,
n1, and e2 evaluates to a number, n2, and the sum of those numbers is n
then e1 + e2 steps to n.

23

It’s tempting to think that a rule such as this is sufficient for every arith-
metic operation. Unfortunately, as we’ll see in later sections, even something
as simple as addition requires multiple evaluation rules in C due to the poten-
tial for signed integer overflow and other non-standard addition behaviors.
In order to design a formal model for actual addition in a programming
language, Ellison & Rosu [ER12] describe a system of defining small-step
rules for evaluating expressions, and combining them into larger big-step
semantics for evaluating statements such as the rule described above.

5.2.1 Challenges of Underspecification

The main challenge in defining an operational semantics arises from un-
derspecification. Specifications often deliberately (and occasionally on ac-
cident) leave certain details of evaluation to be defined by the compiler
writers. This gives compiler writers the flexibility to do what is best for
their system and to implement optimizations, but can cause problems for
programmers. A program can behave properly on one system but not on
another because the program relied on implementation-defined or unspeci-
fied behavior. These underspecifications normally fall into three categories:
implementation-defined, unspecified, and undefined behavior.

Implementation-defined Behavior

Implementation-defined behavior is used to allow compiler designers to op-
timize their implementation for the given architecture. For example the
number of bytes used to represent an integer is not defined by the C stan-
dard, and it is instead left to a compiler writer to decide on a number of bytes
[Kre15]. This information is important to the execution of a program, so the
C standard requires that the choices for implementation-defined behavior be
documented.

In C, multiplication provides a good foundation from which to investigate
the consequences of implementation-defined behavior. First, it is important
to know that when multiplying signed integers multiplicative overflow is
undefined, an error. The code below uses signed integers and performs a
simple squaring operation, so how will it operate?

int x = 65535;

int y = x * x;

If an integer uses 8 bytes (64 bits) to store the value of an |int— the value
of |y— will be 4, 294, 836, 225, which is also the mathematical result of that

24

multiplication. Following the C standard, if an implementation used only 4
bytes (32 bits) a |y— value of −131, 071 is an equally correct C program,
as is any other number, and even an error. By making the result of signed
multiplication undefined, the C standard intends to support multiplication
by repeated addition or by a specialized multiplcation circuit in the CPU
[ER12].

A solution to modelling implementation-defined behavior is described
by Krebbers [Kre15] as “parameterization”. You can think of this like Java
interfaces, the List interface defines what it means to be a list, just like a
formal semantics define what it means to evaluate a program in that lan-
guage, but some of the details of a List are left to the implementing class
such as ArrayList and LinkedList, which will determine the details of how
the List functions. A more accurate analogy would be to this is like a type-
class in Haskell. If something implements the Num type-class, it implements
a set of functions (in the case of Num, a minimal complete definition re-
quires the following functions to be implemented (+), (*), abs, signum,

fromInteger, negate) that allow it to function like a Num. We can define
our semantics to perform arithmetic on a Num and then implement types such
as int32 for 32-bit integers and int64 for 64-bit integer that implement the
Num type-class, but operate as if they were an integer of their respective size.

In the case of integers Krebber’s CH2O semantics are parameterized by
the size and whether or not the integers are represented using big- or little-
endian. The POSIX shell specification defers to the C specification of
signed long integers for its arithmetic and so would be subject to similar
parameterization [IG18]. The POSIX shell also has a wide variety of other
implementation-defined behavior. The default PS1 value and the largest
integer that can be used as a file descriptor in a redirect (the number 1
in echo foo 1> /dev/null is a file descriptor) are implementation-defined.
However, a formal model of JavaScript benefits from not needing to pa-
rameterize arithmetic in a similar fashion. The ECMAScript specification
specifies that all integers are represented with their Number class, which
uses a 64-bit floating point number [Int17].

A formal model of JavaScript does present some other interesting chal-
lenges with implementation-defined behavior. A function is allowed to be
called with an arbitrary number of arguments with the extras being stored
in an args array. The ECMAScript specification thus allows many of the
core library and object functions to process additional arugments in any
implementation-defined way. The default way is to ignore extra arguments
because most functions never interact with the args array. Some more com-
plicated implementation-defined behavior can be found in

25

Number.prototype.toExponential(fractionDigits), which will return
a string of the number in exponential form with fractionDigits deci-
mal places. The ECMAScript specification allows the function to throw
a RangeError when toInteger(fractionDigits) > 20, but it is also al-
lowed to extend the values of fractionDigits it accepts. Some initial
testing in Firefox Version 57.0 (64-bit) shows that it does extend the func-
tionality of toExponential to accept any input for fractionDigits such
that toInteger(fractionDigits) <= 100. It prints out correct output up
to 53 decimal places and inserts 0 for any decimal places after 53. As a result,
a full formal model of JavaScript would need to be parameterized by every
decision made for how to handle additional arguments and to what extent
it relaxes the requirements of various function parameters, such as the ex-
ample described above [Int17]. These challenges are significant and Gardner
[BCF+14] choose to simplify their model by making “arbitrary but natural
choices” for implementation-defined behavior and following ECMAScript
specifications strictly. The natural choice for toExponential would be to
throw a RangeError if the input violated the toInteger(fractionDigits)

> 20 requirement discussed above. This also avoid the situation where the
number of decimal places exceeds 53, the maximum number of decimal places
representable by a 64-bit double.

Unspecified Behavior

Unspecified behavior also provides an opportunity for optimization. The
C specification allows the evaluation of an expression in any order [Kre15].
This is most easily seen in the evaluation of arithmetic expressions. The
compiler is free to evaluate the expression in whichever order it thinks will
perform the best, hopefully taking advantage of an architecture feature such
as pipelining. The order of evaluation in a single C statement is very loosely
defined. Take a look at this example given by Krebbers [KW15].

printf("a") + (printf("b") + printf("c"));

Looking at the code above and knowing that addition may be evaluated
in either order one may assume that the valid outputs are abc or bca.
But there are even fewer restrictions on the C compiler. It is allowed to
execute both sides of each plus operation in either order and even interleave
the evaluations of each piece (it can be evaluating parts of each printf

function at the same time). Since the restriction on evaluation order are
so relaxed, acb and even cba are also correct outputs. A complete formal
model of C needs to account for all the valid execution paths of an expression.

26

From a high level view, the formal model would need to model an execution
tree something like the execution tree below, where each path represents a
possible printed order.

printf("a") + (printf("b") + printf("c"));

a

b

c

c

b

b

c

a

a

c

c

a

b

b

a

Unspecified behavior can be handled by non-deterministic small-step se-
mantics. A non-deterministic step in a semantic rule will create a branch
in the execution tree where each path from root to leaf node represents a
possible evaluation path. Therefore for the C program print example shown
above, a correct formal model of the C standard would not merely say that
the output is abc or another permutation, but it would give all the valid per-
mutations that still comply with the C standard. Thus, non-deterministic
evaluation rules for addition in C might look something like the following set
of rules. Keep in mind, these are still not sufficient to fully model addition
in C because they do not handle overflow.

e1 step e′1
e1 + e2 −→ e′1 + e2

(STEPLEFT)
e2 step e′2

e1 + e2 −→ e1 + e′2
(STEPRIGHT)

e1 step n1
e1 + e2 −→ n1 + e2

(STEPLEFTVALUE)
e2 step n2

e1 + e2 −→ e1 + n2
(STEPRIGHTVALUE)

n1 + n2 = n
n1 + n2 −→ n

(STEPVALUE)

In the above rules, STEPLEFT and STEPRIGHT represent the non-deterministic
small-step evaluation. Returning to the printf example, if you assume the
first call of step on printf prints the argument and the second reduces it to
a number, any of the print orders can be obtained via careful application of
the above two rules. Then STEPLEFTVALUE and STEPRIGHTVALUE would

27

evaluate the printf function to its integer return value, and the STEPVALUE

rule would reduce the three values to a single result.

Undefined Behavior

Undefined behavior arises for program semantics that the standard declares
illegal. Specifications frequently impose no requirements for the program in
these situations. The program is allowed to crash or perform any arbitrary
behavior. In C, undefined behavior is easy to create by dereferencing a
NULL or dangling pointer, causing signed integer overflow, or the more subtle
sequence pointer violation [Kre15]. In the POSIX specification, if a standard
utility specifies that it takes a “text file” as an argument and is given a non-
text file (like a directory) the behavior is undefined [IG18].

Lets take a look at a more interesting case of undefined behavior in C
than multiplicative overflow. In order to allow the unspecified execution
order of a single line of C code, the standard requires that all execution
orders satisfy the sequence point restriction, which “does not allow an object
to be modified more than once (or being read after being modified) between
two sequence points” [KW15]. For simplicity you can think of a sequence
point as a semi-colon, but conditionals and function calls also have their
own notion of a sequence point.

1 int x;

2 int y = (x = 3) + (x = 4);

3 printf("%d %d\n", x, y);

Considering all the execution orders, this program could print 3 7 or 4 7

depending on the execution order of the addition on line 2. Krebbers [KW15]
say that GCC (version 4.6.4 with the -O2 flag) correctly prints 4 8, which
does not represent an allowed execution order. No implementation-defined
or unspecified behavior could account for the number 8 being assigned to y,
but it turns out the above example exhibits undefined behavior. Outputing
4 8 is correct relative to the C standard because line 2 is causing a sequence
point violation by assigning to x twice without encountering a sequence
point. This means that the behavior of line 2 is undefined, so the behavior
of the program as a whole is undefined. Since this is undefined behavior,
the program could have done anything, even errored and crashed, and still
followed the C standard.

Undefined behavior presents a challenge to designers of formal models,
the behavior is not parameterized by any logical requirements nor is the

28

program required to continue executing. An undefined behavior is poten-
tially an unrecoverable error, but every implementation can choose their
own way to handle it. Krebbers [Kre15] describes the solution as an “ab-
sence of semantics”. This means that in their model whenever a C program
encounters an undefined behavior it enters an undef state and ends. If you
have ever encountered the error Segmentation fault: 11 this is equally
unsatisfying. But entering an undef state is actually the best a model can
do. Some implementations might error, some might recover, some might
recover or error for the same semantic based off of some other information
in the program. When compiler designers can do anything it is impossible
to model and the absolute best a model can do is give up.

5.3 Modelling Memory

The most literal model of memory for any program would be an array of
bytes. Regardless of the system, all computers store data as an array of bytes
where the memory address of that data is the index. Then the model would
need to define the semantics by which those bytes can be used to represent
the various features of the langauge. While executable code is restricted to
storing its information in an array of bytes, memory models used in formal
verification are not, and should not, be bound by that restriction. As the
end goal of a formal model is to create a mathematical representation of a
programming langauge, formal models are allow to, and most often should,
use more complex data types to aid in modelling the program memory.

Ellison & Rosu [ER12] choose a fairly similar memory model with a map
from ID’s (memory addresses) to arrays of bytes representing the data. For
C, this is a “good enough” memory model. They are able to define a for-
mal semantics that allows them to pass most of the GCC torture test suite.
Krebbers [KW15] show that a more complicated memory model allows their
model to reason about a new feature a “well-typed” C program. Their mem-
ory model consists of a map from ID’s (pointers) to tree structures, these
tree structures correspond to the structure of the data being represented.
Think about a struct with 4 integer fields. Instances of this struct would
then have 4 leaf nodes of the parent. In their model, the leaf nodes are the
bytes used to actually store the data. By using a more informed memory
model, Krebbers is able to reason about features of a C program that Ellison
& Rosu are not.

JavaScript, as a higher-order language, presents a more complicated
memory model that is actually defined in the specification. Pulled directly

29

from the ECMAScript definition, “the memory model defines both the pre-
cise conditions under which a program exhibits sequentially consistent be-
haviour as well as the possible values read from data races. To wit, there
is no undefined behaviour” [Int17]. This is a bold claim, but a boon for a
formal model of JavaScript. If faithfully implemented, it would be possible
for a memory model to always produce a result.

5.4 Comparison

The formal models of the three languages (C, JavaScript, and POSIX) are
extremely useful in understanding each language. The specifications for
these languages are verbose and difficult to process, but having formal mod-
els of each language allows researchers and developers to investigate the
semantics of each language in a complete way (assuming the model is com-
plete). This paper has included a number of seemingly simple programs that
can behave widely differently based on implementation-defined and unspec-
ified behaviors.

Even though the languages differ greatly, the approach to building a for-
mal model for each shares many similarities. This is because the main chal-
lenge is underspecification. If specifications were entirely specified there’d
be no need for a formal model, but then languages would be much less
portable and much more difficult to optimize. Language specific features
merely dictate the details of each step to creating a formal model and will
change which steps are the most difficult, but each language shares a general
road map for constructing a formal model.

30

Chapter 6

Future Work and Conclusion

6.1 Future Work

The next obvious step is to complete the mechanized semantics for command
evaluation so that we have a complete model of the Shell. This involved
handling a portion of the POSIX file system as well. Once this model is
complete, what we have is another shell. We could swap out the symbolic
file system calls for the actual file system calls and our executable semantics
would function identically to an existing shell.

Once we have a full executable model of the shell, it could be tested
for POSIX-compliance. If our model if fully POSIX-compliant, we know we
have correct operational semantics (even if they might not be the absolute
simplest). Having an executable model of our semantics is helpful because
it allows us to use existing test suites (like those for the POSIX shell) to
verify the rules we have chosen.

Since we can compile out operational semantics to Coq, we can also
use our semantics in formal proofs. We might be interested in proving
that certain simplifications (optimizations) don’t effect the outcome, or that
adding new features won’t adversely affect old features. For example, as
we’ve seen throughout this paper, it would be wonderful to be able to specify
that a variable should not expand to more than one field at assignment. This
is a feature that could be implemented in a backwards compatible manner,
and Coq could help us prove that.

31

6.2 Conclusion

The mechanized semantics for word expansion in the Shell is a good first
step towards creating a full model of Shell execution. The model we have
provided provides a clear trace of how Shell expansion happens, and what
effects it has on the shell environment. And while the existing trace provides
a nice visual way to investigate shell expansion, future work will enable even
more robust verification of Shell execution.

32

Bibliography

[BCF+14] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa
Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt,
and Gareth Smith. A trusted mechanised javasript specifica-
tion. In Suresh Jagannathan and Peter Sewell, editors, The
41st Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014, pages 87–100. ACM, 2014.

[Deb] Debian. https://wiki.debian.org/shell.

[ER12] Chucky Ellison and Grigore Rosu. An executable formal se-
mantics of c with applications. In ACM SIGPLAN Notices,
volume 47, pages 533–544. ACM, 2012.

[Gre17] Michael Greenberg. Understanding the posix shell as a pro-
gramming language. Off the Beaten Track, 2017.

[IG18] IEEE and The Open Group. The open group base specifications
issue 7 (ieee std 1003.1-2017). 2018.

[Int17] Ecma International. Standard ecma-262: Ecmascript language
specification. 2017.

[Kre15] Robbert Jan Krebbers. The C standard formalized in Coq. [Sl:
sn], 2015.

[KW15] Robbert Krebbers and Freek Wiedijk. A typed c11 semantics
for interactive theorem proving. In Proceedings of the 2015 Con-
ference on Certified Programs and Proofs, pages 15–27. ACM,
2015.

[Nor98] Michael Norrish. C formalised in hol. Technical report, Univer-
sity of Cambridge, Computer Laboratory, 1998.

33

[OBZNS11] Scott Owens, Peter Böhm, Francesco Zappa Nardelli, and Peter
Sewell. Lem: A Lightweight Tool for Heavyweight Semantics,
pages 363–369. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[Rit93] Dennis M Ritchie. The development of the c language. ACM
SIGPLAN Notices, 28(3):201–208, 1993.

[RST+15] Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano,
Anil Madhavapeddy, and Peter Sewell. Sibylfs: Formal spec-
ification and oracle-based testing for posix and real-world file
systems. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, pages 38–53, New York, NY,
USA, 2015. ACM.

34

	Abstract
	1 Introduction
	1.1 The POSIX Shell
	1.2 Lem

	2 POSIX Shell Overview
	2.1 Interesting Edge Cases
	2.2 Bugs!

	3 POSIX Word Expansion Semantics
	3.1 Word Expansion
	3.2 Symbolic

	4 Mechanized Semantics
	5 Related Work
	5.1 Background
	5.2 Defining the Operational Semantics
	5.3 Modelling Memory
	5.4 Comparison

	6 Future Work and Conclusion
	6.1 Future Work
	6.2 Conclusion

	Bibliography

