
Executable Formal Semantics
for the POSIX Shell

Michael Greenberg and Austin J. Blatt
Pomona College Pomona ’18, now Puppet Labs

i’m interested in

powerful
programming languages

you want power?

you want the

shell

i wrote a new POSIX shell

smoosh
the Symbolic, Mechanized, Observable, Operational SHell

core smoosh

expansion evaluation
POSIX definitions

builtins

OS model libdash parser

driver?

OS impl?

core smoosh

expansion evaluation
POSIX definitions

libdash parser

builtins

OS model

system mode

system calls 
(OCaml: Sys, Unix, ExtUnix)

shell driver

core smoosh

expansion evaluation
POSIX definitions

libdash parser

builtins

OS model

symbolic mode

POSIX model 
(FDs, processes, scheduler, etc.)

shtepper

core smoosh

expansion evaluation
POSIX definitions

builtins

OS model libdash parser

your analysis here?

your model here?

your mode

expansion

evaluation

parsing echo ~ /Users/mgree

echo ${PWD} /Users/mgree/talks/smoosh

basename `pwd` smoosh

echo $((1+1)) 2
IFS=“”  

cat `echo some file` [shows contents of ‘some file’]

echo * abstract.txt posix.key some file

echo you can “” me you can me

expansion

evaluation

parsing echo ~ /Users/mgree

echo ${PWD} /Users/mgree/talks/smoosh

basename `pwd` smoosh

echo $((1+1)) 2
IFS=“”  

cat `echo some file` [shows contents of ‘some file’]

echo * abstract.txt posix.key some file

echo you can “” me you can me

expansion

evaluation

parsing basename `pwd`

expansion

evaluation

parsing basename `pwd`

basename /Users/mgree/talks/smoosh

expansion

evaluation

parsing basename `pwd`

basename /Users/mgree/talks/smoosh

smoosh

expansion

evaluation

parsing basename `pwd`

basename /Users/mgree/talks/smoosh

smoosh

expansion

evaluation

pwd

/Users/mgree/talks/smoosh

expansion

evaluation

parsing

expansion

evaluation

parsing
expansion

evaluation

expansion

evaluation

parsing
expansion

evaluation

expansion

evaluation

the shtepper

http://shell.cs.pomona.edu/shtepper

http://shell.cs.pomona.edu/shtepper

c ::= v=w … w … | c r

 | c1|c2|c3|…|cn | c & | (c)

 | c1 && c2 | c1 || c2

 | ! c | c1 ; c2 | if c1 c2 c3

 | switch a … { case w…) c } …

 | while c1 c2 | for x in w … c

 | defun v c

c ::= v=w … w … | c r

 | c1|c2|c3|…|cn | c & | (c)

 | c1 && c2 | c1 || c2

 | ! c | c1 ; c2 | if c1 c2 c3

 | switch a … { case w…) c } …

 | while c1 c2 | for x in w … c

 | defun v c

c ::= v=w … w … | c r

 | c1|c2|c3|…|cn | c & | (c)

 | c1 && c2 | c1 || c2

 | ! c | c1 ; c2 | if c1 c2 c3

 | switch a … { case w…) c } …

 | while c1 c2 | for x in w … c

 | defun v c

Words w ⩴ (s | k | ␣)*

Control codes k ⩴ ~ | ~s | ${s|ɸ} | $(c) | $((w)) | “w”

Parameter

formats ɸ ⩴ normal | length | default w | …

Strings s ∈ ASCII

c ::= v=w … w … | c r

 | c1|c2|c3|…|cn | c & | (c)

 | c1 && c2 | c1 || c2

 | ! c | c1 ; c2 | if c1 c2 c3

 | switch a … { case w…) c } …

 | while c1 c2 | for x in w … c

 | defun v c

Words w ⩴ (s | k | ␣)*

Control codes k ⩴ ~ | ~s | ${s|ɸ} | $(c) | $((w)) | “w”

Parameter

formats ɸ ⩴ normal | length | default w | …

Strings s ∈ ASCII

ls ~/${x}/*.txt
a bunch of spaces

c ::= v=w … w … | c r

 | c1|c2|c3|…|cn | c & | (c)

 | c1 && c2 | c1 || c2

 | ! c | c1 ; c2 | if c1 c2 c3

 | switch a … { case w…) c } …

 | while c1 c2 | for x in w … c

 | defun v c

Words w ⩴ (s | k | ␣)*

Control codes k ⩴ ~ | ~s | ${s|ɸ} | $(c) | $((w)) | “w”

Parameter

formats ɸ ⩴ normal | length | default w | …

Strings s ∈ ASCII

ls ~/${x}/*.txt
a bunch of spaces

ls ␣ ~ / ${x|normal} /*.txt
s k s k s

field #1 field #2

words w expanded words ew intermediate fields i fields f

1. user input

2. control codes 3. splitting

4. globbing

5. quote removal

Words w ⩴ (s | k | ␣)*

Control codes k ⩴ ~ | ~s | ${s|ɸ} | $(c) | $((w)) | “w”

Parameter

formats ɸ ⩴ normal | length | default w | …

Strings s ∈ ASCII/locale

Expanded
words ew ⩴ (usr s | exp s | ␣ | @ f | “s”)*

Intermediate

fields i ⩴ (ws ␣ | ␣ | s | “s”)*

Fields f ⩴ s1 … sn

user input

fully expanded

expanded,
no splitting or *

expanded,
split and * {informative,

not in the
spec!

words w expanded words ew intermediate fields i fields f

1. user input

2. control codes 3. splitting

4. globbing

5. quote removal

w ew i f

w ew i f

…

w →*2 ew →*3 i →*4,5 f

${x=w} →2 f

what’s unique about
the shell’s semantics

• Modal: expansion and evaluation

• Lots of mutual recursion

• Language semantics uses system calls

• Runtime AST includes nested command loops 
 e.g., source a/k/a . and eval; top level and -i

who cares about semantics?
• lingua franca for PL folks

• symbolic execution

• stepper

• bug finding, static analysis

• support DevOps tools like Rehearsal

• correctness baseline for compilers, other tools

• insights into the shell and other interactive languages

comparing smoosh43:24 Michael Greenberg and Austin J. Blatt

Smoosh bash∗ dash zsh† mksh ksh yash∗

0.1 4.4-12(1) 0.5.8-2.4 5.3.1-4+b2 54-2+b4 93u+ 2.43-1
POSIX test suite (418 tests)
Failing tests 0 4 (8) 20 × 35 23 22 (23)
Time to run 12m41s 2m43s 2m43s × 2m52s 3m24s 2m45
Modernish’s shell diagnosis (91 potential bugs, 22 potential quirks) and test suite (312 tests)
Bugs 1 16 2 3 3 14 1
Quirks 0 4 2 5 2 3 8
Failing tests 1 20 3 3 3 17 1
Time to run 5.5s 4.8s 1.4s 1.2s† 3.2s 2.2s 2.4s
Smoosh’s test suite (161 tests)
Failing tests 0 30 (35) 42 52 34 41 43 (39)
Time to run 23s 28s 1m13s 42s 21s 28s 29s

We use × to indicate that the tests could not be run. OSH’s results are omitted (see Section 7.1).
∗Both bash and yash initiate a strict POSIXmodewhen run as /bin/sh. The numbers in parentheses
are the results fromwhen strict POSIXmode is turned off. Timings are from POSIXmode. Modernish
only uses POSIX mode. †zsh was run only in emulate sh mode, which Modernish uses as well.
zsh crashes in the Modernish test suite when run noninteractively, so the timing is inaccurate.

Fig. 13. Comparison of shells on the POSIX test suite

mention them to highlight that even before we’ve significantly applied the semantics, the process
of development itself has been useful.

Bugs in shells. In dash, there were several issues: in arithmetic expansion, variables that were unset
or empty were improperly treated; the times command reported incorrect numbers; and the empty
alias was mishandled. We submitted patches for these bugs; the first was superseded by a different,
independent fix of the same bug a year later; the second and third are under review. In yash,
asynchronous commands (e.g., curl ... &) do not have their STDIN redirected to /dev/null and
fg issues too much output. Other than the empty alias bug and the fg bug, which were caught by
the POSIX test suite, all of the other bugs were detected by our own suite. Neither zsh nor OSH
can run the POSIX test suite; OSH cannot run the Modernish suite, either, but it can run our suite;
version 0.7.pre5 fails 39 tests and times out/hangs on 17 other tests.14

Bugs in the POSIX test suite and specification. We found ten bugs in the POSIX test suite, all of
which have been confirmed as true bugs and will be fixed in the next version of the test suite. We
also found typographical errors in the POSIX specification and in the POSIX test suite. Finally, we
discovered a number of important shell behaviors that were not being tested. We are planning to
submit our new tests to be added to the POSIX test suite.

7.2 Performance

Smoosh is substantially slower than existing implementations—about 4x slower on the POSIX test
suite, slightly better in Modernish (Figure 13).15 The timings in our own test suite should not be
taken too seriously: the only way to fail some of our tests is to hit a 9s time out; some shells even
require manual intervention to finish running our tests of interactive features.

14https://www.oilshell.org/release/0.7.pre5/test/spec.wwz/smoosh.html
15Tests were run in Docker on an 2.8 GHz Intel Core i7 with 16GB RAM. Timings are from a single run, but there is little
variation between runs.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 43. Publication date: January 2020.

comparing smoosh43:24 Michael Greenberg and Austin J. Blatt

Smoosh bash∗ dash zsh† mksh ksh yash∗

0.1 4.4-12(1) 0.5.8-2.4 5.3.1-4+b2 54-2+b4 93u+ 2.43-1
POSIX test suite (418 tests)
Failing tests 0 4 (8) 20 × 35 23 22 (23)
Time to run 12m41s 2m43s 2m43s × 2m52s 3m24s 2m45
Modernish’s shell diagnosis (91 potential bugs, 22 potential quirks) and test suite (312 tests)
Bugs 1 16 2 3 3 14 1
Quirks 0 4 2 5 2 3 8
Failing tests 1 20 3 3 3 17 1
Time to run 5.5s 4.8s 1.4s 1.2s† 3.2s 2.2s 2.4s
Smoosh’s test suite (161 tests)
Failing tests 0 30 (35) 42 52 34 41 43 (39)
Time to run 23s 28s 1m13s 42s 21s 28s 29s

We use × to indicate that the tests could not be run. OSH’s results are omitted (see Section 7.1).
∗Both bash and yash initiate a strict POSIXmodewhen run as /bin/sh. The numbers in parentheses
are the results fromwhen strict POSIXmode is turned off. Timings are from POSIXmode. Modernish
only uses POSIX mode. †zsh was run only in emulate sh mode, which Modernish uses as well.
zsh crashes in the Modernish test suite when run noninteractively, so the timing is inaccurate.

Fig. 13. Comparison of shells on the POSIX test suite

mention them to highlight that even before we’ve significantly applied the semantics, the process
of development itself has been useful.

Bugs in shells. In dash, there were several issues: in arithmetic expansion, variables that were unset
or empty were improperly treated; the times command reported incorrect numbers; and the empty
alias was mishandled. We submitted patches for these bugs; the first was superseded by a different,
independent fix of the same bug a year later; the second and third are under review. In yash,
asynchronous commands (e.g., curl ... &) do not have their STDIN redirected to /dev/null and
fg issues too much output. Other than the empty alias bug and the fg bug, which were caught by
the POSIX test suite, all of the other bugs were detected by our own suite. Neither zsh nor OSH
can run the POSIX test suite; OSH cannot run the Modernish suite, either, but it can run our suite;
version 0.7.pre5 fails 39 tests and times out/hangs on 17 other tests.14

Bugs in the POSIX test suite and specification. We found ten bugs in the POSIX test suite, all of
which have been confirmed as true bugs and will be fixed in the next version of the test suite. We
also found typographical errors in the POSIX specification and in the POSIX test suite. Finally, we
discovered a number of important shell behaviors that were not being tested. We are planning to
submit our new tests to be added to the POSIX test suite.

7.2 Performance

Smoosh is substantially slower than existing implementations—about 4x slower on the POSIX test
suite, slightly better in Modernish (Figure 13).15 The timings in our own test suite should not be
taken too seriously: the only way to fail some of our tests is to hit a 9s time out; some shells even
require manual intervention to finish running our tests of interactive features.

14https://www.oilshell.org/release/0.7.pre5/test/spec.wwz/smoosh.html
15Tests were run in Docker on an 2.8 GHz Intel Core i7 with 16GB RAM. Timings are from a single run, but there is little
variation between runs.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 43. Publication date: January 2020.

comparing smoosh43:24 Michael Greenberg and Austin J. Blatt

Smoosh bash∗ dash zsh† mksh ksh yash∗

0.1 4.4-12(1) 0.5.8-2.4 5.3.1-4+b2 54-2+b4 93u+ 2.43-1
POSIX test suite (418 tests)
Failing tests 0 4 (8) 20 × 35 23 22 (23)
Time to run 12m41s 2m43s 2m43s × 2m52s 3m24s 2m45
Modernish’s shell diagnosis (91 potential bugs, 22 potential quirks) and test suite (312 tests)
Bugs 1 16 2 3 3 14 1
Quirks 0 4 2 5 2 3 8
Failing tests 1 20 3 3 3 17 1
Time to run 5.5s 4.8s 1.4s 1.2s† 3.2s 2.2s 2.4s
Smoosh’s test suite (161 tests)
Failing tests 0 30 (35) 42 52 34 41 43 (39)
Time to run 23s 28s 1m13s 42s 21s 28s 29s

We use × to indicate that the tests could not be run. OSH’s results are omitted (see Section 7.1).
∗Both bash and yash initiate a strict POSIXmodewhen run as /bin/sh. The numbers in parentheses
are the results fromwhen strict POSIXmode is turned off. Timings are from POSIXmode. Modernish
only uses POSIX mode. †zsh was run only in emulate sh mode, which Modernish uses as well.
zsh crashes in the Modernish test suite when run noninteractively, so the timing is inaccurate.

Fig. 13. Comparison of shells on the POSIX test suite

mention them to highlight that even before we’ve significantly applied the semantics, the process
of development itself has been useful.

Bugs in shells. In dash, there were several issues: in arithmetic expansion, variables that were unset
or empty were improperly treated; the times command reported incorrect numbers; and the empty
alias was mishandled. We submitted patches for these bugs; the first was superseded by a different,
independent fix of the same bug a year later; the second and third are under review. In yash,
asynchronous commands (e.g., curl ... &) do not have their STDIN redirected to /dev/null and
fg issues too much output. Other than the empty alias bug and the fg bug, which were caught by
the POSIX test suite, all of the other bugs were detected by our own suite. Neither zsh nor OSH
can run the POSIX test suite; OSH cannot run the Modernish suite, either, but it can run our suite;
version 0.7.pre5 fails 39 tests and times out/hangs on 17 other tests.14

Bugs in the POSIX test suite and specification. We found ten bugs in the POSIX test suite, all of
which have been confirmed as true bugs and will be fixed in the next version of the test suite. We
also found typographical errors in the POSIX specification and in the POSIX test suite. Finally, we
discovered a number of important shell behaviors that were not being tested. We are planning to
submit our new tests to be added to the POSIX test suite.

7.2 Performance

Smoosh is substantially slower than existing implementations—about 4x slower on the POSIX test
suite, slightly better in Modernish (Figure 13).15 The timings in our own test suite should not be
taken too seriously: the only way to fail some of our tests is to hit a 9s time out; some shells even
require manual intervention to finish running our tests of interactive features.

14https://www.oilshell.org/release/0.7.pre5/test/spec.wwz/smoosh.html
15Tests were run in Docker on an 2.8 GHz Intel Core i7 with 16GB RAM. Timings are from a single run, but there is little
variation between runs.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 43. Publication date: January 2020.

• 10 bugs in the POSIX test suite

• 3 patches for dash

• dozens of other, uninvestigated bugs

who cares about semantics?

POSIX test suite bug:
impatient pipes

(trap "" PIPE

 sleep 2

 echo “it’s alive” >out

) | true

[$(cat out) = “it's alive”]

POSIX test suite bug:
impatient pipes

(trap "" PIPE

 sleep 2

 echo “it’s alive” >out

) | true

[$(cat out) = “it's alive”]

If the pipeline is not in the background
(see Asynchronous Lists), the shell
shall wait for the last command
specified in the pipeline to complete,
and may also wait for all commands
to complete.

IEEE Std 1003.1-2017 §2.9.2

dash bug: unset arithmetic

unset x

[$((x + 2)) -eq 2]

dash bug: unset arithmetic

unset x

[$((x + 2)) -eq 2]

dash: 1: Illegal number:

my motivation

“So, what do you do?”

my motivation

What happened?

smoosh
~11k loc shell semantics Lem, OCaml

~1k loc testing OCaml

~0.5 loc dash bindings C, OCaml

~5k loc AST, OS model

~3k loc expansion and evaluation

~2.5k loc builtin commands

• small-step operational semantics

• expansion and evaluation are mutually recursive

• semantics uses an abstract OS interface

• system (real, working shell) or symbolic (fake OS)

• 1.5 person years of effort Lem. Owens, Zappa Nardelli, Boehm, and Sewell 2016

