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The POSIX shell is a widely deployed, powerful tool for managing computer systems. The shell is the expert’s

control panel, a necessary tool for configuring, compiling, installing, maintaining, and deploying systems.

Even though it is powerful, critical infrastructure, the POSIX shell is maligned and misunderstood. Its power

and its subtlety are a dangerous combination.

We define a formal, mechanized, executable small-step semantics for the POSIX shell, which we call Smoosh.

We compared Smoosh against seven other shells that aim for some measure of POSIX compliance (bash, dash,
zsh, OSH, mksh, ksh93, and yash). Using three test suites—the POSIX test suite, the Modernish test suite and

shell diagnostic, and a test suite of our own device—we found Smoosh’s semantics to be the most conformant

to the POSIX standard. Modernish judges Smoosh to have the fewest bugs (just one, from using dash’s parser)
and no quirks. To show that our semantics is useful beyond yielding a conformant, executable shell, we also

implemented a symbolic stepper to illuminate the subtle behavior of the shell.

Smoosh will serve as a foundation for formal study of the POSIX shell, supporting research on and

development of new shells, new tooling for shells, and new shell designs.
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1 INTRODUCTION
The POSIX shell is a line-oriented, potentially interactive scripting language [Austin Group 2018].

The shell is widely used by experts on all three major platforms (Linux, macOS, and Windows); it

is often the best—or only!—way to configure, compile, install, manage, deploy, or remove software

systems. The shell is used for these tasks because the shell easily combines filesystemmanipulations

(using standard utilities like cp), system management features (like apt), and asynchronous job

control (using pipelines c1 | c2 | . . . , background jobs c &, and the wait builtin). Modern container

systems rely on the shell: some use the shell extensively (e.g., Docker) while others use the shell as

a necessary escape hatch (e.g., Vagrant, Puppet). The POSIX shell is critical software infrastructure.

Critical though it may be, the POSIX shell is not well understood. It has unusual semantics: the

general command language doesn’t evaluate subexpressions, but rather treats them as strings and

expands the special control codes in them. This process, called word expansion, is responsible for:
the translation of ~ into one’s home directory; parameter, i.e., variable, substitution; command

substitution (written $(c) or ‘c‘); and globbing with * and ?. Word expansion is simultaneously

part of the shell’s power and part of its danger [Greenberg 2018b]. It is very easy for word expansion
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to generate too many or too few arguments to a command... and commands play for keeps! One

famous example is “Steam cleaning”,
1
though similar bugs abound. The treacherous combination

of powerful commands and abstruse semantics has led to no small amount of disgust with the shell

(see, for example, the UNIX Hater’s Handbook [Garfinkel et al. 1994]).

We aim to rehabilitate the shell. The POSIX shell is one of the oldest programming languages still

in popular use; it ought to have tool support commensurate with the state of the art. In order to

have effective tool support, we need to be able to soundly reason about the shell’s semantics. We

want tools to summarize scripts’ behavior; to calculate scripts’ dependencies or preconditions; or

to compile scripts to be faster, safer, or in another language.

To that end, we introduce Smoosh: the symbolic, mechanized, observable, operational shell.

Smoosh serves as a mechanized reference semantics for the POSIX standard. Smoosh is, first and

foremost, an operational shell: it can be used interactively or for scripting. Smoosh is also symbolic
and observable, generating traces in both real and simulated environments.

Even though it is a completely usable shell, the mechanized small-step operational semantics

for Smoosh is relatively compact: the two core stepping functions (Section 5) are a combined

total of 1 034 SLOC of Lem. (Lem is an OCaml-like language that can compile to, e.g., OCaml,

Coq, etc. [Mulligan et al. 2014].) The small-step nature of the semantics makes it easy to capture

and report information. For example, Smoosh can detect and report unspecified and undefined

behaviors, trace how and when system calls are made, and log signal handling and traps.

Executability is critical in order to validate our semantics. To show that Smoosh is a good

model for the POSIX shell, we compare it against other shells in three different test suites: the

POSIX test suite, the Modernish test suite and shell diagnostic [Dekker 2019], and a test suite of

our own device (Section 7). We compared Smoosh against seven other shells that aim for some

measure of POSIX compliance (bash, dash, zsh, OSH,2 mksh, ksh93, and yash). Smoosh passes all

of the locale-independent parts of the POSIX test suite. On all three suites, Smoosh’s semantics is

the most conformant to the POSIX standard; Modernish judges Smoosh to be the least buggy or

quirky. Smoosh’s small-step operational semantics uses immutable structures in a functional, GC-ed

language, so it is not surprising that Smoosh is slower than the shells written in C on mutable

structures: about 4x slower on test suites, but not noticeably slower interactively. On real scripts,

we’ve seen no significant difference in total running time between Smoosh and existing shells. We

conjecture that few scripts spend substantial time in shell execution proper compared to programs

those shell scripts execute, but it is probable that some real scripts exercise the 4x slowdown. In any

case, Smoosh is a reference semantics that performs acceptably, not an efficient drop-in replacement

for existing shells.

Smoosh isn’t just an executable shell, though: Smoosh is parameterized over the operating system

state, highlighting the OS interface demanded by a POSIX shell and allowing for alternative uses

of the semantics. So far, Smoosh has two implementations of OS interface: a system mode where

system calls actually occur, and a symbolic mode where the system calls are simulated. We use

symbolic mode to implement a stepper for the shell (Section 6).

We claim the following contributions:

• Smoosh is a new implementation of the POSIX shell specification (Section 2). Its semantics is

faithful while still being of manageable size (Section 4).

• We parameterize the Smoosh semantics over a suite of operating system functions (Section 5).

The parameter is theoretically useful as it creates a barrier between the shell and the OS; it

1
A misunderstanding of expansion in a Steam script wiped hard drives: http://www.theregister.co.uk/2015/01/17/scary_

code_of_the_week_steam_cleans_linux_pcs/.

2
https://www.oilshell.org/
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is practically useful in that it allows for alternative instantiations of OS primitives. As an

example, we instantiate the OS with a symbolic mode to write a program stepper, which

illuminates the shell’s obscure word expansion and evaluation semantics (Section 6).

• Smoosh conforms to the POSIX standard and is suitable as a canonical implementation.

Smoosh is the most conformant and least buggy of the seven shells tested (Section 7, Figure 13).

• The development of Smoosh led to the identification of numerous bugs in shells in active use

(bash, dash, yash, OSH) as well as in the POSIX specification and its test suite (Section 7.1).

These contributions lay the foundation for serious tools for improving the shell.Without a semantics,

what could we prove about an analysis or compiler for the shell? Smoosh’s semantics can be a

reference implementation of POSIX for desugarers (like CoLiS [Jeannerod 2017]) and compilers to

test and prove against, as well as a semantics against which to prove static analyses sound. Our

tested semantics will be a baseline for work improving on the shell’s implementation and design.

2 WHAT IS THE POSIX SHELL?
There are two perspectives on what defines the POSIX shell: one places the standard first, and the

other places shell implementations first. We aim for Smoosh to accommodate both perspectives.

The first, bureaucratic perspective centers the POSIX specification ([Austin Group 2018], Volume

“Shell & Utilities”), which comprises 21 pages of introduction (§1), 98 pages of core definitions

(§2 “Shell Command Language”), and additional documentation on 160 utilities (ranging in scale

from awk to true).3 The part most relevant to shell implementors and programmers is Volume

“Shell & Utilities” §2 “Shell Command Language”, which weaves together explanation of the POSIX

shell’s lexer, parser, and semantics. Some important information is left to the description of the

sh command in §4. The specification is written in the typical style, with specific definitions of

words like ‘can’, ‘may’, and that troublesome pair, ‘unspecified’ (“a value or behavior not specified

by POSIX.1-2017 which results from use of a valid program construct or valid data input”) and

‘undefined’ (“. . .which results from use of an invalid program construct or invalid data input”).

There are 70 uses of ‘unspecified’ and 17 uses of ‘undefined’ relevant to the shell.

The second, pragmatic perspective is that the POSIX shell is a collection of language implementa-

tions (e.g., bash, dash, yash) that more or less agree on a core set of features; the POSIX specification

is a document that tries to track what that core set is, knowing that few implementations will

conform in all respects.

We consider both of these points of view when we discuss conformance (Section 7). When we

refer to shell implementations, we mean the versions in Debian 9 (stretch): bash 4.4-12(1), dash
0.5.6-2.4, zsh 5.3.1-4+b2, OSH 0.6.pre21, mksh 54-2+b4, ksh93 20120801-3.1, and yash 2.43-1.

There is already precedent for taking something like the POSIX specification and producing a

formal model, with recent work on C being a good example [Blazy and Leroy 2009; Ellison and

Rosu 2012; Kang et al. 2015; Krebbers et al. 2014; Memarian et al. 2016]. There is similar precedent

for taking a collection of implementations and producing a formal model, with λJS being a good
example [Guha et al. 2010]. What is special about doing this process for the POSIX shell? The shell

has two distinctive features that make its semantics more interesting:

• Word expansion. While typical languages evaluate an expression by evaluating its subex-

pressions, many shell expressions evaluate their parts by performing word expansion rather

than recursive evaluation. Word expansion and evaluation are mutually recursive via command
substitutions $(c), which evaluate the command c during expansion. (See Section 2.1.)

• System calls. While typical languages make system calls via library functions, the shell makes

system calls in its semantics. Core operations depend on forking a new process (fork), replacing

3
We write out ‘Section’ when referring to sections in this paper and use § to refer to sections of the POSIX specification.
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$ echo ~root
/var/root
$ usr=root
$ echo ~$usr
~root

(a) Tilde expansion

$ x=$(ls)
$ echo $x,${#x},${x#*[ab]},${x##*[ab]}.
a b c,5, b c, c.

(b) Command substitution, parameter expansion

$ y=42 x=5
$ echo $((y += $x))
47
$ echo $((y)) $y
47 47

(c) Arithmetic expansion

$ ls
a b c
$ x="a b"
$ ls $x
a b
$ ls "$x"
ls: a b: No such file or directory

(d) Field splitting

$ echo a*
ap app appall apparition appendix applejack
$ echo ap?
app
$ echo appa*
appall apparition
$ echo ap[=p=]*a*
appall apparition applejack
$ echo "a*"
a*

(e) Pathname expansion (a/k/a globbing), quote removal

Fig. 1. Expansion examples

the current process with an executable (execve), waiting on processes (wait and waitpid),
handling and sending signals (signal, kill), working with files (open, close, access, stat,
lstat, write, read), and creating and manipulating file descriptors (pipe, fcntl, dup2).

These two features present different problems when trying to understand the shell well enough

to construct a sound, working model. Modeling expansion is tricky because it is (a) mutually

recursive with evaluation; (b) a subtly structured, four-stage process; and (c) used by the evaluation

semantics in several slightly different configurations. Modeling system calls is tricky because (a)

there are many of them, (b) their behavior is subtle, and (c) giving faithful meaning to them can

bring arbitrarily much of the operating system into the formal model.

2.1 What is Word Expansion?
The POSIX specification indicates that there are four stages of expansion with a total of seven

components: (1) tilde expansion, parameter expansion, command substitution, and arithmetic

expansion; (2) field splitting; (3) pathname expansion; and (4) quote removal. Shells perform this

word expansion left-to-right in stage order (see Section 4.2 for Smoosh’s semantics). These seven

components are best illustrated by brief examples (Figure 1). The examples in Figures 1b and 1d

take place in a directory with three files (a, b, and c); the example in Figure 1e takes place in a

different directory, where the result of the first echo indicates which files begin with the letter a.
For a more detailed description of these phases, we refer readers to a longer explanation in our

prior work [Greenberg 2018b] and to the POSIX specification [Austin Group 2018] §2.6.

2.2 Smoosh: a Foundational, Formal Interpretation of the POSIX Specification
Our work aims to offer a formal interpretation of the specification that is also a conforming

implementation. Such a compromise is imperfect: we don’t model all possible behaviors in the

specification, but rather interpret the specification deterministically. Our formal model is in code and
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Commands c ::= (s=w)∗ w r ∗ | pipe| c
+ &? | c r+ | c & | ( c ) | c1;c2 |

c1&&c2 | c1||c2 | !c | while c1 c2 | for s w c | if c1 c2 c3 | casew cb∗ | s() c
Redirections r ::= file fd ft w | dup fd dt w | here fd ht w
File redirections ft ::= > | >| | < | <> | >>
Dup redirections dt ::= >& | <&
Heredoc redirections ht ::= default | noexpand
Case branches cb ::= (w+) c
Words w ::= (s | ␣ | k)∗

Control codes k ::= ~s? | ${s ϕ} | $(c) | $((w)) | "w" |

Parameter formats ϕ ::= normal | defaultnull- w | assignnull= w | errornull? w |

altnull+ w | length# | sub side mode w
Treatment of null null ::= string | unset:
Substring side side ::= prefix# | suffix%
Substring mode mode ::= shortests | longestss
Non-empty strings s ∈ Σ+ (e.g., UTF-8)
File descriptors fd ∈ N

Fig. 2. The shell’s source syntax

not a tiny core calculus. Nevertheless, we believe our model is interesting and our implementation is

useful. Analogously, the CompCert compiler doesn’t conform to MSVC, ICC, GCC, or Clang exactly,

and yet its model of the C language can be seen as canonical [Blazy and Leroy 2009; Krebbers et al.

2014]. Building such a foundational model is a necessary first step towards smaller calculi and more

useful tools in a setting where implementations (currently and unyieldingly) disagree on a number

of issues (see Section 8).

Our paper has three parts: a formal description, to show that while the shell is complex, it is

amenable to conventional techniques (Sections 3 and 4); a description of our implementation, to

give more concrete detail on our semantics (Sections 5 and 6); and a discussion of conformance,

showing that we have adequately modeled the POSIX shell (Section 7) and extensions (Section 8).

3 SYNTAX
The shell has an idiosyncratic concrete syntax, which we mirror in our abstract syntax (Figure 2)

but do not follow strictly. Since we’re giving abstract syntax, we ignore the details resolved during

parsing, particularly backslash escapes of reserved symbols and single quoting. A few conventions:

we use fixed-width fonts for system concepts (e.g., fd) and for abstract syntax that mirrors

the shell’s concrete syntax (e.g., >|). We use sans-serif fonts for Smoosh concepts and italics for
metavariables. We occasionally use subscript “hints” to translate English names into concrete shell

syntax (e.g., prefix
#
). We write x? for optional nonterminals. We use Kleene star x∗ to represent lists

and x+ to represent non-empty lists. We use n to refer to natural numbers and b to refer to booleans,

tagging such variables with a descriptive name. For example, n$? is a number representing an exit

status and b$() is a boolean that indicates whether a command substitution has been performed

(which helps determine the exit status; see CmdAssignDoneNoCmd in Figure 11).

The two primary AST constructs are the command, c , and words,w . Commands are the top-level

construct: a user enters a command c which has wordsw ; the words are expanded and the command

is eventually evaluated.
The base case for the command AST is the simple command. Simple commands (s=w)∗ w r ∗

model command invocations (i.e., builtins, functions, and executables), plain assignments, and plain
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redirections. All other command forms are composite. First, there are some “modifiers” of simple

commands: pipelines, pipe| c
+ &?, which may be in the background; redirected commands, c r+;

background commands a/k/a asynchronous commands, c &; and subshells, ( c ), noting that curly

braces are used for disambiguating parsing. There are sequencing commands and logic: sequence,

c1;c2; short-circuiting conjunction, c1&&c2; short-circuiting disjunction, c1||c2; and negation, !c .
There are two iteration constructs—while loops, while c1 c2; and for loops, for s w c—and two

conditional constructs—the conventional conditional, if c1 c2 c3; and string pattern matching,

casew cb∗, where each case branch cb pairs one or more patterns (as wordsw) with a command c
to run when a pattern matches. Function definition, s() c , is also a command.

Redirections r come in three fundamental forms: to a file (file), to an existing file descriptor (dup),
and from a given string a/k/a heredoc (here). File redirections, file fd ft w , specify a source file

descriptor, a file mode ft (e.g., > to write to a file), and a file targetw . File descriptor redirections,

dup fd dt w , can copy and close file descriptors. Finally, heredoc redirections, here fd ht w ,

expand wordsw and make the resulting string available for reading on a given file descriptor fd.
Redirections are typically scoped—that is, they take effect only for a given simple command or

composite redirection command; the exec special builtin suppresses scoping, causing the redirection
to take permanent, global effect in the shell (see discussion of runCmd in Section 4.3).

Words w are the primary sub-part of commands. Words are subject to expansion, showing

up in several places: in the assignments and arguments of simple commands; as the targets of

redirections; as the strings iterated over in for loops; and as both the scrutinees and patterns of

case conditionals. Wordsw are possibly empty lists of one of: a user string—a non-empty string s
from some character set, e.g., UTF-8, which we designate Σ; a field separator ␣ (i.e., whitespace,
which is statically parsed); or a control code, k . Our AST only models lists of words, not individual

words, leading to some mismatches with the POSIX specification. For example, shell syntax only

allows a single word in the assignment part of simple commands, but our AST allows multiple

words to appear in an assignment. Our choice of word representation is motivated by three things: a

desire for uniformity (most expansions use lists of words rather than single words), correct handling

of empty fields (formed by two adjacent field separators), and our interface with dash’s parser (see
Section 5.1). dash’s parser should never produce an assignment with multiple words.

In our abstract syntax, escaped control codes—like the literal \$—are ordinary strings. In the

initial stages of word expansion, only control codes are expanded. One might expect * to be a

control code, but pathname expansion is a dynamic search on the results of expansion and is not

statically parsed.

There are five control codes: tilde-and-prefix, ~s?, is used to refer to users’ home directories,

noting that the tilde prefix s? may be empty and that the so-called ‘prefix’ in fact comes after the

tilde; parameters ${s ϕ} take a variable name s and a parameter format ϕ which will determine

how the results of looking up s will be used; command substitutions $(c) hold commands that

ought to be run with their output captured; arithmetic substitutions $((w)) hold words w that

will be further expanded and then parsed as an integer arithmetic expression; and quotation "w"
inhibits field splitting and pathname expansion.

Parameter formats come in two flavors: they allow for convenient defaulting when variables are

unset or null (i.e., hold the empty string); and they enable post-processing the result of variable

lookup. The normal format is the default and performs standard variable lookup. There are four

defaulting parameter formats: default, assign, error, and alt. All four take wordsw and a flag null:
when null = string, then a variable set to the empty string is still considered set; when null = unset:
(where : is a concrete syntax hint), then a variable set to the empty string is considered unset. When

default is used on a variable considered unset (because it’s actually unset or because null = unset:),
then the wordsw are returned for further expansion (rather than the empty string). When assign
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is used on a variable considered unset, the wordsw are returned for further expansion—and the

result of expanding those words is assigned to s . When error is used on a variable considered unset,

the wordsw are returned for further expansion—and then used as an error message. The alt format

is the opposite of default: when it is used on a variable considered unset, the null string is returned;

when it is used on a variable considered set, the words w are expanded and returned. The two

post-processing parameter formats are length# and sub side mode w . The former calculates the

length of the value of the given parameter; the latter does prefix# or suffix% removal using either a

shortests or longestss match policy on a given patternw .

We omit two shell features from our abstract syntax: our parser desugars until loops into while
loops, and the tab-stripping heredoc redirection <<- is handled in the parser. Other bits of concrete

syntax are ignored: infix and postfix keywords for conditionals and loops (e.g., then, esac); our
AST doesn’t allow you to omit the first parenthesis in a case branch; quoted heredocs (<<"EOF")
are marked noexpand, as they will not undergo expansion.

4 SEMANTICS
POSIX specifies a broad set of behaviors for the shell; our semantics is not small. We show excerpts

here of the shell’s semantics to (a) show that the shell is nevertheless amenable to standard

techniques, and (b) give a sense of the level of detail of our semantics. This section is a selective

transcription of Smoosh’s implementation (Section 5) into inference rules, meant to communicate

the core ideas in a concise mathematical form without minutae (like logging or symbolic value

manipulation). We only ever show excerpts of our actual rules—the ‘real’ rules are in our code. We

do show all of our state definitions (Section 4.1, Figure 3) and all of the intermediate forms used by

our small step semantics (Figure 4). We take care to lay out these forms of state plainly, even if we

do not give our entire semantics in mathematical notation.

We explain expansion (Section 4.2) before evaluation (Section 4.3). Rather than give an up-front

description of every helper function and system call, we introduce them as needed. We write the

types of these functions in ‘schematic form’, using metavariables rather than named types.

4.1 State
The POSIX shell has to track a significant amount of state (Figure 3). Each line of the description of

Smoosh’s shell state characterizes different levels of detail. Before explaining those lines in detail,

we give a modest overview of shell concepts. The POSIX standard specifies the minimum state for

a shell in §2.12. Confusingly, some of the specified state is kept by the OS, not the shell (e.g., “open

files inherited upon invocation of the shell, plus open files controlled by exec” and “file creation

mask set by umask”). The shell executable starts as an outermost shell (our terminology). Subshells
are forked copies of the shell running on some other command. Quoting from §2.12, subshells are a

“duplicate of the shell environment, except that signal traps that are not being ignored shall be set

to the default action”. Subshells are used for “command substitution, commands that are grouped

with parentheses, and asynchronous lists” (i.e., background commands). Any “[c]hanges made to

the subshell environment shall not affect the shell environment”. The shell is dynamically scoped,

and subshells inherit their parent shell’s environments and settings. No information flows from

subshells to their parents other than the subshells exit status, any output captured by the parent

shell, and global system effects (e.g., a subshell can send signals to its parent).

The first line is about high-level process info. The root process ID, pidroot, is used for the special

parameter $$ (even in subshells). Each shell knows whether it is the outermost shell or a subshell

(boutermost), since only the outermost shell should perform certain job control and signal-handling

functions. Shell options are tracked in opts; current jobs are tracked in (jobs). Smoosh tracks not

only the current shell’s signal handlers a/k/a traps (traps), but also any traps from the supershell
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Shell state σ ::= ⟨pidroot,boutermost, opts, jobs, traps, traps?supershell,
ρ, s∗$*, ℓ

∗,Vro,Vexport, ρf , aliases, locale,
scwd, pid$!,n$?,nloop,n

?

optoff⟩

Shell options opts ∈ Opts = {allexport, . . . }
Traps traps : Sig⇀ s
Jobs jobs : id:N⇀ {ji | ji.nid = id}
Job info ji ::= ⟨nid, (pid c)

∗
pipe, pid, c, js⟩

Job status js ::= running | stopped (TSTP | STOP | TTIN | TTOU) |

terminated sig | done n$?
Signals sig ∈ Sig = {SIGHUP, . . . }
Global environments ρ : s ⇀ s
Local environments ℓ : s ⇀ s? × bro × bexport
Sets of variable names V ⊆ P(Σ+)
Function definitions ρf : s ⇀ c
Aliases aliases : s ⇀ s
Locales locale ∈ L (e.g., C, it_IT.UTF-8)

Fig. 3. The shell’s state

(traps?supershell). In order to find out which traps are currently set without writing to a file, but

$(traps --) will execute in a subshell. By tracking the supershell’s traps, we can implement the

optional POSIX behavior of subshells inheriting the supershell’s traps for display purposes. The

traps field is a partial function from signals to strings. Signals not in the domain of σ .traps have
default dispositions; signals that map to empty strings are ignored; otherwise, the strings are parsed

and interpreted when signals are handled (see checkTraps in Figure 10).

The second line of the shell’s state characterizes the environment: ρ is the global, dynamically

scoped environment; the current positional parameters are stored in a list s∗$*. In addition to

environment and positional parameters, Smoosh also tracks a stack of local environments, ℓ∗.
These local environments exist not only to support the non-POSIX builtin local, but also for

scoped assignments for function calls (see Section 8.3). The shell tracks the read-only and exported

variables in ρ via Vro and Vexport, respectively. Aliases and the current locale information are also

tracked. (Smoosh only supports the ambient locale, though; see Section 5.1.)

The third and final line of the shell’s state holds finer grained information: the current working

directory (scwd), the PID of the last background command (pid$!), the exit status of the last command

(n$?), how deeply nested we are in the current loop (nloop), and the offset into the argument for

parsing in getopts (n?optoff) (see Section 8.2).

Smoosh’s state is just one way to keep track of everything a shell needs to know. For example,

the entire last line of the shell state could instead be kept in the shell’s environment, σ .ρ. Some

shell state in fact must be kept there, e.g., the OPTIND variable used by the getopts builtin. We find

it more convenient to manually track the last exit status in σ .n$? as a number than to repeatedly

coerce a string-valued numerical representation from an environment variable in σ .ρ.
Taking Smoosh’s general approach as a given, there are still alternative designs. For example,

we track an explicit stack of local variables in the shell state σ , but we don’t have such a stack

for function parameters: instead we use call stack frames to save the old positional parameters

(Figure 4). Not having a stack of positional parameters makes it easy to ensure that we never have

an underflow of the positional parameter stack; having an explicit stack of locals makes it easier to
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Commands c ::= . . . | cmdargs (s=w)∗ es r ∗ co | cmdredirs (s=w)∗ f rs co |

cmdassigns (s=es)∗ f sfds cocmdready ρ scmd fargs sfds co | run ρcmd scmd fargs sfds co |

whilecond corig ccur cbody | whilebody ccond cbody ccur |

forargs s es c | forstart s f c | forrunning s f cbody ccur |

casearg es cb∗ | casematch s cb∗ | casecheck s espat c cb∗ |

call nloop s∗$* sfun corig ccur | break n | continue n | return | exit | done | redirs c sfds |

eval nlinno pctx ssrc binteractive btoplevel | evalcmd nlinno pctx ssrc binteractive btoplevel c |

exec spath sname fargs ρ b/bin/sh | wait pid bchecked bcmd |

checked c | trapped sig n$? chandler ccont
Command options co ::= ⟨b$(),bfork,bsimple⟩

Redirection state rs ::= ⟨er∗ xr? r∗⟩
Expanded redir er ::= efile ft fd s | edup dt fd fd? | ehere ht fd s
Expanding redir xr ::= xfile ft fd es | xdup ft fd es | xhere ht fd es
Control codes k ::= . . . | assign s w | error s w | match f side mode w |

cmdsubst c pid fd | cmdwait c pid s
Expansion state es ::= start eo w | expand eo e w | split eo e |

path eo i | quote eo i | error f | done f
Expansion options eo ::= ⟨bsplit,bglob⟩
Expanded words e ::= (␣ | src s | exp s | @ f | "s")∗

Intermediate fields i ::= (ws ␣ | ␣ | s | "s")∗

Fields f ::= s∗

Parsing context pctx ∈ L (parser state)

Saved FDs sfds : fd⇀ ofd
Old FD info ofd ::= restore fd | close

Fig. 4. Smoosh’s runtime extensions for use in the small-step semantics

start eo w expand eo e w pathname eo i

split eo e

quote eo i

error f done f

¬eo.bsplit

noglob ∨ ¬eo.bglob

Legend

words (initial state) expanded words intermediate fields fields (terminal state)

default transition alternative, ϕ-enabled transition

ϕ

Fig. 5. Word expansion transitions

do scoped lookup. Our variable lookup routine works as follows: it immediately returns the value

for a special variable (e.g., the value of $? is stored in σ .n$?) or positional parameter (in σ .s∗$*);
failing that, it traverses the stack of locals σ .ℓ∗; failing that, it checks the global environment σ .ρ.
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Word expansion σ , es −→ σ ,b$(), es

σ , start eo w −→ σ ,⊥$(), expand eo · w
ExpStart

σ , ⟨eo.bsplit,⊥”,⊥gen⟩, e,w −→ σ ,b$(), ⟨e
′,w ′⟩

σ , expand eo e w −→ σ ′,b$(), expand eo e ′ w ′
ExpExpand

σ , ⟨eo.bsplit,⊥”,⊥gen⟩, e,w −→ σ ,b$(), error eerr
σ , expand eo e w −→ σ ′,b$(), error toFields(eerr)

ExpExpandErr

eo.bsplit
σ , expand eo e · −→ σ ,⊥$(), split eo e

ExpExpandSplit

¬eo.bsplit
σ , expand eo e · −→ σ ,⊥$(), path eo skipSplitting(e)

ExpExpandNoSplit

σ , split eo e −→ σ ,⊥$(), path eo fieldSplitting(σ , e)
ExpSplit

noglob < σ .opts eo.bglob
σ , path eo i −→ σ ,⊥$(), quote eo pathnameExpansion(σ , i)

ExpPath

noglob ∈ σ .opts ∨ ¬eo.bglob
σ , path eo i −→ σ ,⊥$(), quote eo unescape(i)

ExpPathNoGlob

σ , quote eo i −→⊥ σ ,⊥$(), done combineFields(removeQuotes(i))
ExpQuote

Helper function Description
skipSplitting(e) = i Convert expanded words to intermediate fields

toFields(e) = f Convert expanded words to fields

fieldSplitting(σ , e) = i Break expanded words into intermediate fields

unescape(i) = i Remove glob escape characters

pathnameExpansion(σ , i) = i Expand globs (e.g., * and ?)
removeQuotes(i) = i Remove quote characters/AST nodes

combineFields(i) = f Conjoin adjacent fields and whitespace

Fig. 6. Small-step semantics for word expansion

4.2 Word Expansion
Word expansion occurs when evaluating assignments, commands, redirections, the iteratee of a

for loop, and both the scrutinee and the patterns of case conditionals. The general outline of the

process takes wordsw and expands them to a list of strings, called fields f . We sketched the features

of word expansion by example already (Section 2.1); we now give a formal model.

We model expansion as a transition system between expansion states es (Figure 4). There are
seven such expansion states (graphically in Figure 5; formally in Figure 6), not to be confused with
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POSIX’s seven components of its four stages. The states are: the initial state, start eo w ; initial

word expansion, expand eo e w , where we perform the first stage of POSIX word expansion (tildes,

parameters, command substitution, and arithmetic); field splitting, split eo e; pathname expansion,

path eo i; quote removal, quote eo i; and two terminal states, one for errors, error f , and one for

successful completion, done f .
A diagram of the possible transitions (Figure 5) uses boxes to indicate the different representations

used for words during expansion (gray for wordsw , the initial state; dotted pink lines for expanded

words, e; dashed red lines for intermediate fields, i; and solid red lines for fields, f , the final result).
Solid transitions are defaults and dashed transitions are alternatives enabled under the predicated

conditions. The transition graph shows: that errors can only occur during control code expansion;

that field splitting can be skipped wholesale (dashed line); and that pathname expansion is always

run, but sometimes it doesn’t actually glob but rather unescapes globbing characters (dashed line).

We give a lower level understanding of the possible transitions (Figure 6) with inference rules for a

small-step semantics, where σ , es → σ ′,b$(), es means that in shell state σ , the expansion state es
transitions to a new shell state σ ′

and a new expansion state es. The boolean flag b$() indicates
whether or not a command substitution was run. The transition system conditions on the expansion
options, eo, which are held in es.

The shell hasmultiple notions of errors, which lead to different behavior in different circumstances

(see §2.8.1 “Consequences of Shell Errors”). Like JavaScript, many erroneous-seeming conditions

are silently ignored, e.g., if a glob doesn’t match any files, then it is treated literally. Non-interactive

shells will exit on most errors, while interactive ones will continue unless errexit is set.

Initial word expansion in the expansion state expand is defined as a small-step operational

semantics σ ,wo, e,w −→ σ ,b$(),wer , where the initial e and w represent the current progress

expanding the words w into the expanded words e (or an error, as recorded in the intial word
expansion result wer). We track whether or not a command substitution is performed (b$()), along
with a variety of options particular to initial word expansion (wo): whether splitting should happen
(for a special case of $*), whether the current control codes are quoted, and whether the current

control codes are from user input or are indirectly generated.

The rules map over each component of the words under expansion, pulling an element off the

front, processing it, and adding the result to the already expanded words e . We offer here only an

excerpt of the control code expansion rules: those dealing with command substitution (Figure 7).

Command substitution is exemplary because (a) it ties the recursive knot between evaluation and

expansion, (b) it makes several system calls, and (c) its evaluation produces more control codes.

Given a command substitution control code $(c), we must run the command c , capturing its

output and saving it for further expansion. The CmdSubst rule starts the process. First, we use

the pipe system call to create a POSIX pipe, an OS-managed FIFO queue with a file descriptor at

each end: one for reading (fdr ) and one for writing (fdw ). Next, we fork a subshell, running our

command c with some redirections: first, standard output is redirected to the write end of our pipe,

fdw ; second, inside of the forked process, we close the read end of our pipe, fdr . Finally, we close
the write end of the pipe in our running shell, stepping to an intermediate cmdsubst form that

tracks both the pid of the forked subshell and the pipe’s read end. With the command running, we

try to read all of the file descriptor (using the system call readAll; CmdSubstRead). Once we’ve
read everything, we close fdr , save the string, and use the cmdwait form to wait on the command

to finish. If reading produces an error, the entire expansion process errors out (CmdSubstReadErr).

When the command has finished, we save its exit status and return the command’s output as the

expanded words exp s (CmdSubstWait). Note that each of the CmdSubst* rules sets b$() to true.
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Initial word expansion σ ,wo, e,w −→ σ ,b$(),wer

Initial word expansion options wo ::= ⟨bsplit,b”,bgen⟩
Initial word expansion results wer ::= ⟨e,w⟩ | error e

σ ,wo, e, ␣w −→ σ ,⊥$(), ⟨e ␣,w⟩
EWSep

lit =


"s" wo.b”
exp s ¬wo.b” ∧ wo.bgen
src s ¬wo.b” ∧ ¬wo.bgen

σ ,wo, e, s w −→ σ ,⊥$(), ⟨e lit,w⟩
EWLit

σ ,wo,k −→ σ ′,b$(), ⟨e
′,w ′⟩

σ ,wo, e,k w −→ σ ,b$(), ⟨e e
′,w ′ w⟩

EWCtrl

σ ,wo,k −→ σ ′,b$(), error e

σ ,wo, e,k w −→ σ ,b$(), error e
EWCtrlErr

Control-code expansion σ ,wo,k −→ σ ,b$(),wer

(σ1, fdr , fdw ) = pipe(σ0)
(σ2, pid) = forkShell(σ , c fdw>&1 fdr>&•) σ3 = close(σ2, fdw )

σ0,wo, $(c) −→ σ3,⊤$(), ⟨·, cmdsubst c pid fdr ⟩
CmdSubst

(σ1, s) = readAll(σ0, fdr ) σ2 = close(σ1, fdr )

σ0,wo, cmdsubst c pid fdr −→ σ2,⊤$(), ⟨·, cmdwait c pid trimRNL(s)⟩
CmdSubstRead

(σ1, error e) = readAll(σ0, fdr )

σ0,wo, cmdsubst c pid fdr −→ σ1,⊤$(), error e
CmdSubstReadErr

(σ1,n
′
$?) = wait(σ0, pid)

σ0,wo, cmdwait c pid s −→ σ1[n$? = n
′
$?],⊤$(), ⟨exp s, ·⟩

CmdSubstWait

System call Description
pipe(σ ) = (σ ′, fdr , fdw ) Create a FIFO pipe

forkShell(σ , c) = (σ , pid) Fork a new shell running c
close(σ , fd) = σ Close a file descriptor

readAll(σ , fd) = (σ ′, s | error e) Read all of a file descriptor until EOF

waitpid(σ , pid) = (σ ′,n$?) Wait for a PID

Helper function Description
trimRNL(s) = s ′ Remove trailing newlines

Fig. 7. Small-step semantics for initial word expansion (expand) and command substitution

4.3 Evaluation
Shell programs are evaluated in a line-oriented fashion: a command is read and then immediately

evaluated. The most interesting bits of evaluation are simple commands (s=w)∗ wcmd r
∗
, which

make a variety of system calls. We give a detailed, formal semantics for them in Section 4.3.1, but

two other command forms merit discussion: the case conditional and the for loop.
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Command semantics (negation) σ ,b✓, c −→ σ , c

σ ,⊤✓, c −→ σ ′, c ′

σ ,b✓, !c −→ σ ′, !c ′
Not

c ∈ {break n, continue n, return, exit}

σ ,b✓, !c −→ σ , c
NotCtrl

σ .n$? = 0

σ ,b✓, !done −→ σ [n$? = 1], done
NotSuccess

σ .n$? , 0

σ ,b✓, !done −→ σ [n$? = 0], done
NotFail

Fig. 8. Small-step semantics for evaluation of negation

The case conditional has the form case w in (pat
1
) s1;; . . . esac, wherew are words to

expand and then match against the patterns pati . The ‘branch-on-pattern’ style of conditional is a

cousin of the switch conditional seen in imperative languages like C, though the shell uses string

pattern matching instead of equality. Case analysis doesn’t involve so many steps, but it involves a

restricted form of expansion (stopping at arithmetic expansion) and pattern matching; the quoting

rules for patterns have subtle interactions with the way dynamic pattern escaping (as opposed to

parse-time escaping) is treated in the shell.

The for loop has the form for x in w; do c; done, where x is a variable name (without the

$),w are words to be expanded, and c is a command. The wordsw are expanded to zero or more

fields; c is executed once for each such field, with x bound to each field in turn. The shell’s for
loop is like a for-each loop in Java or a for ... of loop in JavaScript, where the iterated-over

words are interpreted as a list according to field splitting and $IFS. Note that the shell’s for loop
expands the words before iterating, so there can be no confusion around concurrent modification

(as in, e.g., Java).

We give a semantics to commands as a small-step relation σ ,b✓, c −→ σ ′, c ′, which we read as

“in state σ , when b✓ indicates whether someone else is responsible for checking our exit status,

the command c steps to a new state σ ′
and a new command c ′”. Our inference rules here are hand

transcriptions of Smoosh’s code. We estimate that Smoosh’s evaluation semantics contains 100

additional evaluation rules not given here in the paper. Much of the evaluation relation is standard:

control (;, if, &&, ||, !, while, function definition) works more or less the usual way, though rather

than having actual boolean values, the last exit status is looked up in the shell state.

As a warmup, we give the four rules for negation (Figure 8). The first rule is a standard congruence

rule: the term !c takes a step by stepping c itself (Not). Note that we set ⊤✓ in the premise. When

the shell has the flag errexit set, we will exit on a non-zero exit status, but that behavior is

proscribed “when executing the compound list following the while, until, if, or elif reserved
word, a pipeline beginning with the ! reserved word, or any command of an AND-OR list other

than the last” ([Austin Group 2018], §4, set). Setting ⊤✓ tells subsidiary rules that someone else

will be checking the exit status, and the shell should not exit on error even if errexit is set. The
second rule propagates control: if the command c is one of the internal AST nodes used to represent

control, then we must propagate the control command through the negation (NotCtrl). The final

two rules do the actual work of negation, turning a successful exit status of 0 into 1 (NotSuccess)

and an unsuccessful nonzero exit status into 0 (NotFail). We show these four rules to assuage

concerned readers: much of the semantics is standard.

Before offering a complete formal semantics for simple commands (Section 4.3.1), we mention the

more interesting runtime forms necessary in Smoosh’s semantics (Figure 4). The shell has a variety

of line-oriented read/eval loops: the outermost shell itself, the ‘dot’ (.) a/k/a source command, and

the eval command. In order to nest such loops, read/eval loops are part of Smoosh’s AST: eval
nodes represent an eval loop reading commands and evalcmd nodes represent an eval loop executing
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a command. There are several other interesting AST forms: redirs holds on to information for

restoring redirections; exec turns into a call to execve; wait turns into a call to waitpid; checked is

used to disable errexit checking in subshells; and trapped and call are stack frames representing

the current trap being processed and the current function being called, respectively.

4.3.1 Simple Commands. Here we highlight a key part of the shell’s semantics: the evaluation of

simple commands (Figures 9, 10, and 11). Assignments, commands, and redirections are agglomer-

ated in the POSIX specification into a single form: a simple command of the form (s=w)∗ wcmd r
∗
,

where the s are variable names, each w is a word for expansion either in an assignment or as

the command and arguments itself (wcmd), and each r is a redirection. Simple commands expand

arguments, redirections, and then assignments—though assignments may be expanded before

redirections if there are no arguments (i.e.,wcmd = ·). A five-step, twelve-point outline determines

how to perform assignments (§2.9.1); a two-step, eleven-point outline determines how to find out if

a command should be resolved as a special builtin, a builtin, a function, or an executable (§2.9.1

“Command Search and Execution”). Simple commands hardly live up to their name. In fact, they

are the most complex part of command evaluation... and they may not even run a command!

In our model, evaluation of the simple command (s=w)∗ wcmd r
∗
proceeds as follows. First, the

words of the command arguments (wcmd) are expanded from left to right (CmdStart, CmdArgExp,

CmdArgErr, CmdArgDone). Next, redirections are expanded (CmdRedir, CmdRedirDoneErr)

and applied (CmdRedirDone), saving file descriptor information sfds for later unwinding. Then
we expand the words in the assignments (CmdAssign, CmdAssignErr) and store the results in

a fresh local environment (CmdAssignSet). At this point, we are already in dangerous territory:

the POSIX specification allows assignments to be expanded before redirections when there are

no arguments. Our deterministic semantics always does redirections first; bash and ksh will run
assignments first when there is no command.

Even in defining the relatively simple behavior of these expansions, there’s been call for a variety

of helper functions (Figure 10). Some of these helpers are quite simple—cmdSubst just updates the
command options co to reflect whether expansion performed command substitution. Others have

significant logic and make system calls: runCmd is 65 SLOC of Lem code that includes executable

resolution using $PATH (via a separate, 50 SLOC function), a shell fork, and an exec form which

will cause the semantics to call execve. The redirection functions redir and unredir make a variety

of system calls for manipulating files (fileRedir, closeAndSaveFD, renumberFD, and heredoc).
Resuming our explanation of simple commands: after all of the expansion has been done (Figure 9),

it is time to try to actually run the command (Figure 11). It may be that our simple command has

no command at all, in which case we pop the local assignments off the stack and add them to the

global environment σ ′.ρ (CmdAssignDoneNoCmd). The redirections are undone via unredir. Now
b$() pays off: if a command substitution was performed, we should return its exit status in σ ′.n$?;
if not, we should succeed with exit status zero. If, on the other hand, there is a command, then we

step to a ‘ready’ state, capturing the assignments accumulated in the local environment. Our use of

setLocal is a particular choice, not at all mandated by POSIX, which doesn’t have local variables.

We use local environments because (a) we need quasi-local things to track assignments, and (b) it

is convenient to reuse the architecture we built for local variables (see Section 8.3).

When faced with cmdready, there are three possibilities: we could have disabled execution

(CmdRunNoexec); we could be running a special builtin, in which case POSIX mandates that

any assignments be global (CmdRunSpecial); or we could be running an ordinary command

(CmdRun). In the latter two cases, we step to the run form to actually run a command.

Finally, the run form triggers a call to the runCmd helper function. One of three things happens:

we encounter an error of some kind, in which case noninteractive shells may exit (RunFail); the
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Command semantics (simple commands) σ ,b✓, c −→ σ , c

σ ,b✓, (s=w)∗ w r ∗ −→ σ , (s=w)∗ (start ⟨⊤split,⊤glob⟩ w) r ∗ ⟨⊥cmdsubst,⊤fork,⊥simple⟩
CmdStart

σ , es −→ σ ′,b$(), es′ es′ , error f es′ , done f

σ ,b✓, (s=w)∗ es r ∗ co −→ σ ′, cmdargs (s=w)∗ es′ r ∗ cmdSubst(co,b$())
CmdArgExp

σ , es −→ σ ′, error f

σ ,b✓, cmdargs (s=w)∗ es r ∗ co −→ expError(σ ′, f ,⊤exit)
CmdArgErr

σ , es −→ σ ′, done f

σ ,b✓, cmdargs (s=w)∗ es r ∗ co −→ σ ′, cmdredirs (s=w)∗ f ⟨·, •, r ∗⟩ co
CmdArgDone

σ , rs −→ σ ′,b$(), rs′

σ ,b✓, cmdredirs (s=w)∗ f rs co −→ σ , cmdredirs (s=w)∗ f rs′ cmdSubst(co,b$())
CmdRedir

σ , rs −→ σ ′, error f

σ ,b✓, cmdredirs (s=w)∗ f rs co −→ expError(σ ′, f , special(f )exit)
CmdRedirErr

redir(σ , er∗) = (σ ′, f )
bexit = (¬b✓ ∧ errexit ∈ σ ′.opts)

∨ (special(fcmd) ∧ ¬co.bsimple ∧ ¬interactive(σ ′)))

σ ,b✓, cmdredirs (s=w)∗ fcmd ⟨er∗, •, ·⟩ co −→ redirError(σ ′, f ,bexit)
CmdRedirDoneErr

redir(σ , er∗) = (σ ′, sfds)

σ ,b✓, cmdredirs (s=w)∗ f ⟨er∗, •, ·⟩ co −→
σ ′[ℓ∗ = σ ′.ℓ ·], cmdassigns (s=startw ⟨⊥split,⊥glob⟩)

∗ f sfds co

CmdRedirDone

σ , es −→ σ ′,b$()es′ es′ , error f es′ , done f

σ ,b✓, cmdassigns s=es (s=es′′)∗ fcmd sfds co −→
σ , cmdassigns s=es (s=es′′)∗ fcmd sfds cmdSubst(co,b$())

CmdAssign

σ , es −→ σ ′,b$(), error f

σ ,b✓, cmdassigns s=es (s=es′′)∗ fcmd sfds co −→ expError(σ , f ,⊤exit)
CmdAssignErr

σ , es −→ σ ′,b$(), done f setLocal(σ ′, s, toString(f )) = error ferr
bexit = (¬b✓ ∧ errexit ∈ σ ′.opts) ∨ ¬interactive(σ ′)

σ ,b✓, cmdassigns s=es (s=es′′)∗ fcmd sfds co −→ expError(σ , ferr,bexit)
CmdAssignSetErr

σ , es −→ σ ′,b$(), done f setLocal(σ ′, s, toString(f )) = σ ′′

σ ,b✓, cmdassigns s=es (s=es′′)∗ fcmd sfds co −→
σ ′′, cmdassigns (s=es′′)∗ fcmd sfds co

CmdAssignSet

Fig. 9. Small-step semantics for simple commands (part 1: expansion)
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Helper function Description
special(f ) = b Determine if f is a special builtin

setParam(σ ,x , s) = σ ′ | error s Set a parameter

setLocal(σ ,x , s) = σ ′ | error s Set a local parameter in the outermost scope

cmdSubst(co,b$()) = co′ Disjunctively update co.b$()
expError(σ , f ,bexit) = (σ ′, c) Possibly exit with an expansion error

redirError(σ , f ,bexit) = (σ ′, c) Possibly exit with a redirection error

redir(σ , er∗) = (σ ′, sfds | ferr) Perform a redirection, recording saved FDs

unredir(σ , sfds) = σ ′
Restore saved FDs

runCmd(σ ,b✓, ρcmd, s, f , co) Resolve command (builtin, function, executable)

= (σ ′, c,brestore) | (σ ′, error ferr)
toAssigns(ℓ) = ρ Convert a local environment to bindings

mayExit(bexit, c) = c ′ Conditionally exit

checkTraps(σ , c) = (σ ′, c ′) Check for pending signals and load trap handlers

System calls for runCmd Description
fileExists(σ , s) = b Determine if a file exists

fileExecutable(σ , s) = b Determine if a file is executable

execve(σ , scmd, sargv[0], s
∗
argv, ρ,bsh) Replace the current process

= (σ ′, c | error s)

System calls for redir and unredir Description
fileRedir(σ ,ft, s) = (σ ′, fd | error s) Open a file redirection

closeAndSaveFD(σ , fd) = (σ ′, sfds | error s) Close an fd, saving it at an fd ≥ 10

renumberFD(σ ,bclose, fdorig, fdwanted) Renumber an fd, saving the target

= (σ ′, sfds | error s)
heredoc(σ , s) = (σ ′, fd | error s) Create an fd holding heredoc contents

System calls for checkTraps Description
pendingSignal(σ ) = (σ ′, sig?) Get a signal if one is pending

Fig. 10. Helpers for simple command execution

command runs and produces a non-zero exit status, in which case the command may exit due

to the errexit option (RunErr); or, the command may run with no need to exit, in which case

we continue with the command returned from runCmd (Run). The new command c yielded by

runCmd will be one of three things: done, because a builtin was run to completion; a call form,

because a function was called; or a wait form, because an executable was forked but should run in

the foreground, and so it needs to be waited on. These forms will in almost all cases be wrapped with

a redirs form; the exec special builtin is an exception, since its redirections have global effect. The

redirs form calls unredir to restore the saved file descriptors sfds, as in CmdAssignDoneNoCmd.

It is the shell’s responsibility to (a) receive and record signals as they arrive so that (b) those

pending signals can be periodically checked and handled. We check for traps after completing the

evaluation of commands. The checkTraps helper function uses the pendingSignal system call to

track these signals and interrupt the main line of execution with trap handlers when necessary. Of

the three Run* rules, only one rule actually checks traps: RunFail. RunErr need not check traps

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 43. Publication date: January 2020.



Executable Formal Semantics for the POSIX Shell 43:17

Command semantics (simple commands, continued) σ ,b✓, c −→ σ , c

σ .ℓ∗ = ℓ∗
0
ℓcmd n′$? =

{
σ .n$? co.b$()
0 otherwise

σ ′ = unredir(σ , sfds)[ℓ∗ = ℓ∗
0
][ρ = σ .ρ[ℓcmd][n$? = n

′
$?]

σ ,b✓, cmdassigns · · sfds co −→ xtrace(σ ′, ℓ∗
0
), done

CmdAssignDoneNoCmd

σ .ℓ∗ = ℓ∗
0
ℓcmd

σ ,b✓, cmdassigns · s f sfds co −→
xtrace(σ , ℓcmd s f ), cmdready toAssigns(ℓcmd) s f sfds co

CmdAssignDoneCmd

noexec ∈ σ .opts

σ ,b✓, cmdready ρ scmd f sfds co −→ σ , done
CmdRunNoexec

noexec < σ .opts special(s) ¬co.bsimple
σ ′ = σ [ρ = σ .ρ ∪ ρcmd]

σ ,b✓, cmdready ρcmd s f sfds co −→ σ ′, run ρcmd s f sfds co
CmdRunSpecial

noexec < σ .opts ¬special(s) ∨ co.bsimple

σ ,b✓, cmdready ρcmd s f sfds co −→ σ , run ρcmd s f sfds co
CmdRun

runCmd(σ ,b✓, ρcmd, s, f , co) = (σ ′, error ferr)
bexit = (¬b✓ ∧ errexit ∈ σ ′.opts) ∨ (special(s) ∧ ¬co.bsimple ∧ ¬interactive(σ ′))

σ ,b✓, run ρcmd s f sfds co −→ σ ′, checkTraps(mayExit(bexit, redirs done sfds))
RunFail

runCmd(σ ,b✓, ρcmd, s, f , co) = (σ ′, c,brestore)
σ ′.n$? , 0 ¬b✓ errexit ∈ σ ′.opts

σ ,b✓, run ρcmd s f sfds co −→ σ ′, exit
RunErr

runCmd(σ ,b✓, ρcmd, s, f , co) = (σ ′, c,⊤restore)

σ ′.n$? = 0 ∨ ¬(¬b✓ ∧ errexit ∈ σ ′.opts) c ′ =

{
redirs c sfds brestore

c otherwise

σ ,b✓, run ρcmd s f sfds co −→ σ ′, c ′
Run

Fig. 11. Small-step semantics for simple commands (part 2: evaluation)

because the shell is exiting. Run need not check traps because all three of the possible forms from

runCmd will check traps when they complete.

5 SMOOSH’S IMPLEMENTATION
Having sketched in mathematical notation the Smoosh semantics, we turn our attention to Smoosh’s

actual executable semantics, i.e., the code. Smoosh is open source under the MIT license.
4
Smoosh

is written primarily in Lem [Mulligan et al. 2014], an ML-like language that extracts to OCaml

4
https://github.com/mgree/smoosh
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and Coq, among others. Smoosh uses dash’s parser via libdash,5 a library that tracks dash’s main

repository
6
but has hooks for accessing the parser and a few other functions, along with OCaml

bindings to the dash AST. Smoosh is implemented across 20 files comprising 10 814 SLOC, of which

9 305 lines are in Lem and 1 509 are in OCaml. By way of comparison, dash has 14 633 SLOC, of
which 13 318 are C code, 122 are shell scripts, and 1 193 are header files. The Smoosh code contains

considerable extra material (about 1k SLOC): shim code for reading the dash AST and for rendering

Smoosh ASTs in JSON for the stepper (Section 6). In terms of effort, Smoosh took approximately

1.5 person years to develop.

Smoosh’s architecture consists of a core semantics with two configurable ‘ports’: one for the

driver, which determines how the Smoosh semantics is used; and one for the OS implementation,
which determines what system calls do and how the filesystem behaves. The core semantics is a

small-step operational semantics, as sketched in Section 4. The semantics itself is not outrageously

large (4 880 SLOC for the semantics and builtins, 2 605 SLOC for the OS interface, and 3 252 for AST

definitions), with a roughly 3:1 ratio of supporting code to code in the two core stepping functions:

val step_expansion : forall α . OS α =>

os_state α ∗ expansion_state→ expansion_step ∗ os_state α ∗ expansion_state

val step_eval : forall α . OS α =>

os_state α → checking_mode → stmt → evaluation_step ∗ os_state α ∗ stmt

The step_expansion function (328 SLOC, the core expansion semantics) corresponds to the relation

σ , es −→ σ ,b$(), es (Section 4.2); the step_eval function (706 SLOC, the core evaluation semantics)

corresponds to the relation σ ,b✓, c −→ σ , c (Section 4.3). In addition to semantics for the POSIX

shell language itself, we also provide implementations for all of the special builtins,
7
mandatory

builtins,
8
and several others.

9

The OS typeclass. The most interesting aspect of the Smoosh implementation is its OS typeclass. We

have already introduced several system calls in the formal model (Figures 7 and 10). The system

calls described there are part of 40 different calls that can be made to the operating system. We

can break the OS interface into three areas of interest: true system calls (14 functions), used to

work with processes, signals, and job control; file system calls (24 functions), used to traverse and

manipulate the file system, where 10 of these calls correspond to POSIX stat and lstat; and
parser interactions (2 functions), used to communicate values of PS1 and PS2 to the libdash parser.
Note that the calls described here don’t necessarily correspond to POSIX-defined functions or any

particular operating system’s interface. Some system calls correspond clearly (e.g., execve); other
Smoosh system calls (e.g., heredoc) correspond to several system calls (create a pipe, possibly

spawn a process if the heredoc string is bigger than the OS buffer size, write the heredoc text

to the pipe). Some other system calls don’t correspond to true “system calls” in any sense at all:

pendingSignal doesn’t actually make any system calls, but merely looks at a data structure. We

put pendingSignal in the OS typeclass because the nature of that signal-tracking data structure

depends on the OS typeclass instance.

We have implemented two instances of the OS typeclass: the system implementation makes real

system calls to the host OS, allowing us to use Smoosh as a real shell; the symbolic implementation

5
https://github.com/mgree/libdash

6
https://git.kernel.org/pub/scm/utils/dash/dash.git/

7 break, :, continue, . a/k/a source, eval, exec, exit, export, readonly, return, set, shift, times, trap, and
unset [Austin Group 2018] §2.14

8 alias, bg, cd, command, false, fc, fg, getopts, hash, jobs, kill, newgrp, pwd, read, true, umask, unalias, and
wait [Austin Group 2018] §2.9.1 part 1(d)

9echo, help, history, local, printf, test a/k/a [, type.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 43. Publication date: January 2020.

https://github.com/mgree/libdash
https://git.kernel.org/pub/scm/utils/dash/dash.git/


Executable Formal Semantics for the POSIX Shell 43:19

makes no real system calls to the host OS but instead simulates a POSIX OS and filesystem. We

use the symbolic instance in our stepper (Section 6). We can imagine other OS instances, e.g., a

readonly instance that allows filesystem reads but neither writes nor execve. One can think of an

OS instance as a capability to (possibly virtualized) OS resources [Dennis and Van Horn 1966].

The OS typeclass forces us to confront difficult issues in program structure and API design. We

can see the root of the issue in waitpid. Different implementations of waitpid must do drastically

different things. In system mode, we expect waitpid to actually call wait4 and to block until the

given PID has terminated. In symbolic mode, we expect the current symbolic process to suspend

while another symbolic process proceeds. That is, in system mode the OS typeclass is just a shim

between Smoosh and the host OS, and we can rely on the host OS’s scheduler entirely. In symbolic
mode, the OS typeclass must actually implement the scheduler itself (see Section 6.1, “Scheduling”).

5.1 Limitations and Challenges
We have not attempted to implement any of the POSIX locale functionality. It is a longer term

goal to give a precise formal account of locales. For now, however, Smoosh uses OCaml functions

for ordering strings and formatting numbers, which are locale-independent as of 2018. Smoosh’s

handling of the various terminal/TTY functions is incomplete.

Parsing. Smoosh currently supports only the libdash parser, as extracted from dash. The dash
parser is certainly “good enough”, as dash is the default /bin/sh on Debian and Ubuntu systems.

Using its parser in Smoosh has some drawbacks, though. First, prompting using PS1 and PS2 is built
in to dash’s parser. These prompt variables ought to be subject to variable expansion each time they

are displayed—and dash will (incorrectly) use its own, internal expansion routine and environment

to expand these variables. Second, the dash parser doesn’t support common extensions to the POSIX

specification, like statically parsed tests with the [[ form. Third, dash’s lexer doesn’t correctly
support multi-byte characters, making it difficult to work with character sets like Unicode. Fourth

and finally, dash’s parser is written in C and may therefore result in memory errors or security

vulnerabilities. We are interested in connecting Smoosh to other parsers, like Morbig [Régis-Gianas

et al. 2018] and the bash-compatible parser from OSH.

Design challenges. Some of the biggest difficulties encountered developing Smoosh were design

related, e.g., finding the right interface so the OS typeclass can have both system and symbolic

implementations. Other difficulties came from trying to coordinate system calls in a small-step

semantics (we came up with exec and wait AST nodes after several “close, but no cigar” attempts).

Signal handling was another area that was particularly difficult to implement in all its nuances. We

also faced more prosaic challenges with Lem (see below).

Some of our choicesmade implementation easier, though. For example, using small-step semantics

meant we could trace very precisely what happened when something went wrong. Using immutable

state made debugging easier. Having a symbolic mode and a stepper was also very useful.

Challenges with Lem. We chose to implement Smoosh in Lem so we could write one implementation

that extracts to OCaml for execution and to Coq for proof. In retrospect, it would have perhaps

been wiser to simply directly implement Smoosh in Coq. First, Lem’s library hasn’t yet mapped

various concepts to Coq (e.g., the uppercase_char predicate). Second, Coq can extract to OCaml,

too, and while Lem is well implemented, Coq is more robust and better supported. For example,

we had to extend Lem to support character literals in pattern matching. When two branches of a

pattern match disagree in return type, Lem simply gives the line numbers for the whole match—not

particularly helpful for, e.g., step_eval, a 706-line match.

It’s not possible to use a typeclass while instantiating it in Lem, so the actual waitpid system
call takes step_eval as an argument. The system mode has no need for step_eval, but the
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Eval: (line 1 of file shell) echo ${x=5} $(( x+1 ))!

echo ${x=5} $((x+1)) # in eval loop from shell

Variable Value

HOME /Users/mgree

OPTIND 1

PATH /usr/bin

PPID 9

SMOOSH_BUILD 2019-07-09_15:07

SMOOSH_VERSION 0.1

Eval: (line 2 of file shell) Simple commmand: expand command args echo ${x=5} $(( x+1 ))
" Starting expansion

! ! !

echo ${x=5} $((x+1)) # in eval loop from shell

Eval: (line 2 of file shell) Simple commmand: argument expansion step #
Expansion step: plain string echo ${x=5} $(( x+1 ))

! !
!

echo ${x=5} $((x+1)) # in eval loop from shell

Eval: (line 2 of file shell) Simple commmand: argument expansion step #
Expansion step: user field separator echo ${x=5} $(( x+1 ))

! !
!

echo  ${x=5} $((x+1)) # in eval loop from shell

Eval: (line 2 of file shell) Simple commmand: argument expansion step $
Parameter expansion: assignment # Expansion step: plain string echo ${x=5} $(( x+1 ))

! !
! !

echo  ${x=5} $((x+1)) # in eval loop from shell

Eval: (line 2 of file shell) Simple commmand: argument expansion step $
Parameter expansion: finished assignment echo 5 $(( x+1 ))

! !
!

echo   5 $((x+1)) # in eval loop from shell

Variable Value

Symbolic expansion steps:

Shell code to symbolically execute

echo ${x=5} $((x+1))

Environment

{ "PATH": "/usr/bin"
, "HOME": "/Users/mgree"
}

Home directories

{ "mgree": "/Users/mgree" 
, "root": "/var/root"
}

Run shell code Clear results

Legend

unexpanded words initial state

expanded words before field splitting

temporary field before pathname expansion

fully expanded field final state

␣ field separator

expansion step

evaluation step

Fig. 12. A fragment of a trace from the Shtepper

symbolic mode relies on it (see Section 6.1). Our solution to this problem led to some redundancy:

each instantiation of a typeclass defines the critical functions outside the instance, with whatever

dependency or mutual recursion is necessary between operations. The typeclass instance definition

then simply references these external definitions. Using Coq would not have helped with this issue:

Coq does not allow you to use an instance while defining it, either.

6 SMOOSH’S SHELL STEPPER
We have used the Smoosh semantics to implement a program stepper, which we call the Shtepper.

The Shtepper traces shell programs in a simulated environment. We use lightweight symbolic

execution: symbolic values are treated symbolically as much as possible, but we don’t support

branches, i.e., we only explore a single path. When branching on a symbolic value, the current

implementation will either treat the value as empty or will default to a sentinel value.

The Shtepper is implemented in two parts: a tracer and a visualizer. The tracer takes a shell

program and a description of the environment in which to run it and produces a trace in JSON.

The visualizer takes a JSON trace and displays it in a browser using JavaScript. The Shtepper is

publicly available online.
10
The tracer comprises 1.2k SLOC of Lem and OCaml, implementing a

synthetic POSIX environment (processes and filesystem), JSON mappings for the Smoosh AST, and

a driver for the semantics. The visualizer comprises 1.5k SLOC of Ruby, ERB templates, JavaScript,

and CSS; the bulk of the code (1.2k SLOC) is in the JavaScript trace rendering logic.

The visualizer. The Shtepper shows the main shell’s thread of execution, highlighting evaluation

steps in blue and expansion steps in pink (Figure 12). The shell contains a great deal of state and

performs its work in many small steps. It is difficult to know what to highlight, what to merely

show, and what to hide. By default, we show each step of expansion and evaluation, showing the

environment, STDOUT, and STDERR at the beginning, after changes, and at the end of execution.

We plan to study which information best helps novices learn the shell and avoid pitfalls.

6.1 Simulating POSIX
Our stepper runs in a simulated POSIX environment, using the symbolic OS instance. We use ‘fuel’

to limit the extent of symbolic execution. The web interface puts a conservative limit on fuel; at

the risk of nontermination, the fuel can be made infinite in the tracer.

10
http://shell.cs.pomona.edu/shtepper

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 43. Publication date: January 2020.

http://shell.cs.pomona.edu/shtepper


Executable Formal Semantics for the POSIX Shell 43:21

The symbolic shell state tracks the entirety of the POSIX environment: a list of FIFO pipes; a list

of processes; the root of the symbolic filesystem; the current shell’s mapping of file descriptors

to pipes and files; whether or not the current shell has exited; the current shell’s umask; and the

contents of /etc/passwd to simulate calls to getpwnam during tilde expansion. Our symbolic model

is sufficient to run interesting pipes between subshells, but insufficient to run executables.

Scheduling. When simulating a symbolic POSIX system, there is a tension between faithfully

modeling all possible interleavings of processes and offering concise, legible information to the

user of the stepper. To motivate the question, consider the following two pipelines:

(1) while true; do echo 5; done | true
(2) while true; do echo 5; done | { read x; echo $((x+42)); }

Both pipelines spawn two processes, both of which use shell builtins exclusively: neither of these

pipelines needs to make an execve system call (though some systems may implement true or echo
as executables, Smoosh and most shells build them in). In both cases, the first process will send 5
on STDOUT infinitely many times. In pipeline (1), the second process ignores its input entirely,

terminating immediately. In pipeline (2), the second process reads a line of input, emits the line 47,
and terminates.

In a real POSIX system, both processes will be scheduled concurrently in both pipelines. The

while loop will write as fast as it can until the pipe between the two processes is full, at which point

the looping process will block. Pipeline (1)’s second process will terminate nearly immediately;

pipeline (2)’s second process will terminate right after it’s been able to read one line of input from

the pipe. In either case, when the second process terminates, the pipe between the two processes

has no more readers, and a SIGPIPE will be sent to the first process, terminating it.

How should we simulate these pipelines? We could use real threads to run the simulation, result-

ing in a different schedule each time. Such an approach would be error prone and nondeterministic;

it is more appealing to use deterministic, simulated threads. How, then, do we schedule our simu-

lated threads? If we always run the pipeline left to right, then both of the pipelines above will block

when the pipe buffers fill up (or diverge if the buffers are unbounded). If we always run the pipeline

right to left, then pipeline (1) will terminate immediately but pipeline (2) will block, waiting to read

from a process that’s never scheduled. Naïve scheduling regimes are insufficient.

We prioritize determinism and clarity over faithfully exploring all possible schedules. Scheduling

takes place in rounds; every process in the system will take a step every round (which may mean

blocking). Our scheduler will try to step each process in creation order: the root shell will get to

go first, and then the first subshell, and so on. But: whenever a shell waits on another process

(e.g., because of a foreground command or a command substitution) or would block reading from

a pipe, we take the opportunity to step the waited on or writing process, making the scheduling

order demand-driven. Scheduling according to demand keeps our scheduling deterministic without

rigidly following creation order.

When waiting for a command to terminate, we put no bound on the number of steps we’re

willing to wait—blocking is the right behavior.
11
When a process calls waitpid in symbolic mode,

the waited-on process is looked up and stepped. For a blocking wait—like waitpid or readAll—our
scheduling works well. When waiting for a writer to supply input, we allow batches of 10 steps at

a time, since one need not read all of the input: the read builtin only needs to read a line, and we’ll

get a shorter trace if we step the processes only enough to produce as much output as we need.

Concretely, the read builtin uses the readline system call:

readLine(σ , fd,b\) = (σ ′, s | blocked pid | error s)

11
Note that this waiting still counts as fuel usage, and our symbolic execution may give up while waiting.
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A call to readLine tries to read from the file descriptor fd, with b\ specifying whether a backslash

can allow a line continuation. The Smoosh readLine makes a series of calls to the POSIX read
primitive in system mode. Getting back a new state σ ′

, there are three possible results: getting a

string, blocking, or an error. How do these cases arise? It could be the case that reading from fd
causes an error, e.g., it’s not an active file descriptor, points to a directory, etc. It could be the case

that fd has enough text in the (symbolic) buffer to read a whole line, either because an unescaped

newline is actually present or because there are no more writers to fd, and so EOF has been reached.

In either of these cases, no scheduling need happen. Finally, it could be the case that there isn’t

enough text to read a line but there are still active writers. In this circumstance, a real call to read
would block. In symbolic mode, we return the pid of the first process that could write to fd; that
process is stepped. We must be careful, though: we don’t want to block forever on the writing

process, only enough to finish reading the line. In this circumstance, we allow the process to only

step a few times before checking the buffer again (hence the default of 10 steps).

Our scheduler is not a completely realistic model of POSIX scheduling—we don’t get to see

every possible interleaving. Our scheduling does, however, model the way pipes and processes

interact well enough for us to simulate interesting shell pipelines. Our scheduler is acceptable in

light of its benefits: simple engineering; API compatibility between system and symbolic modes;

a straightforward, linear visualization of shell stepping; and determinism without rigidity.

Filesystem. Our model of the filesystem is quite simplistic: we track a hierarchy of files and directo-

ries, but not file contents. Such a simple model suffices to simulate pathname expansion and file

descriptor redirections (dup) and heredoc redirections (here), but not file redirections (file). It is
a matter of engineering effort to produce a better symbolic filesystem. It would be interesting to

link our symbolic system up with SibylFS (also written in Lem) [Ridge et al. 2015] or Forest [Fisher

et al. 2011], or to use Ntzik et al.’s reasoning [2017; 2018]. We can also imagine implementing a

read-only filesystem that allows access to the real, underlying filesystem, but treats writes (and

other dangerous operations, like execve) as noops. We consider platform-specific filesystems, like

/proc, as out of scope; we could in theory apply platform-dependent reasoning [Nita et al. 2008].

7 POSIX CONFORMANCE
Smoosh is meant to serve as a formal foundation for the POSIX shell. But is Smoosh a good model?

We use three execution-based test suites to test Smoosh for conformance: the official POSIX test

suite, the Modernish test suite, and a suite of our own devising. What are these test suites, why

does using them support our claim, and how well do we conform?

The POSIX test suite. The Open Group VSC test suite
12
is a broad set of tests for POSIX conformance.

We use VSC-PCTS2016 version 2.15. The POSIX shell test suite has 494 tests: 1 is ‘not in use’, 31 are

‘untestable’ and are checked by hand during certification, and 44 are locale-dependent and marked

‘unresolved’ or ‘unsupported’. There are 418 locale-independent tests; these are the tests we use to

compare against other shells. The POSIX test suite is not generally publicly available, and so most

shells are not tested against it; we thank the Open Group for granting us a license.

The Modernish test suite. Modernish is a substantial library for the POSIX shell aimed at simplifying

the shell language. It uses existing shell features and compatibility testing to construct a new,

shell-like language on top of an existing shell. Modernish is implemented in 12k SLOC of shell

scripts. It is very portable. To achieve this portability, Modernish runs a series of diagnostics against

its host shell, detecting a variety of bugs and quirks.

12
https://www.opengroup.org/testing/testsuites/vscpcts2003.htm
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Our test suite. Our third test suite is our own. Our test suite has two parts: internal unit tests and

external system tests. Both parts serve as regression tests, but we can only use the external system

tests on other shells, as the internal unit tests run Smoosh subsystems in symbolic mode. Each

external system test pairs a short shell script with expected output and exit status. These are “whole

system tests” exercising obscure corners of the shell’s behavior. A test harness runs the scripts and

checks outputs for a given shell executable. There are 161 external system tests, in five categories:

2 speed tests, 67 tests of builtin commands, 2 parsing tests, 82 tests of shell semantics, and 8 tests of

the sh executable’s interface. Some of the external system tests are adapted from bugs found by

the POSIX test suite and Modernish. Our test suite is occasionally too picky, demanding particular

STDERR text when any diagnostic message would suffice or a particular exit status when any

non-zero exit status would be conformant.

Why use these tests? We use the POSIX test suite because it is the de facto standard of what

POSIX compliance is. It is imperfect (see Section 7.1), but covers a great deal of ground. It is also a

significant stress test of the shell, comprising 29k SLOC of tests in addition to 58k SLOC of shell

code in the harness (which, by default, runs in the shell under test). The Modernish test suite

condenses a great deal of knowledge and experience with real shells into a very small package.

Modernish’s shell scripts also rely on detailed characteristics of shell behavior—during development,

the Modernish test suite exercised several bugs in Smoosh’s semantics that the POSIX test suite did

not detect. Finally, our test suite not only tests against our own regressions from development, but

also highlights corner cases not covered in other test suites.

The test counts may seem low compared to other languages—the ES6 test suite contains more than

29 000 tests.
13
With so few tests, there is a risk of overfitting. However: first, we are undercounting:

each part of the POSIX test suite addresses many behaviors, so the number of tests actually run is

much higher. For example, a single test case in the POSIX suite concerning set -u actually tests 12

assertions. Second, there are at least two places where Smoosh deliberately overfits, in order to

pass two outdated test cases carried over from an older version of the spec. The best solution is to

have a broader test suite, including tests from, e.g., OSH, ksh, and NetBSD.

Conformance. We summarize the results of our various test suites in Figure 13. Of all of the shells

tested, Smoosh is the only one to have no failing tests in the POSIX test suite or in our own. In

Modernish, Smoosh has no quirks and one bug: Smoosh’s parser (borrowed from dash) cannot
handle multibyte characters or characters with codes over 128; this bug triggers the one Modernish

test that Smoosh fails.

7.1 Bugs
We found several POSIX compliance bugs in our two primary reference shells, dash and yash,
rediscovering a subtlety in the semantics for printf that had already been independently addressed.
The results (Figure 13) indicate that all shells other than Smoosh have other, nontrivial POSIX

bugs, but we have not yet taken the time to diagnose and report each one. We also identified a

typographical error in the POSIX specification and several bugs in the POSIX test suite. Identifying

and reporting these bugs makes up only a small part of the dividends of formal semantics, but we

mention them to highlight that even before we’ve significantly applied the semantics, the process

of development itself has been useful.

Bugs in shells. In dash, there were several issues: in arithmetic expansion, variables that were unset

or empty were improperly treated; the times command reported incorrect numbers; and the empty

alias was mishandled. We submitted patches for these bugs; the first was superseded by a different,

13
https://github.com/tc39/test262
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Smoosh bash∗ dash zsh† mksh ksh yash∗

0.1 4.4-12(1) 0.5.8-2.4 5.3.1-4+b2 54-2+b4 93u+ 2.43-1

POSIX test suite (418 tests)
Failing tests 0 4 (8) 20 × 35 23 22 (23)

Time to run 12m41s 2m43s 2m43s × 2m52s 3m24s 2m45

Modernish’s shell diagnosis (91 potential bugs, 22 potential quirks) and test suite (312 tests)
Bugs 1 16 2 3 3 14 1

Quirks 0 4 2 5 2 3 8

Failing tests 1 20 3 3 3 17 1

Time to run 5.5s 4.8s 1.4s 1.2s
†

3.2s 2.2s 2.4s

Smoosh’s test suite (161 tests)
Failing tests 0 30 (35) 42 52 34 41 43 (39)

Time to run 23s 28s 1m13s 42s 21s 28s 29s

We use × to indicate that the tests could not be run. OSH’s results are omitted (see Section 7.1).

∗
Both bash and yash initiate a strict POSIXmodewhen run as /bin/sh. The numbers in parentheses

are the results fromwhen strict POSIXmode is turned off. Timings are from POSIXmode. Modernish

only uses POSIX mode.
†zsh was run only in emulate sh mode, which Modernish uses as well.

zsh crashes in the Modernish test suite when run noninteractively, so the timing is inaccurate.

Fig. 13. Comparison of shells on the POSIX test suite

independent fix of the same bug a year later; the second and third are under review. In yash,
asynchronous commands (e.g., curl ... &) do not have their STDIN redirected to /dev/null and

fg issues too much output. Other than the empty alias bug and the fg bug, which were caught by

the POSIX test suite, all of the other bugs were detected by our own suite. Neither zsh nor OSH
can run the POSIX test suite; OSH cannot run the Modernish suite, either, but it can run our suite;

version 0.7.pre5 fails 39 tests and times out/hangs on 17 other tests.
14

Bugs in the POSIX test suite and specification. We found ten bugs in the POSIX test suite, all of

which have been confirmed as true bugs and will be fixed in the next version of the test suite. We

also found typographical errors in the POSIX specification and in the POSIX test suite. Finally, we

discovered a number of important shell behaviors that were not being tested. We are planning to

submit our new tests to be added to the POSIX test suite.

7.2 Performance
Smoosh is substantially slower than existing implementations—about 4x slower on the POSIX test

suite, slightly better in Modernish (Figure 13).
15
The timings in our own test suite should not be

taken too seriously: the only way to fail some of our tests is to hit a 9s time out; some shells even

require manual intervention to finish running our tests of interactive features.

Smoosh is slow because of our implementation strategy. Most shells are implemented as recursive

evaluators in C, performing expansion by mutating compact data structures, whereas Smoosh

is implemented as iterated small-step semantics in OCaml (via Lem), performing expansion by

copying immutable, non-compact ASTs. Smoosh’s slowness is not perceptible to us at the command

line—interactive sessions spend the majority of their wall clock time running executables rather

than the shell interpreter.

14
https://www.oilshell.org/release/0.7.pre5/test/spec.wwz/smoosh.html

15
Tests were run in Docker on an 2.8 GHz Intel Core i7 with 16GB RAM. Timings are from a single run, but there is little

variation between runs.
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We speculated that some of Smoosh’s slowness was because we weren’t caching the filesystem

calls in command name $PATH resolution, a process the specification calls ‘hashing’.We implemented

hashing, but our performance on the POSIX test suite was unchanged. Hashing may not be an

optimization on modern systems.

8 BEYOND THE POSIX SPECIFICATION
The POSIX specification defines a common core for shells to implement, but every shell has to

make decisions about what is left unspecified. Every shell we encountered implements extensions,

too. In order for Smoosh’s semantics to be a good model of the practical, implementation-oriented

interpretation of the POSIX shell, we must understand how shells handle unspecified behavior,

underspecified behavior, and extensions. We offer examples of each below.

When evaluating λJS, Guha et al. use the Mozilla test suite—they ensure that they get the same

answers as Rhino, V8, and SpiderMonkey [Guha et al. 2010]. Implementations of the POSIX shell

do not have nearly the same level of agreement as JavaScript interpreters do. When developing

Smoosh, we compared to many other shells, which frequently disagree in corner cases. All of the

shells implement unspecified extensions of the POSIX standard, too. Since none of these shells

is perfectly POSIX compliant, we declined to precisely match any of them. We aimed instead for

POSIX conformance, clear semantics, and a lack of quirks.

8.1 Unspecified Behavior: Non-local break and continue

Consider the case of non-lexical control. Should the following program print hi or not?

f() { break; echo hi; }; while true; do f; break; done

According to the POSIX specification, the break command in the function f is not lexically enclosed
in the loop. Non-lexical use of the control builtins break and continue is left unspecified. Shells
behave differently! The more sensible option is to forbid such non-lexical control, as most shells

do, printing hi (and possibly a diagnostic message from the non-lexically enclosed break in f).
But bash 3.2.57(1) (which comes with macOS) and zsh both allow the break to pass through

the function call and exit the non-lexically enclosing loop. In Modernish, zsh and the old bash’s
behavior is called a quirk. There is also ambiguity around the permissible behaviors of break and

continue when used with a non-lexically enclosing loop or with no enclosing loop at all: the

standard seems to forbid warning the user when control commands have no effect. The issue is

under discussion with the Open Group.

Prioritizing safety and avoiding quirks means that Smoosh uses lexical control (and will print

hi), though non-lexical control can be enabled with a flag (set -o nonlexicalctrl).

8.2 Underspecified Behavior: getopts and Hidden State
The POSIX specificationmandates that the getopts builtin should use the user-visible shell variables
OPTIND and OPTARG to parse command-line and function arguments. The rules are subtle, but the

general idea is that OPTIND tracks the index of the current option argument; the getopts utility also
takes the name of a variable to set with the current option. If getopts finds an option that takes an

argument, the argument value is stored in OPTARG. There’s a problem in the POSIX specification,

though: getopts needs more information than OPTIND and OPTARG to work properly. In particular,

getopts needs to keep track of the offset into the current argument to handle ‘grouped’ arguments.

As a concrete example, consider getopts "ab:c:" opt -ab hi -c hello, where "ab:c:" is
the optstring specifying that -a is an option without arguments and that -b and -c are options that

take arguments, opt is the variable name to set with the current option, and -ab hi -c hello
is the argument list to process. After parsing the first option, opt ought to be a, but what should
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Smoosh bash dash zsh OSH mksh ksh yash
0.1 4.4-12(1) 0.5.8-2.4 5.3.1-4+b2 0.6.pre21 54-2+b4 93u+ 2.43-1

nested scope (1) ✓ ✓ ✓ ✓ ✓ × × ×

local (2) special builtin special reserved builtin
+

special × ×

readonly (3) error silent error override override override

initial (4) unset unset unset null unset unset

-p (5) ✓ ✓ × ∼ × ∼

(1) Do assignments before function calls have nested scope? (2) What kind of command is local? zsh
identifies it as a reserved word; OSH’s type command calls it a builtin but it is in fact a syntactically re-

stricted reserved word. Neither ksh nor yash support local. (3) If x is declared readonly, can a local

x be defined? bash silently ignores the local definition; zsh, OSH, and mksh allow for a local override.

(4) What is the initial value of x after running local x without assigning a value? (5) Both readonly
and export will dump a list of variables when invoked with the argument -p; is there such a flag for

local? dash does not implement -p. bash implements it, revealing that local is a macro for declare.
Both zsh and mksh implement local as a macro for typeset, though -p also shows non-local variables.

Fig. 14. The local builtin and nested scope in different shells

OPTIND be? And where should the shell record the fact that the a has already been processed? The

choice we’ve seen taken in shells is to keep some extra state to record the offset of the next character

to process inside of a grouped option. Every shell but yash keeps this state hidden; Smoosh stores it

in the σ .n?optoff variable. yashmakes this state visible by adding the current offset as in OPTIND=1:2.

Even so, shells differ slightly in their behavior, with some incrementing OPTIND earlier than others.

The issue has two root causes. First, the POSIX specification only implies that more state is

needed. Second, the specification is silent on how to handle the implicit state, leading to divergent

behaviors. The issue is under discussion on the Austin Group mailing list.

8.3 Unspecified Behavior and Extensions: Scope and the local Builtin
The POSIX shell has dynamic scope. Variable assignments on a command line, as in LD_PRELOAD=...
cmd bar baz have three possible behaviors, depending on the nature of cmd (per Section 4.3). If cmd
is a special builtin, then the assignments are globally visible. If cmd is a program or a non-special

builtin, then the assignments are visible only to that program or builtin. Finally, if cmd is a function,
then the assignments are visible during the dynamic extent of the function, but it is unspecified

whether or not the assignments are globally visible afterwards: scope may or may not be ‘nested’.

Half of the shells we considered implement nested scope for functions (Figure 14).

Relatedly, many shells implement a local builtin, which has syntax analogous to export and
readonly (Figure 14). That is, one can write local x=5 inside of a function to declare a variable

x that will be (globally) bound to 5 until the function returns, when x will revert to whatever

value it had before local was used. Considering that the facilities to implement local line up

nearly exactly with those needed for nested scope, it is unsurprising that of the four shells with

nested scope, only one (mksh) doesn’t have local. OSH implements nested scope; our tests, however,

revealed a bug in getopts along with a “serious bug” with scoping, both now fixed.

We implemented local in Smoosh, erring on the side of featureful safety. By analogy to export
and readonly, we’ve treated local as a special builtin. Since erroneous conditions in special builtins
cause shell scripts to abort, making this choice assures early failure in case local is misused. Like

in dash, it is an error in Smoosh to create a local variable with the same name as a readonly variable.
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It may seem unduly restrictive, since the variable will be locally scoped, but triggering an error

makes readonly variables unforgeable, even locally.

9 RELATEDWORK
Research on the shell. The POSIX shell has seen relatively little academic attention. There are only

two recent works that take the shell’s semantics seriously: ABash [Mazurak and Zdancewic 2007]

and CoLiS [Jeannerod 2017; Jeannerod et al. 2017a,b; Régis-Gianas et al. 2018]. ABash is a static

analysis for bash scripts in particular; it checks for common expansion bugs along with taint

tracking. ABash has some limitations in its parser and in its model of expansion; we hope that

Smoosh’s semantics can combine with ABash’s approach to provide a more precise analysis that

can cover more of the shell. The CoLiS project takes a core calculus approach to the shell, not unlike

λJS [Guha et al. 2010]. Jeannerod et al. define an interpreter for a tiny shell-like language [2017;

2017a] to which they elaborate shell using their hand-built parser, Morbig [Régis-Gianas et al. 2018].

The CoLiS interpreter is not yet a usable shell—it passed only 8 of our 161 tests, mostly due to a

variety of unsupported shell features (e.g., assignments in commands, heredocs, break); even so, its

symbolic evaluator has already found numerous bugs in Debian maintainer scripts [Jeannerod et al.

2017b]. Smoosh has taken the “full semantics” approach rather than the “elaborate to a core calculus”

approach; by implementing the full semantics, we have a baseline against which we can prove

an elaboration correct. We believe it would have been much more challenging for us to achieve

Smoosh’s level of conformance if we had started with elaboration (see “Whole-language semantics”

below). We have left parsing out of our scope for now (see Section 5.1); we hope to extend Smoosh

to use Morbig and other parsers. We have already made arguments about why certain features of

the shell are useful for concurrency [Greenberg 2018a] and interactivity [Greenberg 2018b]; see

the latter paper for references to much older research on command-line interfaces, interactivity,

and live programming [Collins et al. 2003]. NoFAQ [D’Antoni et al. 2016] uses machine learning to

suggest repairs to commands, but treats shell syntax as unstructured text.

Tools for the shell. Outside of academia, programmers have created a variety of tools to support shell

programming. Modernish is a library that rebuilds the shell language using its own features [Dekker

2019]. ShellCheck is a linter that can process a variety of shell extensions [koalaman 2016]; it is

purely syntactic, though, and could be improved by having it reason using Smoosh’s semantics.

ExplainShell patches together a parser for bash
16
and some post-processed man pages to explain

each part of a shell command [Kamara 2016]. ExplainShell isn’t about semantic insight: e.g., asking

it about ${#*} doesn’t mention that its expansion is unspecified; nothing indicates the difference

between $@ and "$@". Finally, maybe allows for tentative use of shell commands [Weidmann 2016].

Replacement shells, scripting languages, and shell libraries. A variety of replacement shells have been

proposed, both in academia, with projects like Scsh, Shill, and Rash [Hatch and Flatt 2018; Moore

et al. 2014; Shivers 2006] and outside of academia, with popular interactive shells like fish and zsh,
along with less well known replacement shells like Xonsh and OSH [Chu 2019; Scopatz et al. 2019].

Only zsh and OSH aim for any real POSIX compatibility; Xonsh strives to have some measure of

compatibility with bash. Others are more scripting languages than shells: Shivers planned but never

developed an interactive mode for Scsh. Shill isn’t meant to be interactive, either. Shell libraries,

like Plumbum, Turtle, and Shcaml aim to bring shell-like idioms into conventional programming

languages [Gonzalez 2018; Heller and Tov 2008; Schreiner et al. 2018]. None of these quite match

our scope: POSIX shells that can be used both interactively and programmatically.

16
https://github.com/idank/bashlex
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Whole-language semantics. There have been a variety of efforts at building language semantics for

whole, real languages: for JavaScript [Guha et al. 2010; Maffeis et al. 2008], for C [Blazy and Leroy

2009; Ellison and Rosu 2012; Kang et al. 2015; Krebbers et al. 2014; Memarian et al. 2016], and for

Rust [Jung et al. 2017; Weiss et al. 2018, 2019], to name a few. Approaches to such whole-language

semantics fall broadly into two styles of modeling: large semantics that cover a broad range of

language constructs, using light syntactic sugar; and small semantics that cover a narrow range of

language constructs, using heavy syntactic sugar/elaboration. Lem and K epitomize the former

style [Mulligan et al. 2014; Roşu and Şerbănuţă 2010], while λJS is emblematic of the latter style,

defining a small calculus to which it elaborates JavaScript [Guha et al. 2010]. We chose to build a

‘large’ semantics for two reasons. First, the shell’s complexity makes it hard to precisely encode

every aspect of a shell construct in terms of other, simpler ones; moreover, using a large AST lets

us better match parts of the semantics to the POSIX specification. Second, λJS leaves out eval—to
include it requires including not only a parser in the desugarer or semantics, but also the desugarer

itself. Later work on S5 does exactly that [Politz et al. 2012]. We cannot do without eval [Richards

et al. 2011]: it’s used in a variety of testing frameworks and is the only way to achieve certain

forms of indirection in the shell (e.g., a tilde expansion with a variable as in Figure 1a). Now that

we have much more experience with the shell—and a reference semantics against which to prove

our elaboration correct—we can think about desugaring and compilation.

10 CONCLUSION
Smoosh is a small-step operational semantics for a new shell implementing the POSIX shell standard.

The executable semantics is implemented in Lem code but corresponds well to legible, practicably

complex inference rules. Of the shells we have considered, Smoosh best conforms to the POSIX

specification and has the fewest bugs and quirks. In the process of developing and testing Smoosh,

we found numerous bugs, confusions, and underspecifications in existing shells used in production,

in the POSIX test suite, and in the POSIX specification itself.

Smoosh cleanly separates OS functionality from the core shell semantics, allowing us to use

our tested semantics in symbolic settings; we demonstrate this capability with the Shtepper. The

semantics we’ve developed here promises to support research on and development of shells and

tools for shells. Our semantics will also form the basis of design innovations and revisions in the

shell and, we hope, interactive programming in general.
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