
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Kleene Algebra Modulo Theories

RYAN BECKETT, Princeton University
ERIC CAMPBELL, Pomona College
MICHAEL GREENBERG, Pomona College

Kleene algebras with tests (KATs) offer sound, complete, and decidable equational reasoning about regularly
structured programs. Interest in KATs has increased greatly since NetKAT demonstrated howwell extensions of
KATs with domain-specific primitives and extra axioms apply to computer networks. Unfortunately, extending
a KAT to a new domain by adding custom primitives, proving its equational theory sound and complete, and
coming up with efficient automata-theoretic implementations is still an expert’s task.

We present a general framework for deriving KATs we call Kleene algebra modulo theories: given primitives
and a notion of state, we can automatically derive a corresponding KAT’s semantics, prove its equational
theory sound and complete with respect to a tracing semantics, use term normalization from the completeness
proof to create a decision procedure for equivalence checking, and formalize an automata-based equivalence
checking procedure as well. Our framework is based on pushback, a generalization of weakest preconditions
that specifies how predicates and actions interact. We offer several case studies, showing plain theories (natural
numbers, bitvectors, NetKAT) along with compositional theories (products, temporal logic, and sets). We
are able to derive several results from the literature. Finally, we provide an OCaml implementation of both
decision procedures that closely matches the theory: with only a few declarations, users can automatically
compose KATs with complete decision procedures. We offer a fast path to a “minimum viable model” for those
wishing to explore KATs formally or in code.

1 INTRODUCTION
Kleene algebras with tests (KATs) provide a powerful framework for reasoning about regularly
structured programs. Modeling simple programs with while loops, KATs can handle a variety
of analysis tasks [2, 7, 12–14, 36] and typically enjoy sound, complete, and decidable equational
theories. Interest in KATs has increased recently as they have been applied to the domain of computer
networks: NetKAT, a language for programming and verifying Software Defined Networks (SDNs),
was the first remarkably successful extension of KAT [1], followed by many other variations and
extensions [4, 8, 23, 37, 38, 48].

Considering KAT’s success in networks, we believe other domains would benefit from program-
ming languages where program equivalence is decidable. However, extending a KAT for a particular
domain remains a challenging task even for experts familiar with KATs and their metatheory. To
build a custom KAT, experts must craft custom domain primitives, derive a collection of new
domain-specific axioms, prove the soundness and completeness of the resulting algebra, and imple-
ment a decision procedure. For example, NetKAT’s theory and implementation was developed over
several papers [1, 24, 51], after a long series of papers that resembled, but did not use, the KAT
framework [22, 30, 39, 44]. Yet another challenge is that much of the work on KATs applies only to
abstract, purely propositional KATs, where the actions and predicates are not governed by a set
of domain-specific equations but are left abstract [16, 34, 40, 43]. Propositional KATs have limited
applicability for domain-specific reasoning because domain-specific knowledge must be encoded
manually as additional equational assumptions. In the presence of such equational assumptions,
program equivalence becomes undecidable in general [12]. As a result, decision procedures have
limited support for reasoning over domain-specific primitives and axioms [12, 32].

We believe domain-specific KATs will find more general application when it becomes possible to
cheaply build and experiment with them. Our goal in this paper is to democratize KATs, offering
Authors’ addresses: Ryan Beckett, Princeton University, rbeckett@cs.princeton.edu; Eric Campbell, Pomona College,
ehc02013@mymail.pomona.edu; Michael Greenberg, Pomona College, michael@cs.pomona.edu.
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:2 Ryan Beckett, Eric Campbell, and Michael Greenberg

a general framework for automatically deriving sound, complete, and decidable KATs for client
theories. The proof obligations of our approach are relatively mild and our approach is compositional:
a client can compose smaller theories to form larger, more interesting KATs than might be tractable
by hand. In addition to the equivalence decision procedure that comes from our completeness
proof’s normalization routine, our theoretical framework has an automata theory that we prove
correct. Our OCaml implementation allows users to compose a KAT with both decision procedures
from small theory specifications. The automata are not only for verification, of course, they are
useful for a variety of tasks such as compiling KATs to different implementations [8, 51]. We offer
a fast path to a “minimum viable model” for those wishing to explore KATs formally or in code.

1.1 What is a KAT?
From a bird’s-eye view, a Kleene algebra with tests is a first-order language with loops (the Kleene
algebra) and interesting decision making (the tests). Formally, a KAT consists of two parts: a Kleene
algebra ⟨0, 1,+, ·, ∗⟩ of “actions” with an embedded Boolean algebra ⟨0, 1,+, ·,¬⟩ of “predicates”.
KATs capture While programs: the 1 is interpreted as skip, · as sequence, + as branching, and ∗
for iteration. Simply adding opaque actions and predicates gives us a While-like language, where
our domain is simply traces of the actions taken. For example, if α and β are predicates and π and
ρ are actions, then the KAT term α · π + ¬α · (β · ρ)∗ · ¬β · π defines a program denoting two
kinds of traces: either α holds and we simply run π , or α doesn’t hold, and we run ρ until β no
longer holds and then run π . i.e., the set of traces of the form {π , ρ∗π }. Translating the KAT term
into a While program, we write: if α then π else { while β do { ρ }; π }. Moving from
a While program to a KAT, consider the following program—a simple loop over two natural-valued
variables i and j:

assume i < 50
while (i < 100) { i := i + 1; j := j + 2 }
assert j > 100

To model such a program in KAT, one replaces each concrete test or action with an abstract
representation. Let the atomic test α represent the test i < 50, β represent i < 100, and γ represent
j > 100; the atomic actions p and q represent the assignments i := i+ 1 and j := j+ 2, respectively.
We can now write the program as the KAT expression α · (β ·p ·q)∗ · ¬β ·γ . The complete equational
theory of KAT makes it possible to reason about program transformations and decide equivalence
between KAT terms. For example, KAT’s theory can prove that the assertion j > 100 must hold
after running the while loop by proving that the set of traces where this does not hold is empty:

α · (β · p · q)∗ · ¬β · ¬γ ≡ 0

or that the original loop is equivalent to its unfolding:

α · (β · p · q)∗ · ¬β · γ ≡ α · (1 + β · p · q) · (β · p · q · β · p · q)∗ · ¬β · γ

Unfortunately, KATs are naïvely propositional: the algebra understands nothing of the underlying
domain or the semantics of the abstract predicates and actions. For example, the fact that (j :=
j + 2 · j > 200) ≡ (j > 198 · j := j + 2) does not follow from the KAT axioms and must be
added manually to any proof as an equational assumption. Yet the ability to reason about the
equivalence of programs in the presence of particular domains is important for many real programs
and domain-specific languages. To allow for reasoning with respect to a particular domain (e.g.,
the domain of natural numbers with addition and comparison), one typically must extend KAT
with additional axioms that capture the domain-specific behavior [1, 4, 8, 29, 35].
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Kleene Algebra Modulo Theories :3

Unfortunately, it remains an expert’s task to extend the KAT with new domain-specific axioms,
provide new proofs of soundness and completeness, and develop the corresponding implementation.
As an example of such a domain-specific KAT, NetKAT showed how packet forwarding in

computer networks can be modeled as simple While programs. Devices in a network must drop
or permit packets (tests), update packets by modifying their fields (actions), and iteratively pass
packets to and from other devices (loops). NetKAT extends KAT with two actions and one predicate:
an action to write to packet fields, f ← v , where we write value v to field f of the current packet;
an action dup, which records a packet in a history log; and a field matching predicate, f = v , which
determines whether the field f of the current packet is set to the value v . Each NetKAT program is
denoted as a function from a packet history to a set of packet histories. For example, the program:

dstIP← 192.168.0.1 · dstPort← 4747 · dup

takes a packet history as input, updates the current packet to have a new destination IP address and
port, and then records the current packet state. The original NetKAT paper defines a denotational
semantics not just for its primitive parts, but for the various KAT operators; they explicitly restate
the KAT equational theory along with custom axioms for the new primitive forms, prove the
theory’s soundness, and then devise a novel normalization routine to reduce NetKAT to an existing
KAT with a known completeness result. Later papers [24, 51] then developed the NetKAT automata
theory used to compile NetKAT programs into forwarding tables and to verify networks. NetKAT’s
power comes at a cost: one must prove metatheorems and develop an implementation—a high
barrier to entry for those hoping to apply KAT in their domain.
We aim to make it easier to define new KATs. Our theoretical framework and its correspond-

ing implementation allow for quick and easy composition of sound and complete KATs with
normalization-based and automata-theoretic decision procedures when given arbitrary domain-
specific theories. Our framework, which we call Kleene algebras modulo theories (KMTs), allows
us to derive metatheory and implementation for KATs based on a given theory. KMTs obviate the
need to deeply understand KAT metatheory and implementation for a large class of extensions;
a variety of higher-order theories allow language designers to compose new KATs from existing
ones, allowing them to rapidly prototype their KAT theories.

1.2 Using our framework: obligations for client theories
Our framework takes a client theory and produces a KAT, but what must one provide in order to
know that the generated KAT is deductively complete, or to derive an implementation? We require,
at a minimum, a description of the theory’s predicates and actions along with how these apply to
some notion of state. We call these parts the client theory; the client theory’s predicates and actions
are primitive, as opposed to those built with the KAT’s composition operators. We call the resulting
KAT a Kleene algebra modulo theory (KMT). Deriving a trace-based semantics for the KMT and
proving it sound isn’t particularly hard—it amounts to “turning the crank”. Proving the KMT is
complete and decidable, however, can be much harder. We take care of much of the difficulty, lifting
simple operations in the client theory generically to KAT.

Our framework hinges on an operation relating predicates and operations called pushback, first
used to prove relative completeness for Temporal NetKAT [8]. Pushback is a generalization of
weakest preconditions. Given a primitive action π and a primitive predicate α , the client theory
must be able to compute weakest preconditions, telling us how to go from π ·α to some set of terms:∑n

i=0 αi · π = α0 · π + α1 · π + . . . . That is, the client theory must be able to take any of its primitive
tests and “push it back” through any of its primitive actions. Given the client’s notion of weakest
preconditions, we can alter programs to take an arbitrary term and normalize it into a form where
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:4 Ryan Beckett, Eric Campbell, and Michael Greenberg

all of the predicates appear only at the front of the term, a convenient representation both for our
completeness proof (Sec. 2.4) and our automata-theoretic implementation (Secs. 4 and 5).

The client theory’s pushback should have two properties: it should be sound, (i.e., the resulting
expression is equivalent to the original one); and none of the resulting predicates should be any
bigger than the original predicates, by some measure (see Sec. 2). If the pushback has these two
properties, we can use it to define a normal form for the KMT generated from the client theory—and
we can use that normal form to prove that the resulting KMT is complete and decidable.

As an example, in NetKAT, for different fields f and f ′, we can use the network axioms to derive
the equivalence: (f ← v · f ′ = v ′) ≡ (f ′ = v ′ · f ← v), which satisfies the pushback requirements.
For Temporal NetKAT, which adds rich temporal predicates such as ♢ ⃝ (dstPort = 4747) (the
destination port was 4747 at some point before the previous state), we can use the domain axioms
to prove the equivalence (f ← v · ♢⃝ a) ≡ (♢⃝ a + a) · f ← v , which also satisfies the pushback
requirements of equivalence and non-increasing measure.

Formally, the client must provide the following for our normalization routine (part of complete-
ness): primitive tests and actions (α and π ), semantics for those primitives (states σ and functions
pred and act), a function identifying each primitive’s subterms (sub), a weakest precondition
relation (WP) justified by sound domain axioms (≡), and restrictions on WP term size growth.

The client’s domain axioms extend the standard KAT equations to explain how the new primitives
behave. In addition to these definitions, our client theory incurs a few proof obligations: ≡ must
be sound with respect to the semantics; the pushback relation should never push back a term
that’s larger than the input; the pushback relation should be sound with respect to ≡; we need
a satisfiability checking procedure for a Boolean algebra extended with the primitive predicates.
Given these things, we can construct a sound and complete KAT with an automata-theoretic
implementation.

1.3 Example: incrementing naturals
We can model programs like the While program over i and j from earlier by introducing a new
client theory for natural numbers (Fig. 1). First, we extend the KAT syntax with actions x := n and
incx (increment x ) and a new test x > n for variables x and natural number constants n. First, we
define the client semantics. We fix a set of variables,V , which range over natural numbers, and
the program state σ maps from variables to natural numbers. Primitive actions and predicates are
interpreted over the state σ by the act and pred functions (where t is a trace of states).

Proof obligations. The WP relation provides a way to compute the weakest precondition for any
primitive action and test. For example, the weakest precondition of incx · x > n is x > n − 1 when n
is not zero. We must have domain axioms to justify the weakest precondition relation. For example,
the domain axiom: incx · (x > n) ≡ (x > n − 1) · incx ensures that weakest preconditions for incx
are modeled by the equational theory. The other axioms are used to justify the remaining weakest
preconditions that relate other actions and predicates. Additional axioms that do not involve actions,
such as ¬(x > n) · (x > m) ≡ 0, are included to ensure that the predicate fragment of IncNat is
complete in isolation. The deductive completeness of the model shown here can be reduced to
Presburger arithmetic.

For the relative ease of defining IncNat, we get real power—we’ve extended KAT with unbounded
state! It is sound to add other operations to IncNat, like multiplication or addition by a scalar. So
long as the operations are monotonically increasing and invertible, we can still define aWP and
corresponding axioms. It is not possible, however, to compare two variables directly with tests
like x = y—to do so would not satisfy the requirement that weakest precondition does not grow
the size of a test. It would be bad if it did: the test x = y can encode context-free languages! The
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Kleene Algebra Modulo Theories :5

Syntax

α ::= x > n
π ::= incx | x := n
sub(x > n) = {x > m | m ≤ n}

Semantics
n ∈ N x ∈ V
State = V → N
pred(x > n, t) = last(t)(x) > n
act(incx ,σ ) = σ [x 7→ σ (x) + 1]
act(x := n,σ ) = σ [x 7→ n]

Weakest precondition

x := n · (x > m)WP (n > m)
incy · (x > n)WP (x > n)
incx · (x > n)WP (x > n − 1)

when n , 0
incx · (x > 0)WP 1

Axioms
¬(x > n) · (x > m) ≡ 0 when n ≤ m GT-Contra
x := n · (x > m) ≡ (n > m) · x := n Asgn-GT
(x > m) · (x > n) ≡ (x > max(m,n)) GT-Min
incy · (x > n) ≡ (x > n) · incy GT-Comm
incx · (x > n) ≡ (x > n − 1) · incx when n > 0 Inc-GT
incx · (x > 0) ≡ incx Inc-GT-Z

Fig. 1. IncNat, increasing naturals

(inadmissible!) term x := 0 · y := 0; (incx )∗ · (incy )∗ · x = y describes programs with balanced
increments of x and y. For the same reason, we cannot safely add a decrement operation decx .
Either of these would allow us to define counter machines, leading inevitably to undecidability.

Implementation. Users implement KMT’s client theories by defining OCaml modules; users give
the types of actions and tests along with functions for parsing, computing subterms, calculating
weakest preconditions for primitives, mapping predicates to an SMT solver, and deciding predicate
satisfiability (see Sec. 5 for more detail).

Our example implementation starts by defining a new, recursive module called IncNat. Recursive
modules allow the author of the module to access the final KAT functions and types derived after
instantiating KA with their theory within their theory’s implementation. For example, the module K
on the second line gives us a recursive reference to the resulting KMT instantiated with the IncNat
theory; such self-reference is key for higher-order theories, which must embed KAT predicates
inside of other kinds of predicates (Sec. 3). The user must define two types: a for tests and p for
actions. Tests are of the form x > n where variable names are represented with strings, and values
with OCaml ints. Actions hold either the variable being incremented (incx ) or the variable and
value being assigned (x := n).

type a = Gt of string ∗ int (* alpha ::= x > n *)

type p = Increment of string (* pi ::= inc x *)

module rec IncNat : THEORY with type A.t = a and type P.t = p = struct

(* generated KMT, for recursive use *)

module K = KAT (IncNat)
(* boilerplate necessary for recursive modules, hashconsing *)

module P : CollectionType with type t = p = struct ... end
module A : CollectionType with type t = a = struct ... end
(* extensible parser; pushback; subterms of predicates *)

let parse name es = ...
let push_back p a =
match (p,a) with
| (Increment x, Gt (_, j)) when 1 > j→ PSet.singleton ~cmp:K.Test.compare (K.one ())
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| (Increment x, Gt (y, j)) when x = y→

PSet.singleton ~cmp:K.Test.compare (K.theory (Gt (y, j − 1)))
| (Assign (x,i), Gt (y,j)) when x = y→

PSet.singleton ~cmp:K.Test.compare (if i > j then K.one () else K.zero ())
| _→ PSet.singleton ~cmp:K.Test.compare (K.theory a)
let rec subterms x =
match x with

| Gt (_, 0)→ PSet.singleton ~cmp:K.Test.compare (K.theory x)
| Gt (v, i)→ PSet.add (K.theory x) (subterms (Gt (v, i − 1)))
(* decision procedure for the predicate theory *)

let satisfiable (a: K.Test.t) = ...
end

The first function, parse, allows the library author to extend the KAT parser (if desired) to
include new kinds of tests and actions in terms of infix and named operators. The other functions,
subterms and push_back, follow from the KMT theory directly. Finally, the user must implement
a function that decides satisfiability of theory tests.

The implementation obligations—syntactic extensions, subterms functions, WP on primitives, a
satisfiability checker for the test fragment—mirror our formal development. We offer more client
theories in Sec. 3 and more detail on the implementation in Sec. 5.

1.4 Contributions
We claim the following contributions:

• A compositional framework for defining KATs and proving their metatheory, with a novel
development of the normalization procedure used in completeness (Sec. 2) and a new KAT
theorem (Pushback-Neg). Completeness yields a decision procedure based on normalization.
• Case studies of this framework (Sec. 3), several of which reproduce results from the literature,
and several of which are new: base theories (e.g., naturals, bitvectors [29], networks), and more
importantly, compositional, higher-order theories (e.g., sets and LTLf ). As an example, we
define Temporal NetKAT compositionally [8] by applying the theory of LTLf to a theory of
NetKAT; doing so strengthens Temporal NetKAT’s completeness result.
• An automata-theoretic account of our proof technique, proven correct and applicable to
compilation and equivalence checking for, e.g., NetKAT (Sec. 4).
• An implementation of KMTs (Sec. 5) mirroring our proofs; we derive two equivalence decision
procedures for client theories from just a few definitions, one based on our normalization
routine and one using automata. Our implementation is efficient enough for experimentation
with small programs (Sec. 6).

Finally, our framework offers a new way in for those looking to work with KATs. Researchers
comfortable with inductive relations from, e.g., type theory and semantics, will find a familiar friend
in pushback, our generalization of weakest preconditions—we define it as an inductive relation. To
restate our contributions for readers more deeply familiar with KAT: Our framework is similar to
Schematic KAT, a KAT extended with first order theories. However, Schematic KAT is incomplete
in general. Our framework shows that a subset of Schematic KATs is complete—those with tracing
semantics and a monotonic pushback.
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Kleene Algebra Modulo Theories :7

Predicates T ∗pred
a,b ::= 0 additive identity

| 1 multiplicative identity
| ¬a negation
| a + b disjunction
| a · b conjunction
| α primitive predicates (Tα )

Actions
p,q ::= a embedded predicates

| p + q parallel composition
| p · q sequential composition
| p∗ Kleene star
| π primitive actions (Tπ )

Fig. 2. T ∗: generalized KAT syntax over a client theory T (client parts highlighted)

2 THE KMT FRAMEWORK
The rest of our paper describes how our framework takes a client theory and generates a KAT. We
emphasize that you need not understand the following mathematics to use our framework—we do
it once and for all, so you don’t have to. While we have striven to make this section accessible to
non-expert readers, those completely new to KATs may do well to skip our discussion of pushback
(Sec. 2.3.2 on) and read our case studies (Sec. 3). We highlight anything the client theory must
provide.
We derive a KAT T ∗ (Fig. 2) on top of a client theory T where T has two fundamental parts—

predicates α ∈ Tα and actions π ∈ Tπ . These are the primitives of the client theory. We refer to the
Boolean algebra over the client theory as T ∗pred ⊆ T

∗.
Our framework can provide results for T ∗ in a pay-as-you-go fashion: given a notion of state

and an interpretation for the predicates and actions of T , we derive a trace semantics for T ∗
(Sec. 2.1); if T has a sound equational theory with respect to our semantics, so does T ∗ (Sec. 2.2); if
T has a complete equational theory with respect to our semantics, and satisfies certain weakest
precondition requirements, then T ∗ has a complete equational theory (Sec. 2.4); and finally, with
just a few lines of code defining the structure of T , we can provide two decision procedures for
equivalence (Sec. 5): one using the normalization routine from completeness (Sec. 2.4) and one
using automata (Sec. 4).
The key to our general, parameterized proof is a novel pushback operation that generalizes

weakest preconditions (Sec. 2.3.2): given an understanding of how to push primitive predicates
back to the front of a term, we can normalize terms for our completeness proof (Sec. 2.4).

2.1 Semantics
The first step in turning the client theory T into a KAT is to define a semantics (Fig. 3). We can
give any KAT a trace semantics: the meaning of a term is a trace t , which is a non-empty list of log
entries l . Each log entry records a state σ and (in all but the initial state) a primitive action π . The
client assigns meaning to predicates and actions by defining a set of states State and two functions:
one to determine whether a predicate holds (pred) and another to determine an action’s effects
(act). To run a T ∗ term on a state σ , we start with an initial state ⟨σ ,⊥⟩; when we’re done, we’ll
have a set of traces of the form ⟨σ0,⊥⟩⟨σ1,π1⟩ . . . , where σi = act(πi ,σi−1) for i > 0. (A similar
semantics shows up in Kozen’s application of KAT to static analysis [32].)
The client’s pred function takes a primitive predicate α and a trace — predicates can examine

the entire trace — returning true or false. When the pred function returns true, we return the
singleton set holding our input trace; when pred returns false, we return the empty set. (Composite
predicates follow this same pattern, always returning either a singleton set holding their input
trace or the empty set.) It’s acceptable for the pred function to recursively call the denotational
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:8 Ryan Beckett, Eric Campbell, and Michael Greenberg

Trace definitions

σ ∈ State
l ∈ Log ::= ⟨σ ,⊥⟩ | ⟨σ ,π ⟩
t ∈ Trace = Log+

pred : Tα × Trace→ {true, false}
act : Tπ × State→ State

Trace semantics [[−]] : T ∗ → Trace→ P(Trace)

[[0]](t) = ∅

[[1]](t) = {t}
[[α]](t) = {t | pred(α , t) = true}
[[¬a]](t) = {t | [[a]](t) = ∅}
[[π ]](t) = {t ⟨σ ′,π ⟩ | σ ′ = act(π , last(t))}

[[p + q]](t) = [[p]](t) ∪ [[q]](t)
[[p · q]](t) = ([[p]] • [[q]])(t)
[[p∗]](t) =

⋃
0≤i [[p]]

i (t)

(f • д)(t) =
⋃
t ′∈f (t ) д(t

′)

f 0(t) = {t} f i+1(t) = (f • f i )(t)
last(. . . ⟨σ , _⟩) = σ

Kleene Algebra axioms
p + (q + r ) ≡ (p + q) + r KA-Plus-Assoc

p + q ≡ q + p KA-Plus-Comm
p + 0 ≡ p KA-Plus-Zero
p + p ≡ p KA-Plus-Idem

p · (q · r ) ≡ (p · q) · r KA-Seq-Assoc
1 · p ≡ p KA-Seq-One
p · 1 ≡ p KA-One-Seq

p · (q + r ) ≡ p · q + p · r KA-Dist-L
(p + q) · r ≡ p · r + q · r KA-Dist-R

0 · p ≡ 0 KA-Zero-Seq
p · 0 ≡ 0 KA-Seq-Zero

1 + p · p∗ ≡ p∗ KA-Unroll-L
1 + p∗ · p ≡ p∗ KA-Unroll-R

q + p · r ≤ r → p∗ · q ≤ r KA-LFP-L
p + q · r ≤ q → p · r∗ ≤ q KA-LFP-R

p ≤ q ⇔ p + q ≡ q

Boolean Algebra axioms
a + (b · c) ≡ (a + b) · (a + c) BA-Plus-Dist

a + 1 ≡ 1 BA-Plus-One
a + ¬a ≡ 1 BA-Excl-Mid
a · b ≡ b · a BA-Seq-Comm
a · ¬a ≡ 0 BA-Contra
a · a ≡ a BA-Seq-Idem

Consequences
p · a ≡ b · p → p · ¬a ≡ ¬b · p Pushback-Neg

p · (q · p)∗ ≡ (p · q)∗ · p Sliding
(p + q)∗ ≡ p∗ · (q · p∗)∗ Denesting

p · a ≡ a · q + r →
p∗ · a ≡ (a + p∗ · r ) · q∗ Star-Inv

p · a ≡ a · q + r →
p · a · (p · a)∗ ≡ (a · q + r ) · (q + r )∗ Star-Expand

Fig. 3. Semantics and equational theory for T ∗

semantics, though we have skipped the formal detail here. This way we can define composite
primitive predicates as in, e.g., temporal logic (Sec. 3.6).

The client’s act function takes a primitive action π and the last state in the trace, returning a new
state. Whatever new state comes out is recorded in the trace, along with the action just performed.

2.2 Soundness
Proving that the equational theory is sound is relatively straightforward: we only depend on the
client’s act and pred functions, and none of our KAT axioms (Fig. 3) even mention the client’s
primitives. We believe the pushback negation theorem (Pushback-Neg) is novel (though it holds
in all KATs). Our soundness proof naturally enough requires that any equations the client theory
adds need to be sound in our trace semantics. We do need to use several KAT theorems in our
completeness proof (Fig. 3, Consequences), the most complex being star expansion (Star-Expand),
which we take from Temporal NetKAT [8]; we believe Pushback-Neg is a novel theorem that holds
in all KATs.
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Theorem 2.1 (Soundness of T ∗). If T ’s equational reasoning is sound (p ≡T q ⇒ [[p]] = [[q]])
then T ∗’s equational reasoning is sound (p ≡ q ⇒ [[p]] = [[q]]).

Proof. By induction on the derivation of p ≡ q.1 □

2.3 Normalization via pushback
In order to prove completeness (Sec. 2.4), we reduce our KAT terms to a more manageable subset
of normal forms. Normalization happens via a generalization of weakest preconditions; we use
a pushback operation to translate a term p into an equivalent term of the form

∑
ai ·mi where

eachmi does not contain any tests. Once in this form, we can use the completeness result provided
by the client theory to reduce the completeness of our language to an existing result for Kleene
algebra.

In order to use our general normalization procedure, the client theory T must define two things:
(1) a way to extract subterms from predicates, to define an ordering on predicates that serves as

the termination measure on normalization (Sec. 2.3.1); and
(2) weakest preconditions for primitives (Sec. 2.3.2).

Once we’ve defined our normalization procedure, we can use it prove completeness (Sec. 2.4).

2.3.1 Normalization and the maximal subterm ordering. Our normalization algorithm works by
“pushing back” predicates to the front of a term until we reach a normal form with all predicates at
the front. The pushback algorithm’s termination measure is a complex one. For example, pushing a
predicate back may not eliminate the predicate even though progress was made in getting predicates
to the front. More trickily, it may be that pushing test a back through π yields

∑
ai · π where each

of the ai is a copy of some subterm of a—and there may be many such copies!
Let the set of restricted actions TRA be the subset of T ∗ where the only test is 1. We will use

metavariablesm, n, and l to denote elements of TRA. Let the set of normal forms T ∗nf be a set of
pairs of tests ai ∈ T ∗pred and restricted actionsmi ∈ TRA. We will use metavariables t , u, v ,w , x , y,
and z to denote elements of T ∗nf ; we typically write these sets not in set notation, but as sums, i.e.,
x =

∑k
i=1 ai ·mi means x = {(a1,m1), (a2,m2), . . . , (ak ,mk )}. The sum notation is convenient, but

it is important that normal forms really be treated as sets—there should be no duplicated terms
in the sum. We write

∑
i ai to denote the normal form

∑
i ai · 1. The set of normal forms, T ∗nf , is

closed over parallel composition by simply joining the sums. The fundamental challenge in our
normalization method is to define sequential composition and Kleene star on T ∗nf .
Our normalization algorithm uses the maximal subterm ordering as its termination measure.

Due to space constraints, we provide the formal definitions of maximal tests and subterms in the
supplemental material. Here we simply give intuition for the two relevant high-level operations:
mt(x) ⊆ T ∗pred computes the maximal tests of a normal form x , which are those tests that are not
subterms of any other test; the maximal subterm ordering x ⪯ y for normal forms holds when
the subterms of x ’s maximal tests are a subset of the subterms of y’s maximal tests. Informally,
we have x ⪯ y when every test in x is somehow “covered” by a test in y; we have x ≺ y when
x ⪯ y and y has some maximal test x that does not. Our definition of subterms needs the client
theory to identify the subterms of its primitives via a function subT such that (1) if b ∈ subT(a)
then sub(b) ⊆ subT(a) and (2) if b ∈ subT(a), then either b ∈ {0, 1,a} or b precedes a in a global
well ordering of predicates.

Lemma 2.2 (Splitting). If a ∈ mt(x), then there exist y and z such that x ≡ a · y + z and y ≺ x
and z ≺ x .
1Full proofs with all necessary lemmas are available in an extended version of this paper in the supplementary material.
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:10 Ryan Beckett, Eric Campbell, and Michael Greenberg

Splitting is the key lemma for making progress pushing tests back, allowing us to take a normal
form and slowly push its maximal tests to the front; its proof follows from a chain of lemmas given
in the supplementary material.

2.3.2 Pushback. In order to define normalization—necessary for completeness (Sec. 2.4)—the
client theory must have a weakest preconditions operation that respects the subterm ordering.

Definition 2.3 (Weakest preconditions). The weakest precondition operation of the client theory is
a relationWP ⊆ Tπ × Tα × P(T ∗pred), where Tπ are the primitive actions and Tα are the primitive
predicates of T . We write the relation as π · α WP

∑
ai · π and read it as “α pushes back through π

to yield
∑
ai · π”; the second π is redundant but written for clarity. We require that if π · α WP

{a1, . . . ,ak } · π , then π · α ≡
∑k

i=1 ai · π , and ai ⪯ α .

Given the client theory’s weakest-precondition relation WP, we define a normalization procedure
for T ∗ by extending the client’s WP relation to a more general pushback relation, PB (Fig. 4). The
client’s WP relation need not be a function, nor do the ai need to be obviously related to α or π in
any way. Even when the WP relation is a function, the PB relation will generally not be a function.
WhileWP computes the classical weakest precondition, the PB relations do something different:
when pushing back we have the freedom to change the program itself—not normally an option for
weakest preconditions (see Sec. 7).

We define the top-level normalization routine with the p norm x relation (Fig. 4), a syntax
directed relation that takes a term p and produces a normal form x =

∑
i aimi . Most syntactic forms

are easy to normalize: predicates are already normal forms (Pred); primitive actions π are normal
forms where there’s just one summand and the predicate is 1 (Act); and parallel composition of
two normal forms means just joining the sums (Par). But sequence and Kleene star are harder: we
define judgments using PB to lift these operations to normal forms (Seq, Star).
For sequences, we can recursively take p · q and normalize p into x =

∑
ai · mi and q into

y =
∑
bj · nj . But how can we combine x and y into a new normal form? We can concatenate

and rearrange the normal forms to get
∑

i, j ai ·mi · bj · nj . If we can push bj back throughmi to
find some new normal form

∑
ck · lk , then

∑
i, j,k ai · ck · lk · nj is a normal form (Join); we write

x · y PBJ z to mean that the concatenation of x and y is equivalent to the normal form z—the · is
suggestive notation.

For Kleene star, we can take p∗ and normalize p into x =
∑
ai ·mi , but x∗ isn’t a normal form—we

need to somehow move all of the tests out of the star and to the front. We do so with the PB∗

relation (Fig. 4), writing x∗ PB∗ y to mean that the Kleene star of x is equivalent to the normal form
y—the ∗ on the left is again suggestive notation. The PB∗ relation is more subtle than PBJ. There are
four possible ways to treat x , based on how it splits (Lemma 2.2): if x = 0, then our work is trivial
since 0∗ ≡ 1 (StarZero); if x splits into a · x ′ where a is a maximal test and there are no other
summands, then we can either use the KAT sliding lemma to pull the test out when a is strictly the
largest test in x (Slide) or by using the KAT expansion lemma (Expand); if x splits into a · x ′ + z,
we use the KAT denesting lemma to pull a out before recurring on what remains (Denest).

The bulk of the pushback’s work happens in the PB• relation, which pushes a test back through
a restricted action; PBR and PBT use PB• to push tests back through normal forms and normal
forms back through restricted actions, respectively. To handle negation, the function nnf translates
predicates to negation normal form, where negations only appear on primitive predicates (Fig. 4);
Pushback-Neg justifies this case.
We show that our notion of pushback is correct in two steps. First we prove that pushback is

partially correct, i.e., if we can form a derivation in the pushback relations, the right-hand sides
are equivalent to the left-hand-sides (Theorem 2.4). Once we’ve established that our pushback
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Kleene Algebra Modulo Theories :11

Normalization p norm x

a norm a
Pred

π norm 1 · π
Act

p norm x q norm y

p + q norm x + y
Par

p norm x q norm y x · y PBJ z

p · q norm z
Seq

p norm x x∗ PB∗ y

p∗ norm y
Star

Sequential composition of normal forms x · y PBJ z

mi · bj PB• xi j

(
∑
i ai ·mi ) · (

∑
j bj · nj ) PB

J ∑
i
∑
j ai · xi j · nj

Join

Normalization of star x∗ PB∗ y

0∗ PB∗ 1
StarZero

x ≺ a x · a PBT y y∗ PB∗ y′ y′ · x PBJ z

(a · x)∗ PB∗ 1 + a · z
Slide

x ⊀ a x · a PBT a · t + u

(t + u)∗ PB∗ y y · x PBJ z

(a · x)∗ PB∗ 1 + a · z
Expand

a < mt(z) y . 0 y∗ PB∗ y′

x · y′ PBJ x ′ (a · x ′)∗ PB∗ z y′ · z PBJ z′

(a · x + y)∗ PB∗ z′
Denest

Pushback m · a PB• y m · x PBR y x · a PBT y

m · 0 PB• 0
SeqZero

m · 1 PB• 1 ·m
SeqOne

m · a PB• y y · b PBT z

m · (a · b) PB• z
SeqSeqTest

n · a PB• x m · x PBR y

(m · n) · a PB• y
SeqSeqAction

m · a PB• x m · b PB• y

m · (a + b) PB• x + y
SeqParTest

m · a PB• x n · a PB• y

(m + n) · a PB• x + y
SeqParAction

π · α WP {a1, . . . }

π · α PB•
∑
i ai · π

Prim
π · a PB•

∑
i ai · π nnf(¬(

∑
i ai )) = b

π · ¬a PB• b · π
PrimNeg

m · a PB• x x ≺ a

m∗ · x PBR y

m∗ · a PB• a + y
SeqStarSmaller

m · a PB• a · t + u m∗ · u PBR x

t∗ PB∗ y x · y PBJ z

m∗ · a PB• a · y + z
SeqStarInv

m · ai PB• xi

m ·
∑
i ai · ni PB

R ∑
i xi · ni

Restricted
mi · a PB•

∑
j bi j ·mi j

(
∑
i ai ·mi ) · a PBT

∑
i
∑
j ai · bi j ·mi j

Test

Negation normal form nnf : T ∗pred → T
∗
pred

nnf(0) = 0
nnf(1) = 1
nnf(α) = α

nnf(a + b) = nnf(a) + nnf(b)
nnf(a · b) = nnf(a) · nnf(b)

nnf(¬0) = 1
nnf(¬1) = 0
nnf(¬α) = ¬α

nnf(¬¬a) = nnf(a)
nnf(¬(a + b)) = nnf(¬a) · nnf(¬b)
nnf(¬(a · b)) = nnf(¬a) + nnf(¬b)

Fig. 4. Normalization for T ∗
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:12 Ryan Beckett, Eric Campbell, and Michael Greenberg

relations’ derivations mean what we want, we have to show that we can find such derivations; here
we use our maximal subterm measure to show that the recursive tangle of our PB relations always
terminates (Theorem 2.5) .

Theorem 2.4 (Pushback soundness). For each of the PB relations, the left side is equivalent to
the right side, e.g., if x∗ PB∗ y then x∗ ≡ y.

Proof. By simultaneous induction on the derivations. Most cases follow by the IH and axioms,
with a few relying on KAT theorems like sliding, denesting, star expansion [8], and pushback
negation (Fig. 3, Consequences). □

Theorem 2.5 (Pushback existence). For each of the PB relations, every left side relates to a right
side that is no larger, e.g., for all x there exists y ⪯ x such that x∗ PB∗ y.

Proof. By induction on the lexicographical order of: the subterm ordering (≺); the size of x ; the
size ofm; and the size of a. Cases go by using splitting (Lemma 2.2) to show that derivations exist
followed by subterm ordering congruence to find orderings to apply the IH. □

Finally, to reiterate our discussion of PB•, Theorem 2.5 shows that every left-hand side of the
pushback relation has a corresponding right-hand side. We haven’t proved that the pushback
relation is functional— if a term has more than one maximal test, there could be many different
choices of how we perform the pushback.

Now that we can push back tests, we can show that every term has an equivalent normal form.

Corollary 2.6 (Normal forms). For all p ∈ T ∗, there exists a normal form x such p norm x and
that p ≡ x .

Proof. By induction on p, using Theorems 2.5 and 2.4 in the Seq and Star case. □

The PB relations and these two proofs are one of the contributions of this paper: we believe it is
the first time that a KAT normalization procedure has been made so explicit, rather than hiding
inside of completeness proofs. Temporal NetKAT, which introduced the idea of pushback, proved a
concretization of Theorems 2.4 and 2.5 as a single theorem and without any explicit normalization
or pushback relation.

2.4 Completeness
We prove completeness—if [[p]] = [[q]] then p ≡ q—by normalizing p and q and comparing the
resulting terms. Our completeness proof uses the completeness of Kleene algebra (KA) as its
foundation: the set of possible traces of actions performed for a restricted (test-free) action in our
denotational semantics is a regular language, and so the KA axioms are sound and complete for it. In
order to relate our denotational semantics to regular languages, we define the regular interpretation
of restricted actionsm ∈ TRA in the conventional way and then relate our denotational semantics
to the regular interpretation (Fig. 5). Readers familiar with NetKAT’s completeness proof may
notice that we’ve omitted the language model and gone straight to the regular interpretation. We’re
able to shorten our proof because our tracing semantics is more directly relatable to its regular
interpretation, and because our completeness proof separately defers to the client theory’s decision
procedure for the predicates at the front. Our normalization routine—the essence of our proof—only
uses the KAT axioms and doesn’t rely on any property of our tracing semantics. We conjecture
that one could prove a similar completeness result and derive a similar decision procedure with
a merging, non-tracing semantics, like in NetKAT or KAT+B! [1, 29]. We haven’t attempted the
proof or an implementation.
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Kleene Algebra Modulo Theories :13

R : TRA → P(Π
∗
T
)

R(1) = {ϵ}
R(π ) = {π }

R(m + n) = R(m) ∪ R(n)
R(m · n) = {uv | u ∈ R(m),v ∈ R(n)}
R(m∗) =

⋃
0≤i R(m)

i

label : Trace→ Π∗
T

label(⟨σ ,⊥⟩) = ϵ
label(t ⟨σ ,π ⟩) = label(t)π

L0 = {ϵ}
Ln+1 = {uv | u ∈ L,v ∈ Ln }

Fig. 5. Regular interpretation of restricted actions

Lemma 2.7 (Labels are regular). {label([[m]](⟨σ ,⊥⟩)) | σ ∈ State} = R(m)

Proof. By induction on the restricted actionm. □

Theorem 2.8 (Completeness). If the emptiness of T predicates is decidable, then if [[p]] = [[q]]
then p ≡ q.

Proof. There must exist normal forms x and y such that p norm x and q norm y and p ≡ x and
q ≡ y (Corollary 2.6); by soundness (Theorem 2.1), we can find that [[p]] = [[x]] and [[q]] = [[y]], so it
must be the case that [[x]] = [[y]]. We will find a proof that x ≡ y; we can then transitively construct
a proof that p ≡ q.
We have x =

∑
i ai ·mi and y =

∑
j bj · nj . In principle, we ought to be able to match up each

of the ai with one of the bj and then check to see whethermi is equivalent to nj (by appealing
to the completeness on Kleene algebra). But we can’t simply do a syntactic matching—we could
have ai and bj that are in effect equivalent, but not obviously so. Worse still, we could have ai and
ai′ equivalent! We need to perform two steps of disambiguation: first each normal form must be
unambiguous on its own, and then they must be pairwise unambiguous between the two normal
forms.
To construct independently unambiguous normal forms, we explode our normal form x into a

disjoint form x̂ , where we test each possible combination of ai and run the actions corresponding
to the true predicates, i.e.,mi gets run precisely when ai is true:

x̂ = a1 · a2 · · · · · an ·m1 ·m2 · · · · ·mn
+ ¬a1 · a2 · · · · · an ·m2 · · · · ·mn
+ a1 · ¬a2 · · · · · an ·m1 · · · · ·mn
+ . . .
+ ¬a1 · ¬a2 · · · · an ·mn

and similarly for ŷ. We can find x ≡ x̂ via distributivity (BA-Plus-Dist) and the excluded middle
(BA-Excl-Mid).

Given normal forms with locally disjoint cases, we can take the Cartesian product of x̂ and ŷ,
which allows us to do a syntactic comparison on each of the predicates. Let Üx and Üy be the extension
of x̂ and ŷ with the tests from the other form, giving us Üx =

∑
i, j ci · dj · li and Üy =

∑
i, j ci · dj ·mj .

Extending the normal forms to be disjoint between the two normal forms is still provably equivalent
using commutativity (BA-Seq-Comm), distributivity (BA-Plus-Dist), and the excluded middle (BA-
Excl-Mid).

Now that each of the predicates are syntactically uniform and disjoint, we can proceed to compare
the commands. But there is one final risk: what if the ci · dj ≡ 0? Then li and oj could safely be
different. We therefore use the client’s emptiness checker to eliminate those cases where the
expanded tests at the front of Üx and Üy are equivalent to zero, which is sound by the client theory’s
completeness and zero-cancellation (KA-Zero-Seq and KA-Seq-Zero).
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:14 Ryan Beckett, Eric Campbell, and Michael Greenberg

Syntax

α ::= b = true
π ::= b := true | b := false

sub(α) = {α }

Semantics
b ∈ B

State = B → {true, false}
pred(b = true, t) = last(t)(b)
act(b := true,σ ) = σ [b 7→ true]
act(b := false,σ ) = σ [b 7→ false]

Weakest precondition

b := true · b = true WP 1
b := false · b = true WP 0

Axioms
(b := true) · (b = true) ≡ (b := true) Set-Test-True-True

(b := false) · (b = true) ≡ 0 Set-Test-False-True

Fig. 6. BitVec, theory of bitvectors

Finally, we can defer to deductive completeness for KA to find proofs that the commands are equal.
To use KA’s completeness to get a proof over commands, we have to show that if our commands
have equal denotations in our semantics, then they will also have equal denotations in the KA
semantics. We’ve done exactly this by showing that restricted actions have regular interpretations:
because the zero-canceled Üx and Üy are provably equal, soundness guarantees that their denotations
are equal. Since their tests are pairwise disjoint, if their denotations are equal, it must be that
any non-canceled commands are equal, which means that each label of these commands must be
equal—and so R(li ) = R(oj ) (Lemma 2.7). By the deductive completeness of KA, we know that
KA ⊢ li ≡ oj . Since we have the KA axioms in our system, then li ≡ oj ; by reflexivity, we know that
ci · dj ≡ ci · dj , and we have proved that Üx ≡ Üy. By transitivity, we can see that x̂ ≡ ŷ and so x ≡ y
and p ≡ q, as desired. □

3 CASE STUDIES
In this section, we define KAT client theories for bitvectors and networks, as well as higher-order
theories for products of theories, sets over theories, and temporal logic over theories.

3.1 Bit vectors
The simplest KMT is bit vectors: we extend KAT with some finite number of bits, each of which
can be set to true or false and tested for their current value (Fig. 6). The theory adds actions
b := true and b := false for boolean variables b, and tests of the form b = true, where b is
drawn from some set of names B. Since our bit vectors are embedded in a KAT, we can use KAT
operators to build up encodings on top of bits: b = false desugars to ¬(b = true); flip b desugars to
(b = true · b := false) + (b = false · b := true). We could go further and define numeric operators
on collections of bits, at the cost of producing larger terms. We are not limited to just numbers, of
course; once we have bits, we can encode any bounded data structure we like.

KAT+B! [29] develops a nearly identical theory, though our semantics admit different equations.
We use a trace semantics, where we distinguish between (b := true · b := true) and (b := true).
Even though the final states are equivalent, they produce different traces because they run different
actions. KAT+B!, on the other hand, doesn’t distinguish based on the trace of actions, so they find
that (b := true · b := true) ≡ (b := true). It’s difficult to say whether one model is better than the
other—we imagine that either could be appropriate, depending on the setting. For example, our
trace semantics is useful for answering model-checking-like questions (Sec. 3.4).

3.2 Disjoint products
Given two client theories, we can combine them into a disjoint product theory, Prod(T1,T2), where
the states are products of the two sub-theory’s states and the predicates and actions from T1 can’t
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Syntax

α ::= α1 | α2
π ::= π1 | π2

sub(αi ) = subi (αi )

Semantics
State = State1 × State2
pred(αi , t) = predi (αi , ti )
act(πi ,σ ) = σ [σi 7→ acti (πi ,σi )]

Weakest precondition extending T1 and T2
π1 · α2 WP α2 π2 · α1 WP α1

Axioms extending T1 and T2
π1 · α2 ≡ α2 · π1 L-R-Comm
π2 · α1 ≡ α1 · π2 R-L-Comm

Fig. 7. Prod(T1,T2), products of two disjoint theories

Syntax

α ::= in(x , c) | e = c | αe
π ::= add(x , e) | πe

sub(in(x , c)) = {in(x , c)} ∪ sub(¬(e = c))
sub(e = c) = sub(e = c)

sub(αe ) = sub(αe )

Semantics
c ∈ C

e ∈ E

x ∈ V

State = (V → P(C)) × (E → C)

pred(in(x , c), t) = last(t)2(c) ∈ last(t)1(x)
pred(αe , t) = pred(αe , t2)
act(add(x , e),σ ) = σ [σ1[x 7→ σ1(x) ∪ {σ (e)}]]
act(πe ,σ ) = σ [σ2 7→ act(πe ,σ2)]

Weakest precondition extending E

add(y, e) · in(x , c)WP in(x , c)
add(x , e) · in(x , c)WP (e = c) + in(x , c)
add(x , e) · αe WP αe

Axioms extending E

add(y, e) · in(x , c) ≡ in(x , c) · add(y, e) Add-Comm
add(x , e) · in(x , c) ≡ ((e = c) + in(x , c)) · add(x , e) Add-In

add(x , e) · αe ≡ αe · add(x , e) Add-Comm2

Fig. 8. Set(E), unbounded sets over expressions

affect T2 and vice versa (Fig. 7). We explicitly give definitions for pred and act that defer to the
corresponding sub-theory, using ti to project the trace state to the ith component. It may seem that
disjoint products don’t give us much, but they in fact allow for us to simulate much more interesting
languages in our derived KATs. For example, Prod(BitVec, IncNat) allows us to program with both
variables valued as either booleans or (increasing) naturals; the product theory lets us directly
express the sorts of programs that Kozen’s early static analysis work had to encode manually, i.e.,
loops over boolean and numeric state [32].

3.3 Unbounded sets
We define a KMT for unbounded sets parameterized on a theory of expressions E (Fig. 8). The
set data type supports just one operation: add(x , e) adds the value of expression e to set x (we
could add del(x , e), but we omit it to save space). It also supports a single test: in(x , c) checks if the
constant c is contained in set x . The idea is that e ∈ E refers to expressions with, say, variables x
and constants c . We allow arbitrary expressions e in some positions and constants c in others. (If
we allowed expressions in all positions, WP wouldn’t necessarily be non-increasing.)

To instantiate the Set theory, we need a few things: expressions E, a subset of constants C ⊆ E,
and predicates for testing (in)equality between expressions and constants (e = c and e , c). (We
can not, in general, expect tests for equality of non-constant expressions, as it may cause us to
accidentally define a counter machine.) We treat these two extra predicates as inputs, and expect
that they have well behaved subterms. Our state has two parts: σ1 : V → P(C) records the current
sets for each set inV , while σ2 : E → C evaluates expressions in each state. Since each state has
its own evaluation function, the expression language can have actions that update σ2.

, Vol. 1, No. 1, Article . Publication date: July 2018.



736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

:16 Ryan Beckett, Eric Campbell, and Michael Greenberg

Syntax

α ::= ⃝a | a S b | a
π ::= πT

sub(⃝a) = {⃝a} ∪ sub(a)
sub(a S b) = {a S b} ∪ sub(a) ∪ sub(b)
act(π ,σ ) = act(π ,σ )

 a = ¬ ⃝ ¬a a B b = a S b +□a
start = ¬ ⃝ 1 ♢a = 1 S a □a = ¬♢¬a

Semantics
State = StateT
pred(⃝a, ⟨σ , l⟩) = false
pred(⃝a, t ⟨σ , l⟩) = pred(a, t)
pred(a S b, ⟨σ , l⟩) = pred(b, ⟨σ , l⟩)
pred(a S b, t ⟨σ , l⟩) = pred(b, t ⟨σ , l⟩) ∨

(pred(a, t ⟨σ , l⟩) ∧ pred(a S b, t))

Weakest precondition extending T

π · ⃝a WP a

π · a PB•T a′ · π π · b PB•T b ′ · π

π · (a S b)WP b ′ + a′ · (a S b)

Axioms extending T

inherited from T
⃝(a · b) ≡ ⃝a · ⃝b LTL-Last-Dist-Seq
⃝(a + b) ≡ ⃝a +⃝b LTL-Last-Dist-Plus

 1 ≡ 1 LTL-WLast-One
a S b ≡ b + a · ⃝(a S b) LTL-Since-Unroll

¬(a S b) ≡ (¬b) B (¬a · ¬b) LTL-Not-Since
a ≤  a · b → a ≤ □b LTL-Induction

□a ≤ ♢(start · a) LTL-Finite

Fig. 9. LTLf (T ), linear temporal logic on finite traces over an arbitrary theory

For example, we can have sets of naturals by setting E ::= n ∈ N | i ∈ V ′, where our
constants C = N andV ′ is some set of variables distinct from those we use for sets. We can update
the variables inV ′ using IncNat’s actions while simultaneously using set actions to keep sets of
naturals. Our KMT can then prove that the term (inci ·add(x , i))∗ · (i > 100) · in(x , 100) is non-empty
by pushing tests back (and unrolling the loop 100 times). The set theory’s sub function calls the
client theory’s sub function, so all in(x , e) formulae must come later in the global well ordering
than any of those generated by the client theory’s e = c or e , c .

3.4 Past-time linear temporal logic
Past-time linear temporal logic on finite traces (LTLf ) is a higher-order theory: LTLf is itself
parameterized on a theory T , which introduces its own predicates and actions—any T test can
appear inside of LTLf ’s predicates (Fig. 9). For information on LTLf , we refer the reader to work by
Baier andMcIlraith, De Giacomo and Vardi, Roşu, and Beckett et al., and Campbell and Greenberg [5,
8, 10, 11, 17, 18, 45].

LTLf adds just two predicates:⃝a, pronounced “last a”, means a held in the prior state; and a S b,
pronounced “a since b”, means b held at some point in the past, and a has held since then. There
is a slight subtlety around the beginning of time: we say that ⃝a is false at the beginning (what
can be true in a state that never happened?), and a S b degenerates to b at the beginning of time.
The last and since predicates together are enough to encode the rest of LTLf ; encodings are given
below the syntax. Weakest preconditions uses inference rules: to push back S, we unroll a S b
into a · ⃝(a S b) + b; pushing last through an action is easy, but pushing back a or b recursively
uses the PB• judgment. Adding these rules leaves our judgments monotonic, and if π · a PB• x ,
then x =

∑
aiπ . In this case, our implementation’s recursive modules are critical—they allow us to

use the derived pushback inside our definition of weakest preconditions.
The equivalence axioms come from Temporal NetKAT [8]; the deductive completeness result for

these axioms comes from Campbell and Greenberg’s work, which proves deductive completeness
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Syntax

α ::= f = v
π ::= f ← v

sub(α) = {α }

Semantics
F = packet fields
V = packet field values
State = F→ V
pred(f = v, t) = last(t). f = v
act(f ← v,σ ) = σ [f 7→ v]

Weakest precondition

f ← v · f = v WP 1
f ← v · f = v ′ WP 0 when v , v ′
f ′ ← v · f = v WP f = v

Axioms
f ← v · f ′ = v ′ ≡ f ′ = v ′ · f ← v PA-Mod-Comm

f ← v · f = v ≡ f ← v PA-Mod-Filter
f = v · f = v ′ ≡ 0, if v , v ′ PA-Contra∑

v f = v ≡ 1 PA-Match-All

Fig. 10. Tracing NetKAT a/k/a NetKAT without dup

for an axiomatic framing and then relates those axioms to our equations [10, 11]; we could have
also used Roşu’s proof with coinductive axioms [45].

As a use of LTLf , recall the simple While program from Sec. 1. We may want to check that, before
the last state after the loop, the variable j was always less than or equal to 200. We can capture this
with the test ⃝□(j ≤ 200). We can use the LTLf axioms to push tests back through actions; for
example, we can rewrite terms using these LTLf axioms alongside the natural number axioms:

j := j + 2 ·□(j ≤ 200) ≡ j := j + 2 · (j ≤ 200 · ⃝□(j ≤ 200))
≡ (j := j + 2 · j ≤ 200) · ⃝□(j ≤ 200)
≡ (j ≤ 198) · j := j + 2 · ⃝□(j ≤ 200)
≡ (j ≤ 198) ·□(j ≤ 200) · j := j + 2

Pushing the temporal test back through the action reveals that j is never greater than 200 if before
the action j was not greater than 198 in the previous state and j never exceeded 200 before the
action as well. The final pushed back test (j ≤ 198) ·□(j ≤ 200) satisfies the theory requirements
for pushback not yielding larger tests, since the resulting test is only in terms of the original test
and its subterms. Note that we’ve embedded our theory of naturals into LTLf : we can generate a
complete equational theory for LTLf over any other complete theory.

The ability to use temporal logic in KAT means that we can model check programs by phrasing
model checking questions in terms of program equivalence. For example, for some program r , we
can check if r ≡ r · ⃝□(j ≤ 200). In other words, if there exists some program trace that does not
satisfy the test, then it will be filtered—resulting in non-equivalent terms. If the terms are equal,
then every trace from r satisfies the test. Similarly, we can test whether r · ⃝□(j ≤ 200) is empty—if
so, there are no satisfying traces.

In addition tomodel checking, temporal logic is a useful programming language feature: programs
can make dynamic program decisions based on the past more concisely. Such a feature is useful
for Temporal NetKAT (Sec. 3.6 below), but could also be used for, e.g., regular expressions with
lookbehind or even a limited form of back-reference.

3.5 Tracing NetKAT
We define NetKAT as a KMT over packets, which we model as functions from packet fields to
values (Fig. 10). KMT’s trace semantics diverge slightly from NetKAT’s: like KAT+B! (Sec. 3.1; [29]),
NetKAT normally merges adjacent writes. If the policy analysis demands reasoning about the
history of packets traversing the network—reasoning, for example, about which routes packets
actually take—the programmer must insert dups to record relevant moments in time. From our
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:18 Ryan Beckett, Eric Campbell, and Michael Greenberg

Fig. 11. Automata construction for incx ∗ · ♢x > 2 in the theory of LTLf (IncNat).

perspective, NetKAT very nearly has a tracing semantics, but the traces are selective. If we put an
implicit dup before every field update, NetKAT has our tracing semantics.

3.6 Temporal NetKAT
We derive Temporal NetKAT as LTLf (NetKAT), i.e., LTLf instantiated over tracing NetKAT; the
combination yields precisely the system described in the Temporal NetKAT paper [8]. Our LTLf
theory can now rely on Campbell and Greenberg’s proof of deductive completeness for LTLf [10, 11],
we can automatically derive a stronger completeness result for Temporal NetKAT than that from
the paper, which showed completeness only for “network-wide” policies, i.e., those with start at
the front.

4 AUTOMATA
While the deductive completeness proof (Theorem 2.8 in Sec. 2) gives away to determine equivalence
of KAT terms through normalization, using such rewriting-based proofs as the basis of a decision
procedure isn’t always practical. But just as pushback yields a novel completeness proof, it can also
help provide an automata-theoretic account of equivalence. We compare performance in Sec. 6.

Our automata theory is heavily based on previous work on Antimirov partial derivatives [3] and
NetKAT’s compiler [51]. We diverge their approach to account for client theory predicates that
depend on more than the last state of the trace. Our solution is adapted from the Temporal NetKAT
compiler [8]: to construct an automaton for a term in a KMT, we build two automata—one for the
policy fragment of the term and one for each predicate that occurs therein—and combine the two
in a specialized quasi-intersection operation.

A KMT automaton is a 4-tuple (S, s0, ϵ,δ ), where: the set of automata states S identifies non-initial
states (unrelated to State, the state space of the client theory); the initial state selector s0 is a function
that takes a trace and selects an initial state; the acceptance function ϵ : S × Trace→ P(State) is
a function identifying which theory states (in State) are accepted in each automaton state s ∈ S ;
the transition function δ : S × Trace→ P(Log × S) identifies successor states given an automaton
and a single KMT state. Intuitively, the automata works on traces, i.e., sequences of log entries:
⟨σ0,π1⟩ . . . ⟨σn ,πn⟩. While the acceptance and transition functions look at traces, that is an artifact
of their construction: they will only actually look at the last state of the input.
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Kleene Algebra Modulo Theories :19

Consider the KMT automaton (Fig. 11, rightmost) for the term incx ∗ · ♢x > 2 taken from the
LTLf (IncNat) theory. The automaton accepts a trace of the form: ⟨[x 7→ 1,⊥]⟩⟨[x 7→ 2, incx ]⟩⟨[x 7→
3], incx ⟩. Informally, the initial state selector s0 looks at the trace so far to determine where to begin
a run. In our example, the state (0,0) is used for a trace where x has never been greater than 2 and
x is currently 0; we would start in state (1,0) if x were 1. From state (1,0), the automaton will move
to state (2,1) and then (3,1) unconditionally for the incx action, which corresponds to actions in the
log entries of the trace. The acceptance function, written in brackets alongside each state, assigns
state (3,1) the condition 1, meaning that all theory states are accepted; no other states are accepting,
i.e., their acceptance condition is 0.

The transition function δ takes an automaton state S and a KMT trace and maps them to a set of
new pairs of automaton state and and KMT log items (a KMT state/action pair). In the figure, we
draw transitions as arcs between states with a pair of a KMT test and a primitive KMT action. For
example, the transition from state (1,0) to (2,0) is captured by the term 1 · incx , i.e., the transition
can always fire and increments the value of x .
Taken all together, our KMT automaton captures the fact that there are 4 interesting cases for

the term incx ∗ · ♢x > 2. If the program trace already had x > 2 at some point in the past or has
x > 2 in the current state, then we move to state (3,0) and will accept the trace regardless of how
many increment commands are executed in the future. If the initial trace has x > 1, then we move
to state (2,0). If we see at least one more increment command, then we move to state (3,0) where the
trace will be accepted no matter what. If the initial trace has x > 0, we move to state (1,0) where
we must see at least 2 more increment commands before accepting the trace. Finally, if the initial
trace has any other value (here, only x = 0 is possible), then we move to state (0,0) and must see at
least 3 increment commands before accepting.

4.1 Constructing KMT automata
The KMT automaton for a given term p is constructed in two phases: we first construct a term
automaton for a version of p where predicates are placed as transition and acceptance conditions.
Such a symbolic automaton can be unwieldy—for example, the term automaton in (Fig. 11, top left)
has a temporal predicate as an acceptance condition, which is challenging to reason about. We
therefore find every predicate mentioned in the term automaton and construct a corresponding
theory automaton (Fig. 11, middle), using pushback to move tests to the front of the automaton. We
finally combine these two to form a KMT automaton with simple acceptance conditions (0 or 1).

4.1.1 Term automata. The term automaton uses the Antimirov-derivative approach from the
NetKAT compiler to construct an automaton for a given term. At this stage, we leave arbitrary
predicates on the edges—we use theory automata (Sec. 4.1.2) to resolve those predicates. Formally,
our automaton Aπ (p) is defined in as a 4-tuple (S, s0, ϵ,δ ), where S is a set of states, s0 is an initial
state, ϵ is an acceptance condition, and δ is a transition relation (Fig. 12). The automata’s runs are
described by the accepts relation, where we say Aπ (p), ℓ accepts t ; t ′ when the automaton Aπ (p)
in state ℓ accepts the trace t ′ after having already seen the trace t . The semi-colon on the right-hand
side of the accepts relation can be thought of as a ‘cursor’ indicating where we are in the trace so
far. The NetKAT compiler’s automaton doesn’t bother keeping the trace, but our predicates can
reflect on the entire trace—so we must be careful to keep track of it.
Given a KMT term p, we start constructing the term automaton Aπ (p) by annotating each

occurrence of each theory action π in p with a unique label ℓ; these labels will form the states
of Aπ (p). Then we take the partial derivative of p by computing D(p) (Fig. 12). The derivative
computes a set of linear forms—tuples of the form ⟨d,π ℓ,k⟩. There will be exactly one such tuple
for each unique label ℓ, and each label will represent a single state in the automaton. We also
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Derivative D : T ∗
ℓ
→ P(T ∗

ℓ
× Tπ ℓ × T ∗pred)

D(0) = ∅

D(1) = ∅

D(α) = ∅

D(π ℓ) = {⟨1,π ℓ , 1⟩}
D(p + q) = D(p) ∪ D(q)
D(p · q) = D(p) ⊙ q ∪ E(p) ⊙ D(q)
D(p∗) = D(p) ⊙ p∗

Acceptance condition E : T ∗
ℓ
→ T ∗pred

E(0) = 0
E(1) = 1
E(α) = α

E(π ℓ) = 0
E(p + q) = E(p) + E(q)
E(p · q) = E(p) · E(q)
E(p∗) = 1

D(p) ⊙ q = {⟨d,π ℓ ,k · q⟩ | ⟨d,π ℓ ,k⟩ ∈ D(p)} q ⊙ D(p) = {⟨q · d,π ℓ ,k⟩ | ⟨d,π ℓ ,k⟩ ∈ D(p)}

Aπ (p) = (S, s0, ϵ,δ ) Term automaton
S = {0} ∪ labels(p) States
s0 = 0 Initial state

ϵ ℓ t ⇔ t ∈ [[E(kℓ)]](t) Acceptance condition
δ ℓ t = {(σ ′,π ′ℓ

′

) | ⟨d,π ′ℓ
′

,k⟩ ∈ D(kℓ) ∧ t ∈ [[d]](t) ∧ t ⟨σ
′,π ′ℓ

′

⟩ ∈ [[π ′ℓ
′

]](t)} Transition relation

Term automaton trace acceptance accepts ⊆ Automaton × S × Trace × (State × Tπ )∗

Aπ (p), ℓ accepts t ; • ⇔ ϵ ℓ t Accepting state
Aπ (p), ℓ accepts t ; ⟨σ ,π ℓ′⟩t ′ ⇔ (σ ,π ℓ′) ∈ δ ℓ t ∧ Aπ (p), ℓ

′ accepts t ⟨σ ,π ℓ′⟩; t ′ Taking a step

Fig. 12. KMT partial derivatives and automata

distinguish an initial state, 0. The acceptance function for state ℓ is given by E(k). To compute the
transition relation, we compute D(k) for each such tuple, which yields another set of tuples. For
each tuple ⟨d ′,π ′ℓ′,k ′⟩ ∈ D(k), we add a transition from state π ℓ to state π ′ℓ′ labeled with the
term d ′ · π ′ℓ

′ . The d part is a predicate identifying when the transition activates, while the k part is
the “continuation”, i.e., what else in the term can be run. Since labelings are unique, we use kℓ to
refer to the unique continuation of π ℓ when constructing Aπ (p) for a given p. We let k0 be the
continuation of the initial action, i.e., the original term p.
For example, the term incx ∗ · ♢x > 2, is first labeled as (incx 1)∗ · ♢x > 2. We then compute
D((incx 1)∗ · ♢x > 2) = {⟨1, inc1, (inc1x )∗ · ♢x > 2⟩}. Hence, there is a transition from state 0 to
state 1 with label (1 · incx ). Taking the derivative of the resulting value, (inc1x )∗ · ♢x > 2, results
in the same tuple, so there is a single transition from state 1 to itself, also labeled with 1 · inc1x .
The acceptance function for this state is given by E((inc1x )∗ · ♢x > 2) = ♢x > 2. The resulting
automaton, and its minimized form, are shown in Fig. 11 (left).

Lemma 4.1 (Derivative correct). For all programs p where each primitive action π is augmented
with a unique label ℓ,

(1) p ≡ E(p) +
∑

⟨d,π ℓ,k ⟩∈D(p)

d · π ℓ · k , and

(2) For all labels ℓ in p, there exist unique d and k such that ⟨d,π ℓ,k⟩ ∈ D(p).

Proof. For (1), we go by induction on p, using Denesting in the star case. For (2), let π and ℓ
be given; we go by induction on p. □

Lemma 4.2 (Term automaton correct). tt ′ ∈ [[kℓ]](t) iff Aπ (p), ℓ accepts t ; t ′.

Proof. By induction on the length of t ′, leaving t general. □
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Aα (a) = (S, s0, ϵ,δ ) Theory automaton
S = 2sub(a) States

s0(t) = {b ∈ sub(a) | t ∈ [[b]](t)} Initial state selector
serialize(A) = Πa∈Aa Serialization of predicate sets

ϵ At ⇔ a ∈ A Acceptance condition
δ At = {(σ ,π , {c | ∀b ∈ A, π · c PB• b · π }) | t ⟨σ ,π ⟩ ∈ [[π ]](t)} Transition relation

Theory automaton trace stepping traces ⊆ Automatonα × S × Trace × (State × Tπ )∗

Aα (a),A traces t ; • ⇔ t ∈ [[serialize(A)]](t) Stopping
Aα (a),A traces t ; ⟨σ ,π ⟩t ′ ⇔ (σ ,π ,A′) ∈ δ At ∧ Aα (a),A

′ traces t ⟨σ ,π ⟩; t ′ Taking a step

Fig. 13. Theory automata

The term automaton Aπ (p) is equivalent to the original policy p, but we are not yet done. The
term automaton makes use of arbitrary predicates in its transitions δ and its acceptance condition
ϵ . For some client theories, predicates are immediately decidable, but predicates from a theory like
LTLf (Sec. 3.4) look at more than the last state of the trace. Depending on what the automata will
be used for, these complex predicates may or may not be a problem. For our use here—deciding
equivalence—we must simplify complex predicates: we define separate automata for tracking which
predicates hold when (Sec. 4.1.2) and then construct a quasi-intersection automaton that implements
predicates in the term automaton with theory automata.

4.1.2 Theory automata. Once we’ve constructed the term automaton, we construct theory
automata for each predicate appearing anywhere in the term automaton, whether in an acceptance
or a transition condition. The theory automaton for a predicate a, written Aα (a), tracks whether
a holds so far in a trace, given some initial trace and a sequence of primitive actions. Formally,
Aα (a) is a 4-tuple (S, s0, ϵ,δ ) where S is a set of states, s0 is an initial state selection function, ϵ is
an acceptance condition, and δ is a transition relation. The states of the theory automaton are sets
of subterms of the original predicate a; when the automaton is in state A ⊆ sub(a), then we expect
every predicate b ∈ A to hold. The runs of the theory automaton are characterized by the traces
predicate. We say traces rather than accepts because we use the theory automaton to determine
which predicates hold rather than to accept or reject a trace. (The KMT automaton will use the
acceptance condition ϵ .) The initial state selector starts the theory automaton’s run in the state
identified by those subterms satistifed by the trace so far. The term automaton will use the theory
automaton to implement its complex predicates by running each theory automaton in parallel: to
determine whether to take an a transition, we consult the current stateA ofAα (a) and see whether
a ∈ A, i.e., does a hold in the current state?

We use pushback (Sec. 2.3.2) to generate the transition relation of the theory automaton, since
the pushback exactly characterizes the effect of a primitive action π on predicates a: to determine
if a predicate α is true after some action a, we can instead check if b is true in the previous state
when we know that π · a PB• b · π .

While a KMT may include an infinite number of primitive actions (e.g., x := n for n ∈ N in
IncNat), any given term only has finitely many. For incx ∗ · ♢x > 2, there is only a single primitive
action: incx . For each such action π that appears in the term and each subterm s of the test ♢x > 2,
we compute the pushback of π and s .

Continuing our example (Fig. 11 (middle)), there is a transition from state 2 to state 3 for
action incx . State 3 is labeled with {1,x > 0,x > 1,x > 2,♢x > 2} and state 2 is labeled with
{1,x > 0,x > 1}. We compute incx · ♢x > 2 WP (♢x > 2 + x > 1). Therefore, ♢x > 2 should be
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AKMT(p) = (S, s0, ϵ,δ ) KMT automaton
S = SAπ (p) × SAα (a1) × · · · × SAα (an ) where ai ∈ Aπ (p) States

s0(t) = λt . (s0, s
Aα (a1)
0 (t), . . . , sAα (an )

0 ) Initial state selector
ϵ s t ⇔ ϵAα (ai ) s .i t where ϵAπ (p) s t = ai Acceptance condition
δ s t = {(σ ,π ′ℓ

′

, (ℓ′,δAα (a1) s .1 t , . . . ,δAα (an ) s .n t)) |
⟨ai ,π

′ℓ′,k⟩ ∈ D(kℓ) ∧ ϵ
Aα (ai ) s .i t ∧ t ⟨σ ′,π ′ℓ

′

⟩ ∈ [[π ′ℓ
′

]](t)} Transition relation

KMT automaton acceptance accepts ⊆ AutomatonKMT × S × Trace × (State × Tπ )∗

AKMT(p), s traces t ; • ⇔ ϵ s t Accepting state
AKMT(p), s traces t ; ⟨σ ,π ⟩t ′ ⇔ (σ ,π , s ′) ∈ δ s t ∧ AKMT(p), s

′ accepts t ⟨σ ,π ⟩; t ′
Taking a step

Fig. 14. Constructing KMT automata from term and theory automata

labeled in state 3 if and only if either ♢x > 2 is labeled in state 2 or x > 1 is labeled in state 2. Since
state 2 is labeled with x > 1, it follows that state 3 must be labeled with ♢x > 2.
Finally, a state is accepting in the theory automaton if it is labeled with the top-level predicate

for which the automaton was built. For example, state 3 is accepting (with acceptance function
[1]), since it is labeled with ♢x > 2. The acceptance condition is irrelevant for how the theory
automaton itself steps—we use it in combination with the term automaton.

Lemma 4.3 (Theory automaton correct). t ∈ [[serialize(A)]](t) ⇐⇒ Aα (a),A traces t ; t ′

Proof. By induction on the length of t ′, leaving t general. □

4.2 KMT automata
We can combine the term and theory automata to create a KMT automaton, AKMT(p). The idea
is to run the term and theory automata in parallel, and replacing instances of theory tests in the
acceptance and transition functions of the term automaton with the test on the current state in the
theory automata. The states of the KMT automaton are of the form (ℓ,A1, . . . ,An), where ℓ is a
term automaton state and each Ai is a theory automaton state for some a occurring in the term
automaton. In the product state, we refer to the underlying term automaton state with s .0 and each
Ai as s .i . We use superscripts to disambiguate ϵ and δ , with the un-superscripted forms referring
to the KMT automaton itself.
For example, in Fig. 11, the quasi-intersected automata (right) replaces instances of the ♢x > 2

condition in state 0 of the term automaton, with the acceptance condition from the corresponding
state in the theory automaton. In state (2,0) this is true, while in states (1,0) and (0,0) this is false.
For transitions with the same action π , the quasi-intersection takes the conjunction of each edge’s
tests. Formally, we define the KMT automaton as a 4-tuple (S, s0, ϵ,δ ), where the states are those
of Aπ (p) along with those of Aα (a) for every predicate a that occurs in Aπ (p). The initial state
selector s0, acceptance condition ϵ , and transition relation δ are all defined as composites of the
term and theory automata, using the appropriate theory automaton to implement the transition
relation δ and acceptance condition ϵ .
The KMT automaton isn’t, strictly speaking, an intersection automaton: we recapitulate the

logic of the term automaton but use the theory automata where the term automaton would have
consulted a complex predicate. As such, our proof follows the logic of Lemma 4.2, but we don’t
actually make use of that lemma at all.
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Lemma 4.4 (KMT automaton correct).
tt ′ ∈ [[kℓ]](t) and t ∈ [[serialize(Ai )]](t) iff AKMT(p), (ℓ,A1, . . . ,An) accepts t ; t ′.

Proof. By induction on the length of t ′, leaving t general and using Lemma 4.3. □

4.3 Equivalence checking using automata
To check the equivalence of two KMT terms p and q, the implementation first converts both p
and q to their respective (symbolic) automata. It then determinizes the automata to ensure that all
transition predicates are disjoint (we use an algorithm based on minterms [15]). After combining
the theory and term automata, we now have an automaton where the actions on transitions can
be viewed as distinct characters. The implementation checks for a bisimulation between the two
automata in a standard way by checking if, given any two bisimilar states, all transitions from the
states lead to bisimilar states [9, 24, 43].

5 IMPLEMENTATION
We have implemented our ideas in an OCaml library; Sec. 1.3 summarizes the high-level idea and
gives an example library implementation for the theory of increasing natural numbers. To use a
higher-order theory such as that of product theories, one need only instantiate the appropriate
modules in the library:

module P = Product(IncNat)(Boolean)
module A = Automata(P.K) (* automata-theoretic decision procedure *)

module D = Decide(P) (* normalization-based decision procedure *)

let a = P.K.parse "y<1; (a=F + a=T; inc(y)); y>0" in

let b = P.K.parse "y<1; a=T; inc(y)" in

assert (A.equivalent (A.of_term a) (A.of_term b));
assert (D.equivalent a b)

The module P instantiates Product over our theories of incrementing naturals and booleans; the
module A gives us an automata theory for the KMT (P.K) associated with P, and the module D gives
a way to normalize terms based on the completeness proof. User’s of the library can access these
representations to perform any number of tasks such as compilation, verification, inference, and so
on. For example, checking language equivalence is then simply a matter of reading in KMT terms
and calling the appropriate equivalence function. Our implementation currently supports both a
decision procedure based on automata and one based on the normalization term-rewriting from
the completeness proof. In practice, our implementation uses several optimizations, with the two
most prominent being (1) hash-consing all KAT terms to ensure fast set operations, and (2) lazy
construction and exploration of automata during equivalence checking. Domain optimizations are
possible, too: our satisfiability procedure for IncNat makes a heuristic decision between using our
incomplete custom solver or Z3 [19]—our solver is much faster on its restricted domain.

5.1 Optimizations
We’ve implemented smart constructors, which hash-cons and also automatically rewrite common
identities (e.g., constructing p · 1 will simply return p; constructing (p∗)∗ will simply return p∗).
Client theories can extend the smart constructors to witness theory-specific identities. Client
theories can implement custom solvers or rely on Z3 embeddings—custom solvers are typically
faster. These optimizations are partly responsible for the speed of our normalization routine (when
it avoids the costly Denest case).
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Decision Procedure
Benchmark Automata Normalization
test-in-loop 9.305 sec 0.001 sec
count-twice 0.012 sec 0.001 sec
loop-reorder-arith 6.166 sec 0.001 sec
loop-parity-swap 0.010 sec TO
compute-bool-formula 2.659 sec 0.001 sec
population-count 21.451 sec 0.001 sec

Fig. 15. Implementation microbenchmarks

We haven’t particularly optimized our automata implementation. Two particular opportunities
for optimization stand out, both of which focus on reducing the state space of the theory automata.
First, most client-theory predicates only consider the most recent state, in which case we need not
generate a theory automaton at all. Second, the formal presentation of theory automata generates
one automaton per predicate, the states of which are subsets of subterms of that predicate—an
exponential blowup. While convenient for the proof, many predicates will share subterms—so
we pay the cost of blowup more than once, tracking the same subterms in more than one theory
automaton. We could instead generate a single theory automaton, where a state is a set drawn
from subterms of all of the predicates in the term automaton, which would reduce some of the
state-space blowup.

6 EVALUATION
We performed a few experiments to evaluate our tool on a collection of simple microbenchmarks.
Fig. 15 shows the microbenchmarks, each of which performs a simple task. For instance, the
population-count example initializes a collection of boolean variables and then counts how many
are set to true using a natural number counter. It proves that, if the number is above a certain
threshold, then all booleans must have been set to true. The figure also shows the time it takes
to verify the equivalence of terms for each example using both the automata- and normalization-
based decision procedures. We use a timeout of 5 minutes.
Interestingly, the normalization-based decision procedure is very fast in many cases. This is

likely due to a combination of hash-consing and smart constructors that rewrite complex terms into
simpler ones when possible, and the fact that, unlike previous KAT-based normalization proofs (e.g.,
[1, 32]) our normalization proof does not require splitting predicates into all possible “complete
tests.” However, the normalization-based decision procedure does very poorly on examples where
there is a sum nested inside of a Kleene star, i.e., (p + q)∗. The loop-parity-swap benchmark is
one such example – it flips the parity of a boolean variables multiple times in a loop and verifies
that the end value is always the same as the initial value. In this case the normalization-based
decision procedure must repeatedly invoke the Denest rewriting rule, which greatly increases the
size of the term on each invocation.

On the other hand, the automata-based decision procedure easily handles the loop-parity-swap,
terminating in all cases. It takes significantly longer on most examples due to the high cost of
constructing and using theory automata for every theory predicate in the term.

7 RELATEDWORK
Kozen and Mamouras’s Kleene algebra with equations [35] is perhaps the most closely related
work: they also devise a framework for proving extensions of KAT sound and complete. Both
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their work and ours use rewriting to find normal forms and prove deductive completeness. Their
rewriting systems work on mixed sequences of actions and predicates, but they can only delete
these sequences wholesale or replace them with a single primitive action or predicate; our rewriting
system’s pushback operation only works on predicates due to the trace semantics that preserves
the order of actions, but pushback isn’t restricted to producing at most a single primitive predicate.
Each framework can do things the other cannot. Kozen and Mamouras can accommodate equations
that combine actions, like those that eliminate redundant writes in KAT+B! and NetKAT [1, 29]; we
can accommodate more complex predicates and their interaction with actions, like those found in
Temporal NetKAT [8] or those produced by the compositional theories (Sec. 3). It may be possible
to build a hybrid framework, with ideas from both. A trace semantics occurs in previous work on
KAT as well [27, 32].
Kozen studies KATs with arbitrary equations x := e [33], also called Schematic KAT, where e

comes from arbitrary first-order structures over a fixed signature Σ. He has a pushback-like axiom
x := e ·p ≡ ϕ[x/e] ·x := e . Arbitrary first-order structures over Σ’s theory are much more expressive
than anything we can handle—the pushback may or may not decrease in size, depending on Σ; KATs
over such theories are generally undecidable. We, on the other hand, are able to offer pay-as-you-
go results for soundness and completeness as well as an automata-theoretic implementation for
decidability—but only for first-order structures that admit a non-increasing weakest precondition.

Larsen et al. [37] allow comparison of variables, but this of course leads to an incomplete theory.
They are, able, however, to decide emptiness of an entire expression.

Coalgebra provides a general framework for reasoning about state-based systems [34, 46, 50],
which has proven useful in the development of automata theory for KAT extensions. Although
we do not explicitly develop the connection in this paper, KMT uses tools similar to those used
in coalgebraic approaches, and one could perhaps adapt our theory and implementation to that
setting. In principle, we ought to be able to combine ideas from the two schemes into a single, even
more general framework that supports complex actions and predicates.

Our work is loosely related to Satisfiability Modulo Theories (SMT) [20]. The high-level motiva-
tion is the same—to create an extensible framework where custom theories can be combined [41]
and used to increase the expressiveness and power [52] of the underlying technique (SAT vs. KA).
Some of our KMT theories implement satisfiability checking by calling out to Z3 [19].
The pushback requirement detailed in this paper generalizes the classical notion of weakest

precondition [6, 21, 47]. Automatic weakest precondition generation is generally limited in the
presence of loops in while-programs. While there has been much work on loop invariant infer-
ence [25, 26, 28, 31, 42, 49], the problem remains undecidable in most cases; however, the pushback
restrictions of “growth” of terms makes it possible for us to automatically lift the weakest pre-
condition generation to loops in KAT. In fact, this is exactly what the normalization proof does
when lifting tests out of the Kleene star operator. The pushback operation generalizes weakest
preconditions because the various PB relations can change the program itself.

The automata representation described in Sec. 4 is based on prior work on symbolic automata [15,
43, 51]. In a departure from prior work, our automata construction must account for theories with
predicates that look arbitrarily far back into a trace. The separate theory and term automata we
use are based on ideas from Temporal NetKAT [8].

8 CONCLUSION
Kleene algebra modulo theories (KMT) is a new framework for extending Kleene algebra with tests
with the addition of actions and predicates in a custom domain. KMT uses an operation that pushes
tests back through actions to go from a decidable client theory to a domain-specific KMT. Derived
KMTs are sound and complete with respect to a trace semantics; we derive automata-theoretic
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decision procedures for the KMT in an implementation that mirrors our formalism. The KMT
framework captures common use cases and can reproduce by simple composition several results
from the literature, some of which were challenging results in their own right, as well as several
new results: we offer theories for bitvectors [29], natural numbers, unbounded sets, networks [1],
and temporal logic [8].
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