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Abstract
Gradual types mediate the interaction between dynamic and simple
types, offering an easy transition from scripts to programs; grad-
ual types allow programmers to evolve prototype scripts into fully
fledged, deployable programs. Similarly, contracts and refinement
types mediate the interaction between simple types and more pre-
cise types, offering an easy transition from programs to robust, ver-
ified programs. A full-spectrum language with both gradual and
refinement types offers low-level support for the development of
programs throughout their lifecycle, from prototype script to veri-
fied program.

One attractive formulation of languages with gradual or refine-
ment types uses casts to represent the runtime checks necessary
for type changes (from dynamic to simple types, and from sim-
ple types to refinement types). Briefly, a cast 〈T1 ⇒ T2〉 e takes
a term e from type T1 to T2, possibly wrapping or tagging e in
the process—or even failing, if e doesn’t meet the criteria of the
type T2. Casts are attractive because they offer a unified view of
changes in type, have straightforward operational semantics, and
enjoy an interesting and fruitful relationship with subtyping.

One longstanding problem with casts is space efficiency: casts
in their naı̈ve formulation can consume unbounded amounts of
space at runtime both through excessive wrapping as well as
through tail-recursion-breaking stack growth. Prior work [20, 21,
33, 35] offers space-efficient solutions exclusively in the domain
of gradual types. In this paper, we define a new full-spectrum lan-
guage that is (a) more expressive than prior languages, and (b)
space efficient. We are the first to obtain space-efficient refinement
types. Our approach to space efficiency is based on the coercion
calculi of Herman et al. [20] and Henglein’s work [19], though our
explicitly enumerated canonical coercions and our straightforward
merge operator are a novel approach to coercions with a simpler
theory. We show that space efficiency avoids some checks, fail-
ing and diverging less often than naı̈ve calculi—but the two are
otherwise observationally equivalent.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.2.4 [Software Engi-
neering]: Software/Program Verification—Programming by con-
tract

General Terms Languages, Theory
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Keywords Contract, refinement type, dynamic checking, precon-
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1. Introduction
The promise of a single language admitting the full development
cycle—from a small script to a more manageable, statically typed
program to a robust, verified system—has held great allure for
some time. Prior attempts to fulfill this promise have attacked the
problem piecemeal: script to program, and program to verified
program. On the one hand, work in the script-to-program category
goes back at least to Abadi et al.’s work with type Dynamic,
with more recent work falling under the Siek and Taha’s rubric of
“gradual typing” [1, 2, 7, 10, 20, 26, 33–35, 37, 38]. On the other
hand, program verification is an enormous field in its own right;
in this paper, we will focus on dynamic enforcement methods.
These methods, often called contracts, go back at least as far
Eiffel [3, 11, 14, 16–18, 27, 31]. More recent work takes a type-
oriented, or manifest, approach to contracts, allowing so-called
refinement types of the form {x :T | e}, inhabited by values v
that satisfy the predicate e , i.e. e[v/x ] −→∗ true. For example,
{x :Int | x 6= 0} denotes the non-zero integers. Dependency
increases the expressiveness of refinement type systems. Consider
the type (x:Real)→ {y:Real |

∣∣x− y2∣∣ < ε}. This type specifies
the square root function: for any real number x, functions in this
type produce a y such that y2 is within ε of x. Note that the type of
the result depends on the input value.

Over the last decade, the state of the art combining these
two paradigms—and gradual types and manifest contracts in
particular—has steadily progressed [4, 25, 30, 39]. Starting with
Sage [25] and continuing with Wadler and Findler [39], many
languages have expressed the interactions between dynamic and
simple and between simple and refinement types using a single
syntactic form: the cast. Written 〈T1 ⇒ T2〉, we read the cast
form as “cast from type T1 to type T2”.

Casts are promising. They offer a unified view of changes in
type information, have straightforward operational semantics, and
enjoy a fruitful relationship with subtyping (see [3, 17, 24, 33, 35,
39]). Our language will derive its semantics from a full-spectrum
language with casts. Before we can continue, we must explain how
casts work: with type dynamic, with refinement types, and the most
interesting part—between function types.

On the dynamic side, casts go into and out of ?, the dynamic
type. A cast of the form 〈Int ⇒ ?〉 5 asks for the number 5, which
has type Int, to be treated as a value of type ?, the dynamic type.
The operational semantics of such a cast will mark the value with
a tag, as in 5Int!. Similarly, a cast of the form 〈? ⇒ Int〉 5Int! will
project the tagged integer out of type dynamic, yielding the original
value 5. In the case where the cast’s argument isn’t tagged correctly,
the cast must raise an error. Consider the term 〈?⇒ Int〉 trueBool!.
It tries to project an Int out of type dynamic, but the dynamic value
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is really a Bool—a type error. All we can reasonably do is abort the
program, evaluating to the uncatchable exception fail.1

Casting between refinement types works similarly: 〈Int ⇒
{x :Int | x 6= 0}〉 5 must first check that (x 6= 0)[5/x ] −→∗ true,
i.e., that the refinement’s predicate is satisfied. If so, it will yield
a tagged value, just like before: 5{x :Int|x 6=0}?. (The exclamation
point on the Int! tag represents injection into type dynamic, while
the question mark on the {x :Int | x 6= 0}? tag represents the
successful checking of the predicate.) If the predicate should fail—
returning false or failing some nested predicate check—then the
check will return fail and the entire program will fail, as well.

Casts on functions are the most interesting: values with func-
tional casts on them, like 〈T11→T12 ⇒ T21→T22〉 v1, are them-
selves values; they are wrapped with a function proxy. When such
wrapped values are applied to a value v2, the cast unfolds:

(〈T11→T12 ⇒ T21→T22〉 v1) v2 −→
〈T12 ⇒ T22〉 (v1 (〈T21 ⇒ T11〉 v2))

Note that this rule is contravariant in the domain.
The casts in this paper (and its most closely related work)

have runtime effects and are not erasable in general. For example,
consider the term 〈Int ⇒ {x :Int | prime x}〉. The cast isn’t
erasable: it isn’t in general decidable whether or not its argument
will evaluate to a prime number, so a runtime check is necessary.
This runtime checking isn’t limited to refinement types: the cast
in 〈? ⇒ Int〉 isn’t erasable because we can’t, in general, decide
whether or not its argument will evaluate to a dynamic value with
an Int! tag as opposed to, say, a Bool! tag. (Some casts are erasable,
though; e.g., from a subtype to a supertype [3, 24].)

One problem common to calculi with casts is the problem
of space efficiency. In particular, casts can accumulate in an un-
bounded way: redundant casts can grow the stack arbitrarily; cast-
ing functions can introduce an arbitrary number of function prox-
ies. This unbounded growth of casts can, in the extreme, change
the asymptotic complexity of programs. To see why the naı̈ve treat-
ment isn’t space efficient, consider a mutually recursive definition
of even and odd, adapted from Herman et al. [20]:

even : ?→? = 〈Int→Bool⇒ ?→?〉 λx :Int.
if x = 0 then true else odd (x − 1)

odd : Int→Bool = λx :Int.
if x = 0 then false else (〈?→?⇒ Int→Bool〉 even) (x − 1)

In this example, even is written in a more dynamically typed style
than odd. (While this example is contrived, it is easy to imagine
mutually recursive modules with a mix of typing paradigms.) The
cast 〈Int→Bool ⇒ ?→?〉 (λx :Int. . . .) in the definition of even
will (a) check that even’s dynamically typed arguments are in fact
Ints and (b) tag the resulting booleans into the dynamic type. The
symmetric cast on even in the definition of odd serves to make the
function even behave as if it were typed. This cast will ultimately
cast the integer value n − 1 into the dynamic type, ?, as well as
projecting even’s result out of type ? and into type Bool. Now
consider the reduction sequence in Figure 1, observing how the
number of coercions grows (redexes are highlighted).

While the operational semantics doesn’t have an explicit stack,
we can still see the accumulation of pending casts. What’s more,
the work is redundant: we must tag and untag true twice. In short,
casts have taken an algorithm that should use a constant amount
of stack space and turned it into an algorithm that uses O(n) stack
space. Such a large space overhead is impractical: casts aren’t space
efficient.

Two of the existing approaches to space efficiency in the world
of gradual typing [20, 33, 35] factor casts into their constituent
coercions, adapting Henglein’s system [19]. We will take a similar

1 More realistic systems will make such exceptions catchable. To keep
things simple, we ignore exception handling.

odd 3
−→ (〈?→?⇒ Int→Bool〉 even) 2
−→ 〈?⇒ Bool〉 (even (〈Int⇒ ?〉 2))
−→ 〈?⇒ Bool〉 (even 2Int!)
−→ 〈?⇒ Bool〉 ((〈Int→Bool⇒ ?→?〉 (λx :Int. . . . )) 2Int!)
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 ((λx :Int. . . . ) (〈?⇒ Int〉 2Int!)))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 ((λx :Int. . . . ) 2))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 (odd 1))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 ((〈?→?⇒ Int→Bool〉 even) 0))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 (〈?⇒ Bool〉 (even (〈Int⇒ ?〉 0))))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 (〈?⇒ Bool〉 (even 0Int!)))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 (〈?⇒ Bool〉

((〈Int→Bool⇒ ?→?〉 (λx :Int. . . . )) 0Int!)))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 (〈?⇒ Bool〉 (〈Bool⇒ ?〉

((λx :Int. . . . ) (〈?⇒ Int〉 0Int!)))))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 (〈?⇒ Bool〉 (〈Bool⇒ ?〉

((λx :Int. . . . ) 0))))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 (〈?⇒ Bool〉 (〈Bool⇒ ?〉 true)))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 (〈?⇒ Bool〉 trueBool!))
−→ 〈?⇒ Bool〉 (〈Bool⇒ ?〉 true)
−→ 〈?⇒ Bool〉 trueBool!
−→ true

Figure 1. Space-inefficient reduction

approach. For example, the cast 〈? ⇒ Bool〉, which checks that
a dynamic value is a boolean and then untags it, is written as
the coercion Bool?; the cast 〈Bool ⇒ ?〉, which tags a boolean
into type dynamic, is written Bool!. Most importantly, coercions
can be composed, so 〈Bool?〉 (〈Bool!〉 e) −→ 〈Bool!;Bool?〉 e .
Herman et al. normalize the coercion Bool!;Bool? into the no-op
coercion Id. This normalization process is how they achieve space
efficiency. For example:

〈Bool?〉 (〈Bool!〉 ((λx :Int. . . . ) (〈Int?〉 2Int!))) −→
〈Id〉 ((λx :Int. . . . ) (〈Int?〉 2Int!))

This composition and normalization of pending coercions allows
them to prove a bound on the size of any coercion that occurs
during the run of a given program. This bound effectively restores
the possibility of tail-call optimization.

However, it isn’t obvious how to extend Herman et al.’s [20] co-
ercion system to refinement types. When do we test that values sat-
isfy predicates? How do refinement type coercions normalize? We
show that refinement types should have a checking coercion {x :T |
e}? and an (un)tagging coercion {x :T | e}!; the key insight for
space efficiency is that the composition {x :T | e}?; {x :T | e}!
should normalize to Id, i.e., checks that are immediately forgotten
should be thrown away. Throwing away checks sounds dangerous,
but the calculus is still sound—values typed at refinement types
must satisfy their refinements. On the one hand, this is great news—
space-efficiency is not only more practical, but there are fewer er-
rors! On the other hand, the space-efficient semantics aren’t exactly
equivalent to the naı̈ve semantics. Whether or not this is good news,
these dropped checks are part and parcel of space efficiency. We de-
velop this idea in detail in Section 3; we show that this means that
space-efficient programs fail less often than their naı̈ve counterparts
in Section 4.

This paper makes several contributions, extending the existing
solutions in a number of dimensions.

• We present a simplified approach to coercions that extends the
earlier work to refinement types while condensing and clarify-
ing the formulation (Section 3). In particular, earlier systems
have given either term rewriting systems modulo equational
theories, which lack straightfoward implementations [19–21,
33], or they have given complicated algorithms for merging
casts [35]. We rework the definition of coercions to admit a
straightforward term rewriting system, for which we enumerate
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the exact set of canonical coercions. We then define a straight-
forward merge operator on canonical coercions, offering a sim-
pler and clearer theory.
• We introduce what is, at present, the most expressive full-

spectrum language, offering type dynamic as well as refine-
ments of both base types and the dynamic type (Section 2 and
Section 3). This new language narrowly edges out Wadler and
Findler [39] by including refinements of type dynamic.
• We show that this language is space efficient, i.e., there are

a bounded number of coercions in any program, and those
coercions are bounded in size (Section 5).
• We also show that our new language is sound with respect to

the naı̈ve, inefficient semantics: if the naı̈ve semantics reaches
a value, so does the space-efficient one, but occasionally, the
naı̈ve semantics will fail when the space-efficient one succeeds
(Section 4). Of the prior work, only Siek and Wadler [35] prove
a similar soundness theorem, showing that their space-efficient
gradual typing calculus is (exactly) equivalent to their original,
naı̈ve calculus.

2. A naı̈ve coercion calculus
In this section, we define a naı̈ve coercion calculus; to be truly
complete, we ought to define a cast calculus, showing that it and
the naı̈ve calculus are observationally equivalent. To save space,
we omit the definition of a cast calculus and a corresponding proof
of observational equivalence with its corresponding naı̈ve coercion
calculus, opting to simple give the naı̈ve coercion calculus directly.
The relationship between a cast calculus and the naı̈ve coercion
calculus is straightforward, and establishing the relationship is not
hard. (Siek and Wadler [35] establish a more interesting one, relat-
ing their space-efficient threesome casts and a coercion calculus.)

Our language adheres to a design philosophy of “simply types
by default, dynamic and refinement types by coercion”. We believe
this is a novel philosophy of how to build full-spectrum languages.
Our design philosophy has two principles. First, base values have
simple types; e.g., all integers are typed at Int. Second, we give
operations types precise enough to guarantee totality; e.g., division
has a type at least as precise as Int→{x :Int | x 6= 0}→Int. We un-
derstand refinement types as being designed for protecting partial
operations (the original name is due to a method for protecting par-
tial pattern matches [15]); giving operations types that make them
total means that our reasoning about runtime errors can entirely re-
volve around cast (here, coercion) failures.

Before we begin our technical work in earnest, a word about
conventions. We are defining two calculi, and they largely share
syntax and typing rules (of the form T NAME), relying on context
to differentiate terms. The evaluation rules for the naı̈ve calculus
in Section 2 are named F NAME, using a subscripted arrow −→n

for the reduction relation; the space-efficient evaluation rules in
Section 3 are named E NAME using a plain arrow −→.

2.1 Syntax and typing
Most of the terms here are standard parts of the lambda calculus.
The most pertinent extension here is the coercion term, 〈c〉 e; we
describe our language of coercions in greater detail below. Evalu-
ation returns results: either a value or a failure fail. The term fail
represents coercion failure. Coercion failures can occur when the
predicate fails—i.e., e1[v/x ] −→∗n falseId (see F CHECKFAIL)—
or when dynamically typed values don’t match their type—e.g.,
〈Bool?〉 5Int! (see F TAGFAIL). We treat fail as an uncatchable ex-
ception. Our values split in two parts: pre-values u are the typical
values of other languages: constants and lambdas; values v are pre-
values with a stack of primitive coercions. (See below for an expla-

Types and base types
T ::= B | T1→T2 | {x :B | e} | ? | {x :? | e}
B ::= Bool | Int | . . .

Coercions, primitive coercions, and type tags
c ::= d1; . . . ; dn
d ::= D ! | D? | c1 7→ c2 | Fail
D ::= B | Fun | {x :B | e} | {x :? | e}

Terms, results, values, and pre-values
e ::= x | r | op(e1, . . . , en ) | e1 e2 | 〈c〉 e |

〈{x :T | e1}, e2, v〉
r ::= v | fail
v ::= uId | vd
u ::= k | λx :T . e

Typing contexts
Γ ::= ∅ | Γ, x :T

Figure 2. Naı̈ve syntax

nation of the different kinds of coercions.) Technically, a value is
either pre-values tagged with the identity coercion, uId, or a value
tagged with an extra coercion vd . That is, in this language every
value has a list of coercions. Values are introduced in source pro-
grams with the identity coercion, uId. Keeping a coercion on ev-
ery value is a slight departure from prior formulations. Doing so
is technically expedient—simplifying the structure of the language
and clearly differentiating terms with pending coercions and values
with tags.

The terms of our calculus are otherwise fairly unremarkable: we
have variables, application, and a fixed set of built-in operations.
We have two additional runtime terms. The active check 〈{x :T |
e1}, e2, v〉 represents an ongoing check that the value v satisfies
the predicate e1; it is invariant that e1[v/x ] −→∗n e2.

Our calculus has: simple types, where B is a base type and
T1→T2 is the standard function type; the dynamic type ?; and
refinements of both base types and type dynamic. The base re-
finement {x :B | e} includes all constants k of type B such that
e[kId/x ] −→∗n trueId. Similarly, the dynamic refinement {x :? |
e} includes all values v such that v has type ? and e[v/x ] −→∗n
trueId. We sometimes write {x :T | e} when it doesn’t matter
whether the underlying type is ? or B . Notice that refinements of
dynamic indirectly include refinements of functions. At the cost
of having even more canonical coercions in Section 3.1, we could
add refinements of functions. We omit them because they would
have brought complexity without new insights. Going beyond re-
finements of functions, however, is challenging future work (see
Section 7).

Well formedness of types and contexts is defined straightfor-
wardly in Figure 3. It is worth noting, however, that well formed-
ness of refinements refers back to the term typing judgment.

Term typing (also defined in Figure 3) is mostly standard.
Readers should find the rules for constants (T CONST), vari-
ables (T VAR), functions (T ABS), failure (T FAIL), application
(T APP), and built-in operations (T OP) familiar. It is worth taking
a moment to comment on the type assignment functions ty(k) and
ty(op) used in the T CONST and T OP rules. In line with our phi-
losophy , the rule for constants gives them base types: ty(k) = B .
We require that no constant have, by default, type dynamic or a
refinement type. By the same philosophy, the operator type assign-
ment function ty(op) takes operations to first-order types which
ensure totality. If ty(op) = T1 → ... → Tn→T , then the op-
eration’s denotation [[op]] is a total function from (T1, . . . ,Tn) to
T . If, for example, division is expressed as the operator div, then
ty(div) = Int→{x :Int | x 6= 0Id}→Int or some similarly exact
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Well formed contexts and types ` Γ ` T

` ∅
WF EMPTY

` Γ ` T

` Γ, x :T
WF EXTEND

` B
WF BASE

` ?
WF DYN

` T1 ` T2

` T1→T2
WF FUN

` T x :T ` e : Bool

` {x :T | e}
WF REFINE

Well typed terms and values Γ ` u : T Γ ` e : T

` Γ

Γ ` k : ty(k)
T CONST

` T1 Γ, x :T1 ` e12 : T2

Γ ` λx :T1. e12 : T1→T2
T ABS

Γ ` u : T

Γ ` uId : T
T PREVAL

Γ ` v : T1 ` d : T1  T2 d 6= {x :T | e}?
Γ ` vd : T2

T TAGVAL

Γ ` v : T1 ` d : T1  T2 e[v/x ] −→∗n trueId

Γ ` v{x :T |e}? : T2
T TAGVALREFINE

` Γ x :T ∈ Γ

Γ ` x : T
T VAR

` T ` Γ

Γ ` fail : T
T FAIL

` c : T1  T2 Γ ` e : T1

Γ ` 〈c〉 e : T2
T COERCE

ty(op) = T1 → ... → Tn→T Γ ` ei : Ti

Γ ` op(e1, . . . , en ) : T
T OP

Γ ` e1 : (T1→T2) Γ ` e2 : T1

Γ ` e1 e2 : T2
T APP

` Γ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : Bool e1[v/x ] −→∗n e2

Γ ` 〈{x :T | e1}, e2, v〉 : {x :T | e1}
T CHECKNAIVE

Well typed coercions ` c : T1  T2 ` d : T1  T2

` T

` Id : T  T
C ID

` d1 : T1  T ′ ` . . . ; dn : T ′  T2

` d1; . . . ; dn : T1  T2
C COMPOSE

` T1 ` T2

` Fail : T1  T2
C FAIL

` B? : ? B
C BUNTAG

` B ! : B  ?
C BTAG

` c1 : T21  T11 ` c2 : T12  T22

` c1 7→ c2 : (T11→T12) (T21→T22)
C FUN

` Fun? : ? (?→?)
C FUNUNTAG

` Fun! : (?→?) ?
C FUNTAG

` {x :T | e}
` {x :T | e}? : T  {x :T | e}

C PREDUNTAG
` {x :T | e}

` {x :T | e}! : {x :T | e} T
C PREDTAG

Figure 3. Typing

type. This property of operator types is critical: we believe that
refinement types are designed to help programmers avoid failures
of (fundamentally partial) primitive operations.

Pre-values are typed by T CONST and T ABS; pre-values
tagged with the Id coercion are typed as values by T PREVAL.
T TAGVAL types values that are tagged with anything but a re-
finement type, for which we use a separate rule. We want all
values at a refined type to satisfy their refinement—a key prop-
erty of refinement types. The T TAGVALREFINE rule ensures that
values typed at a refinement type actually satisfy their refine-
ment. In our metatheory, the typing rule for active check forms,
T CHECKNAIVE, holds onto a trace of the evaluation of the pred-
icate. If the check succeeds, the trace can then be put directly
into a T TAGVALREFINE derivation. Naturally, none of these rule
premises about evaluation are necessary for source programs—they
are technicalities for our proofs.

The coercions are the essence of this calculus: they represent the
step-by-step checks that are done to move values between dynamic,
simple, and refinement types. The syntax of coercions in Figure 2

splits coercions into three parts: composite coercions c, primitive
coercions d , and tags D . The typing rules for coercions are written
in Figure 3. When it is clear from context whether we mean a
composite or a primitive coercion, we will simply call either a
“coercion”. A composite coercion c is simply a list of primitive
coercions. We write the empty coercion—the composite coercion
comprising zero primitive coercions—as Id. When we write c; d
or d ; c in a rule and it matches against a coercion with a single
primitive coercion—that is, when we match c;B ! against B !—
we let c = Id. This is a slight departure from earlier coercion
systems; this construction avoids messing around too much with re-
association of coercion composition. We compare our coercions to
other formulations in related work (Section 6). There are four kinds
of primitive coercions: failures Fail, tag coercions D !, checking
coercions D?, and functional coercions c1 7→ c2. (Note that c1 and
c2 are composite.) Finally, the tags D are a flattening of the type
space: each base type B has a corresponding tag (which we also
write B ); functions have a single tag Fun. Intuitively, these are the
type tags that are commonly used in dynamically typed languages.
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We also have refinement tags for both types of refinement, which
we write the same as the corresponding types.

Failure coercions are present only for showing the equivalence
with the space-efficient calculus; rule F FAIL gives a semantics
for Fail. (We discuss the operational semantics more fully be-
low, in Section 2.2.) It is worthwhile to contrast our treatment of
failure with that of Herman et al. [20]. Whereas Henglein treats
mismatched tag/untag operations, such as B !;Fun?, as stuck, we
follow Herman et al. [20] in having an explicit failure coercion,
Fail, which leads to an uncatchable program failure, fail. The
F FAIL rule causes the program to fail when a failure coercion
appears. (We carefully keep Fail out of the tags placed on pre-
values and values.) In fact, F FAIL will never apply when eval-
uating sensible source programs—no sane program will start with
Fail in it, and no naı̈ve evaluation rule generates Fail. Instead, fail-
ures arise in the naı̈ve calculus when the other rules with FAIL in
their name fire. We include F FAIL as a technicality for the sound-
ness proof (Theorem 4.6) in Section 4. In Herman et al.’s calcu-
lus, 〈Fail〉 v is a value—the program won’t actually fail until this
value reaches an elimination form. While systems with lazy error
detection have been proposed [23], we say that 〈Fail〉 e raises a
program-terminating exception immediately. Eager error detecton
is more in line with standard error behavior, particularly other cal-
culi where failed casts result in blame [2, 3, 6, 9, 11, 13, 17, 18, 22,
33–35, 38, 39].

The tagging coercions D ! and checking coercions D? fall into
two groups: those which move values into type dynamic and those
which deal with refinements (of either base types or type dynamic).

The tags B and Fun are used to move values to and from
the dynamic type ?. The tagging coercions B ! and Fun! mark a
base value (typed B ) or functional value (typed ?→?) as having
the dynamic type ?. The checking coercions B? and Fun? are
the corresponding untagging coercions, taking a dynamic value
and checking its tag. If the tags match, the original typed value
is returned: 〈Bool?〉 trueB! −→n trueId. If the tags don’t match,
the program fails: 〈Bool?〉 5Int! −→∗n fail.

The tags {x :B | e} and {x :? | e} are used for refinements. The
checking coercion {x :T | e}? checks that a value v satisfies the
predicate e , i.e., that e[v/x ] −→n trueId; see F CHECKOK and
F CHECKFAIL below. The coercion {x :T | e}! is correspondingly
used to ‘forget’ refinement checks.

Note that in both the dynamic and the refinement cases, the
checking coercions are the ones that might fail. Given our philoso-
phy of values starting out simply typed, the two types of coercions
differ in that tagging coercions are applied first when moving from
simple types to dynamic typing, but checking coercions are applied
first when moving to refinements. Any simply typed value is just
fine as an appropriately tagged dynamic value, but a simply typed
value must be checked to see if it satisfies a refinement.

Finally, while the Fun! and Fun? coercions injecting and
project functions on ?→? into type ?, there is a separate struc-
tural coercion that works on typed functions: c1 7→ c2, typed by
the rule C FUN. Note that the C FUN rule is contravariant; see the
F FUN rule below.

2.2 Operational semantics
Our rules are adapted from the evaluation contexts used in Her-
man et al. [20]. F BETA and F OP are totally standard CBV
rules, as are most of the congruence and exception raising rules
(F APPL, F APPR, F OPINNER, F APPRAISEL, F APPRAISER,
F OPRAISE). Before discussing the coercion evaluation rules, it is
worth taking a moment to talk about the denotation of operators.
In particular, [[op]] (v1, ... , vn) must (a) be total when applied to
correctly typed values and (b) ignore the tags on its inputs. This
disallows some potentially useful operators—e.g., projecting the

tag from a dynamic value—but greatly simplifies the technicalities
relating the two calculi in Section 4. We don’t believe that adding
such tag-dependent operators would break anything in a deep way,
but omit them for simplicity’s sake.

Most of the rules for coercions take a term of the form 〈d ; c〉 v
and somehow apply the primitive coercion d to v . The rest cover
more structural uses of coercions. We cover these structural rules
first and then explain the “tagging” rules. F TAGID applies when
we have used up all of the primitive coercions, in which case we
simply drop the coercion form.

The F MERGE and F COERCEINNER rules coordinate coercion
merging and congruence. The F MERGE rule simply concatenates
two adjacent coercions. This concatenation isn’t space efficient—
in the space-efficient calculus, we normalize the concatenation to a
canonical coercion of bounded size. F COERCEINNER steps con-
gruently inside a coerced term—we are careful to ensure that
it can only apply after F MERGE has fired. Carefully staging
F COERCEINNER after F MERGE helps maintain determinism—if
we didn’t force F MERGE to apply first, the number of coercions
might grow out of control. Note that in F MERGE and F FAIL,
the innermost term need not be a value. If we formulated our se-
mantics as an abstract machine, we could have an explicit stack of
coercions; instead, we combine them as they collide.

The remaining coercion rules have TAG in their name and
work on a term 〈d ; c〉 v by combining d and v . F TAGB and
F TAGFUN tag base values and functions (of type ?→?) into type
dynamic, using the tagging coercions B ! and Fun!, respectively.
F TAGBB and F TAGFUNFUN apply B? and Fun? to values that
have matching B ! and Fun! tags; the effect is to simply strip the
tag off the value. The F TAGFUNFAILB, F TAGBFAILFUN, and
F TAGBFAILB rules cause the program to fail when it tries to strip
a tag off with a checking coercion that doesn’t match.

F CHECK starts the active check for a refinement check. An
active check 〈{x :T | e1}, e2, v〉 is a special kind of condition: if
e2 −→∗n trueId, then it returns v{x :T |e1}? (rule F CHECKOK);
if e2 −→∗n falseId, then the active check returns fail (rule
F CHECKFAIL). Note that the typing rules for active checks make
sure that e1[v/x ] −→∗n e2, i.e., that the active check is actually
checking whether or not the value satisfies the predicate. The
F TAGPREDPRED rule is similar the untagging rules F TAGBB
and F TAGFUNFUN, though there is no chance of failure here.
Having {x :T | e}! eliminate the tag {x :T | e}? is reminiscent of
the coercion normalization rule given in the introduction—which
we said occasionally skips checks. But here in the naı̈ve calculus,
F TAGPREDPRED only applies when removing a tag from a value,
i.e., when the check has already been done. In our space-efficient
semantics in Section 3, our coercion normalization will actually
skip checks.

The F TAGFUNWRAP rule wraps a value in a functional co-
ercion. The F FUN rule unwinds applications of wrapped values,
coercing the wrapped function’s argument and result.

In Figure 5, we translate the cast example from the introduction
(Figure 1). It is easy to see that this calculus isn’t space efficient,
either:, coercions can consume an unbounded amount of space. As
the function evaluates, a stack of coercions builds up—here, pro-
portional to the size of the input. Again, we highlight redexes; note
that the whole term is highlighted when the outermost coercions
merge. The casts of the earlier example match the coercions here,
e.g. the cast 〈?⇒ Bool〉 e is just like the coercion 〈Bool?〉 e .

Finally, the naı̈ve calculus is type sound.

2.1 Theorem [Type soundness]: If ∅ ` e : T then either e −→∗n
r or e diverges.
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(λx :T . e12)Id v2 −→n e12[v2/x ]
F BETA

v1(c1 7→c2) v2 −→n 〈c2〉 (v1 (〈c1〉 v2))
F FUN

op(v1, ... , vn ) −→n [[op]] (v1, ... , vn )
F OP

〈{x :T | e}?; c〉 v −→n 〈c〉 〈{x :T | e}, e[v/x ], v〉
F CHECK

〈{x :T | e}, trueId, v〉 −→n v{x :T |e}?
F CHECKOK

〈{x :T | e}, falseId, v〉 −→n fail
F CHECKFAIL

〈Id〉 v −→n v
F TAGID

〈Fun?; c〉 vB! −→n fail
F TAGFUNFAILB

〈Fun?; c〉 vFun! −→n 〈c〉 v
F TAGFUNFUN

〈B !; c〉 v −→n 〈c〉 vB!
F TAGB

〈Fun!; c〉 v −→n 〈c〉 vFun!
F TAGFUN

〈B?; c〉 vB! −→n 〈c〉 v
F TAGBB

B 6= B ′

〈B?; c〉 vB′! −→n fail
F TAGBFAILB

〈B?; c〉 vFun! −→n fail
F TAGBFAILFUN

〈(c1 7→ c2); c〉 v −→n 〈c〉 vc1 7→c2

F TAGFUNWRAP 〈{x :T | e}!; c〉 v{x :T |e}? −→n 〈c〉 v
F TAGPREDPRED

e 6= 〈c′〉 e′

〈Fail; c〉 e −→n fail
F FAIL

e1 −→n e′1
e1 e2 −→n e′1 e2

F APPL
e2 −→n e′2

v1 e2 −→n v1 e′2
F APPR

ei −→n e′i
op(v1, . . . , vi−1 , ei , . . . , en ) −→n op(v1, . . . , vi−1 , e′i , . . . , en )

F OPINNER
e 6= 〈c′〉 e′′ e −→n e′

〈c〉 e −→n 〈c〉 e′
F COERCEINNER

〈c1〉 (〈c2〉 e) −→n 〈c2; c1〉 e
F MERGE

e2 −→n e′2
〈{x :T | e1}, e2, v〉 −→n 〈{x :T | e1}, e′2, v〉

F CHECKINNER

〈c〉 fail −→n fail
F COERCERAISE

fail e2 −→n fail
F APPRAISEL

v1 fail −→n fail
F APPRAISER

op(v1, . . . , vi−1 , fail, . . . , en ) −→n fail
F OPRAISE

〈{x :T | e}, fail, v〉 −→n fail
F CHECKRAISE

Figure 4. Naı̈ve operational semantics

Γ ` u : T1 ` c : T1  T2 c 6= Fail c 6= c′; {x :T | e}?
Γ ` uc : T2

T VAL

Γ ` uc : T ` {x :T | e}? : T  {x :T | e} e[uc/x ] −→∗ trueId
Γ ` uc;{x :T |e}? : {x :T | e}

T VALREFINE

` Γ ` {x :T | e1} ∅ ` v : T ∅ ` e2 : Bool e1[v/x ] −→∗ e2
Γ ` 〈{x :T | e1}, e2, v〉 : {x :T | e1}

T CHECK

Figure 7. Updated typing rules for the space-efficient calculus

3. A space-efficient coercion calculus
Having developed the naı̈ve semantics for our language, we now
turn to space efficiency. There are two loci of inefficiency: co-
ercion merges and function proxies (functional coercions). When
F MERGE applies, it merely concatenates two coercions: 〈c1〉 (〈c2〉 e) −→n

〈c2; c1〉 e . Our space-efficient semantics combines c2 and c1 to
eliminate redundant checks. To bound the number of function prox-
ies, we’ll make sure that coercion merging combines adjacent func-
tional coercions and change the tagging scheme on values—while
the naı̈ve semantics allows an arbitrary stack of tags values, the
space-efficient semantics will keep the size of value tags bounded.
The solution to both of these problems lies in canonical coercions
and our merge algorithm. Before we describe them below in Sec-
tion 3.1, we discuss changes to the syntax of values and to the
typing rules.

We make changes to both the syntax (Figure 6) and typing rules
(Figure 7) of the naı̈ve calculus of Section 2; we define an entirely
new operational semantics (Figure 10). Throughout the new typing
rules, we assume that coercions are canonical (see below).

In the naı̈ve calculus, tagging is stacked: a value is either a
pre-value tagged with Id or a value tagged with a single primitive
coercion. In the space-efficient calculus, we collapse this stack:
values are pre-values tagged with a composite coercion, uc . Naı̈ve,
stacked values were typed using T PREVAL, T TAGVAL, and
T TAGVALREFINE; we now use rules T VAL and T VALREFINE
to type values.

The changes to the typing rules aren’t major: T VAL and
T VALREFINE account for flattened values: T VAL will apply to
uc unless the coercion c ends in {x :T | e}?, in which case the typ-
ing derivation for the value will be T VALREFINE around T VAL.
We separate the two rules to make sure we have value inversion.
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odd 3Id
−→n evenInt! 7→Bool? 2Id
−→n 〈Bool?〉 (even (〈Int!〉 2Id))
−→n 〈Bool?〉 (((λx :Int. . . .)Id)Int? 7→Bool! (2Id)Int!)
−→n 〈Bool?〉 (〈Bool!〉 ((λx :Int. . . .)Id (〈Int?〉 (2Id)Int!)))
−→n 〈Bool!;Bool?〉 ((λx :Int. . . .)Id (〈Int?〉 (2Id)Int!))
−→n 〈Bool!;Bool?〉 ((λx :Int. . . .)Id 2Id)
−→n 〈Bool!;Bool?〉 (odd 1Id)
−→n 〈Bool!;Bool?〉 (evenInt! 7→Bool? 0Id)
−→n 〈Bool!;Bool?〉 (〈Bool?〉 (even (〈Int!〉 0Id)))
−→n 〈Bool?;Bool!;Bool?〉 (even (〈Int!〉 0Id))
−→n 〈Bool?;Bool!;Bool?〉 (((λx :Int. . . .)Id)Int? 7→Bool! (0Id)Int!)
−→n 〈Bool?;Bool!;Bool?〉 (〈Bool!〉

((λx :Int. . . .)Id (〈Int?〉 (0Id)Int!)))
−→n 〈Bool!;Bool?;Bool!;Bool?〉

((λx :Int. . . .)Id (〈Int?〉 (0Id)Int!))
−→n 〈Bool!;Bool?;Bool!;Bool?〉 ((λx :Int. . . .)Id 0Id)
−→n 〈Bool!;Bool?;Bool!;Bool?〉 trueId
−→n 〈Bool?;Bool!;Bool?〉 (trueId)Bool!
−→n 〈Bool!;Bool?〉 trueId
−→n 〈Bool?〉 (trueId)Bool!
−→n 〈Id〉 trueId
−→n trueId

Figure 5. Naı̈ve reduction

r ::= v | fail
v ::= uc
u ::= k | λx :T . e

Figure 6. Updated syntax for the space-efficient calculus

That is, we want to ensure that if a value has a refinement check
tag on it, it satisfies that refinement. The T CHECK rule changes to
use the space-efficient semantics, but it remains a technical rule for
supporting the evaluation of programs. Finally, we change all of
the typing rules to require that coercions appearing in the program
source are canonical. Before discussing the new evaluation rules,
we discuss our space-efficient coercions and what we mean by a
canonical coercion.

3.1 Space-efficient coercions
We define a set of canonical coercions, further subdivided into
value coercions for constants and for functions. We list these co-
ercions in Table 1 below; we prove that they are in fact the normal
coercions for a standard set of rewrite rules given in Figure 8. Next,
we define a set of rules for merging coercions, proving that merg-
ing two well typed canonical coercions yields a well typed canon-
ical coercion—no bigger than the previous two combined. This is
how we will show space efficiency: where a naı̈ve implementation
would accumulate and discharge all checks, our calculus will keep
its coercions in canonical form for which we have a bounded size.

Henglein and Herman et al.’s systems work by taking a single
rewrite rule, the so-called φ rule:

B !;B? −→ Id (φ)

They then define a term rewriting system modulo an equational
theory obtained by completing the following rules with reflexivity,
symmetry, transitivity, and compatibility:

c11 7→ c12; c21 7→ c22 = (c21; c11) 7→ (c12; c22)
(c1; c2); c3 = c1; (c2; c3)

We, however, directly define a rewrite system in Figure 8, where
we lift c −→ c′ over all possible redexes in a composite coercion
d1; . . . ; dn . Note that many of these rules correspond to reduction
rules in the naı̈ve operational semantics; we’ve written the reduc-

Fail; c −→ Fail (F FAIL)
c;Fail −→ Fail

(c11 7→ c12); (c21 7→ c22) −→ (c21; c11) 7→ (c12; c22)
B !;B? −→ Id (F TAGBB)
B !;B ′? −→ Fail when B 6= B ′

(F TAGBFAILB)
Fun!;Fun? −→ Id (F TAGFUNFUN)

B !;Fun? −→ Id (F TAGBFAILFUN)
Fun!;B? −→ Id (F TAGFUNFAILB)

{x :T | e}?; {x :T | e′}! −→ Id (F TAGPREDPRED)
{x :T | e}!; {x :T | e}? −→ Id

Figure 8. Rewriting rules

tion rule names next to such rewrite rules. The rules for predicates
over base types and type dynamic are new. Just as B? takes a less
specific type, ?, to a more specific type B while performing a check
(C BUNTAG), we have {x :B | e}? that take a less specific type,
B to a more specific type {x :B | e} while performing a check
(C PREDUNTAG). By the same analogy, {x :B | e}! takes a more
specific type to a less specific one. The rules for refinements don’t
have just a φ rule—they must have what Henglein calls a ψ rule:

{x :T | e}?; {x :T | e}! −→ Id

Consider the rule F TAGPREDPRED from the naı̈ve operational se-
mantics (Figure 4): we must have a ψ rule if {x :T | e}! is going to
untag v{x :T |e}?. But if {x :T | e}?; {x :T | e}! on tags, it must also
hold for coercions on the stack if we want space efficiency. That is,
space-efficient refinement checking must drop some checks on the
floor. The φ rule for refinements is an optimization, unnecessary
for soundness and space efficiency.

3.1 Lemma: The rewrite system is strongly normalizing on well
typed terms.

3.2 Lemma: The canonical coercions are normal.

3.3 Lemma: If ` c : T1  T2 and c is normal, then c is
canonical.

3.4 Corollary: All well typed coercions rewrite to a canonical
coercion.

Having developed the rewrite rules for our (somewhat relaxed)
coercions, we define a merge algorithm in Figure 9 that takes two
coercions and merges them from the edges. We will only ever
merge canonical coercions, greatly simplifying the algorithm. Our
merging relation implements the φ rule in N BB and N FUNFUN.
We implement failure rules in N BFAILB, N BFAILFUN, and
N FUNFAILB. We relate our coercion systems to others in Sec-
tion 6.

Looking at Table 1, we can see why T VALREFINE only needs
to check the last coercion on a tagged pre-value: if {x :T | e}?
appears in a canonical coercion, it appears at the end. Similarly, the
observation that certain coercions are value coercions, i.e., are the
only coercions that can be applied to values, can be made based
on typing: if constants are typed at simple types and lambdas are
assigned functional types, then all value coercions must come from
B or T1→T2.

We write c1 ⇓ c2 (read “merge c1 and c2”) for canonical
coercions c1 and c2 to mean the coercion c such that c1 ∗ c2 ⇒ c.
This notation is justified by Lemma 3.6, which shows that merging
is an operator on canonical coercions.

3.5 Lemma [Preservation for merge]: If ` c1 : T1  T2 and
` c2 : T2  T3 and c1 ∗ c2 ⇒ c3 then ` c3 : T1  T3.
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c1; c2 is canonical
c1 ∗ c2 ⇒ (c1; c2)

N CANONICAL
c21 ∗ c11 ⇒ c31 c12 ∗ c22 ⇒ c32 c1 ∗ (c31 7→ c32); c2 ⇒ c

c1; (c11 7→ c12) ∗ (c21 7→ c22); c2 ⇒ c
N FUN

Id ∗ c ⇒ c
N IDL

c 6= Id

c ∗ Id⇒ c
N IDR

Fail ∗ c ⇒ Fail
N FAILL

c 6= Fail

c ∗ Fail⇒ Fail
N FAILR

c1 ∗ c2 ⇒ c

c1;B ! ∗ B?; c2 ⇒ c
N BB

c1 ∗ c2 ⇒ c

c1;Fun! ∗ Fun?; c2 ⇒ c
N FUNFUN

B 6= B ′

c1;B ! ∗ B ′?; c2 ⇒ Fail
N BFAILB

c1;B ! ∗ Fun?; c2 ⇒ c
N BFAILFUN

c1;Fun! ∗ B?; c2 ⇒ Fail
N FUNFAILB

c1 ∗ c2 ⇒ c

c1; {x :T | e}? ∗ {x :T | e}!; c2 ⇒ c
N PREDPRED

c1 ∗ c2 ⇒ c

c1; {x :T | e}! ∗ {x :T | e}?; c2 ⇒ c
N PREDSAME

Figure 9. Merging coercions

Coercion Type
Id : T  T

Fail : T  T ′

{x :? | e}? : ?  {x :? | e}
B?; c : ?  T

` c : B  T is a value coercion
Fun?; c : ?  ?→?

` c : (?→?) T is a value coercion
B ! : B  ?

B !; {x :? | e}? : B  {x :? | e}
{x :B | e}? : B  {x :B | e}

Fun! : (?→?)  ?
Fun!; {x :? | e}? : (?→?)  {x :? | e}

c1 7→ c2 : (T11→T12)  (T21→T22)
c1 7→ c2;Fun! : (T11→T12)  ?

c1 7→ c2;Fun!; {x :? | e}? : (T11→T12)  {x :? | e}
{x :? | e}! : {x :? | e}  ?

{x :? | e}!; {x :? | e′}? : {x :? | e}  ? where e 6= e′

{x :? | e}!;B?; c : {x :? | e}  T
` c : B  T is a value coercion

{x :? | e}!;Fun?; c : {x :? | e}  ?→?
` c : (?→?) T is a value coercion

{x :B | e}!; c : {x :B | e}  T
` c : B  T is a value coercion and c 6= {x :B | e}?

Rows with a blue background are value coercions, and are the only coer-
cions that can appear as tags on pre-values. Horizontal rules mark a change
of source type.

Table 1. Canonical coercions

3.6 Lemma [Merge is an operator]: Given canonical coercions `
c1 : T1  T2 and ` c2 : T2  T3, then there exists a unique
canonical coercion c such that c1 ∗ c2 ⇒ c.

3.2 Operational semantics
We give the relevant rules of the changed operational semantics in
Figure 10. The biggest change to our operational semantics is that
E MERGE explicitly merges the two coercions. Herman et al. sim-
ply say that they keep their coercions in normal form—that is,
we should interpret normalization happening automatically when
E MERGE applies, even though they write E MERGE as simply
concatenating the two coercions into c2; c1. Our semantics explic-
itly normalizes the coercions (rule E MERGE), possibly stopping
the program on the next step (the no-longer-useless rule E FAIL).

Otherwise, the rules are largely the same as the naı̈ve se-
mantics, though we’re now able to use merges to distill the tag
rules into a few possibilities: E TAG replaces all of the success-

odd 3Id
−→ evenInt! 7→Bool? 2Id
−→ 〈Bool?〉 (even (〈Int!〉 2Id))
−→ 〈Bool?〉 (((λx :Int. . . .)Int? 7→Bool!) 2Int!)
−→ 〈Bool?〉 (〈Bool!〉 ((λx :Int. . . .)Id (〈Int?〉 2Int!)))
−→ 〈Id〉 ((λx :Int. . . .)Id (〈Int?〉 2Int!))
−→ 〈Id〉 ((λx :Int. . . .)Id 2Id)
−→ 〈Id〉 (odd 1Id)
−→ 〈Id〉 (evenInt! 7→Bool? 0Id)
−→ 〈Id〉 (〈Bool?〉 (even (〈Int!〉 0Id)))
−→ 〈Bool?〉 (even (〈Int!〉 0Id))
−→ 〈Bool?〉 ((λx :Int. . . .)Int?7→Bool! 0Int!)
−→ 〈Bool?〉 (〈Bool!〉 (λx :Int. . . .)Id (〈Int?〉 0Int!))
−→ 〈Id〉 ((λx :Int. . . .)Id (〈Int?〉 0Int!))
−→ 〈Id〉 ((λx :Int. . . .)Id 0Id)
−→ 〈Id〉 trueId
−→ trueId

Figure 11. Space-efficient reduction

ful F TAG* rules; E TAGFAIL replaces all of the failing F TAG*
rules. E CHECKOK is essentially F CHECKOK, though it uses a
merge instead of concatenation (though the typing rules mean that
the merge will apply N CANONICAL every time).

We can finally observe that our reduction is space efficient: the
coercions in Figure 11 don’t grow with the size of the input like the
coercions in Figure 5 or the casts in Figure 1. We discuss this claim
in more detail in Section 5.

3.3 Proofs
Our space-efficient calculus enjoys type soundness; we show as
much using standard syntactic methods.

3.7 Lemma [Progress]: If ∅ ` e : T then either e is a result, or
there exists an e ′ such that e −→ e ′.

3.8 Lemma [Preservation]: If ∅ ` e : T and e −→ e ′, then
∅ ` e ′ : T .

4. Soundness of the space-efficient calculus
We will never get an exact semantic match between the naı̈ve and
space-efficient semantics: the ψ rule for refinements in the space-
efficient semantics mean that some checks will happen in the naı̈ve
semantics that won’t happen in the space-efficient semantics. All
we can hope for is that if the naı̈ve semantics produces a value, the
space-efficient calculus will produce a similar one.
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u1(c1 7→c2) v2 −→ 〈c2〉 (u1Id (〈c1〉 v2))
E FUN

〈c1〉 (〈c2〉 e) −→ 〈c2 ⇓ c1〉 e
E MERGE

d1 6= {x :T | e}? c ∗ d1 ⇒ c′ c′ 6= Fail

〈d1; c2〉 uc −→ 〈c2〉 uc′
E TAG

d1 6= {x :T | e}? c ∗ d1 ⇒ Fail

〈d1; c2〉 uc −→ fail
E TAGFAIL

〈Id〉 v −→ v
E TAGID 〈{x :T | e}, trueId, uc〉 −→ uc⇓{x :T |e}?

E CHECKOK

Figure 10. Operational semantics

Pre-value and value rules

kId ∼ kId : B ⇐⇒ ty(k) = B
v11 ∼ v21 : T1→T2 ⇐⇒

∀v12 ∼ v22 : T1. v11 v12 ' v21 v22 : T2

v1B! ∼ u2c⇓B! : ? ⇐⇒ v1 ∼ u2c : B
v1Fun! ∼ u2c⇓Fun! : ? ⇐⇒ v1 ∼ u2c : ?→?

v1{x :T |e1}? ∼ uc⇓{x :T |e2}? : {x :T | e1}
⇐⇒

v1 ∼ u2c : T ∧ {x :T | e1} ∼ {x :T | e2}
Term rules

e1 ' e2 : T
⇐⇒

e1 diverges ∨ e1 −→∗n fail ∨
(e1 −→∗n v1 ∧ e2 −→∗ v2 ∧ v1 ∼ v2 : T )

Type rules

B ∼ B ? ∼ ?
T11→T12 ∼ T21→T22 ⇐⇒ T11 ∼ T21 ∧ T12 ∼ T22

{x :T | e1} ∼ {x :T | e2} ⇐⇒
∀v1 ∼ v2 : T . e1[v1/x ] ' e2[v2/x ] : Bool

Closing substitutions

Γ |= δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼ δ2(x) : T
Γ ` e1 ' e2 : T ⇐⇒ ∀Γ |= δ.δ1(e1) ' δ2(e2) : T

Figure 12. Relating the naı̈ve and space-efficient semantics

We adapt the asymmetric logical relations from Greenberg et
al. [17] to show that the two calculi behave mostly the same, with
the nav̈e calculus diverging and failing more often. We define the
logical relation in Figure 12. The definitions begin by defining a
relation v1 ∼ v2 : T for closed values and a relation e1 ' e2 : T
for closed terms as a fixpoint on types (it is a known bug that
this isn’t quite right—rather, we ought to use step-indexed logical
relations). We lift the definitions to open terms by defining dual
closing value substitutions δ; if Γ |= δ and x :T ∈ Γ, then
δ1(x ) ∼ δ2(x ) : T .

Naı̈ve terms are on the left of the relation, while space-efficient
terms are on the right. We require that both sides be well typed.
We obtain the asymmetry we seek by saying that when the naı̈ve
semantics yields a value, then the space-efficient yields a similar
one—but otherwise, the naı̈ve semantics will fail or diverge. This
definition still allows the space-efficient calculus to diverge or to
fail, but then the naı̈ve semantics must also diverge or fail—but note
that it’s possible for the left-hand side of the relation to diverge and
the right-hand side to fail, and vice versa. This is possible because
the naı̈ve semantics could run a check diverges, while the space-
efficient semantics skips that check and instead runs a failing one.

Calculating canonical coercions

canonical(Id) = Id
canonical(Fail) = Fail

canonical(d1; . . . ; dn) =
canonical(d1) ⇓ canonical(d2; . . . ; dn)

canonical(D !) = canonical(D)!
canonical(D?) = canonical(D)?

canonical(c1 7→ c2) = canonical(c1) 7→ canonical(c2)

canonical(B) = B
canonical(Fun) = Fun

canonical({x :T | e}) = {x :T | canonical(e)}

canonical(uId) = canonical(u)Id
canonical(vd) = uc⇓d

where canonical(v) = uc

Figure 13. Canonicalizing naı̈ve terms

The value relation v1 ∼ v2 : T is subtler than usual for
logical relation: the definitions at ? and {x :T | e} must shuffle
some tags around. In particular, the rule for type ? is split into
cases by the underlying tag of values The case for refinements
{x :T | e} requires that the values be related at the underlying
type T (recalling that T = B or T = ?) and also that the values
be tagged as satisfying the predicate (or a related predicate, in the
case of the space-efficient calculus).

Our proof works by showing that a well-typed naı̈ve term e is
related to its translation into the space-efficient term canonical(e).
We define canonical in Figure 13, omitting most of the cases
since they are homomorphic. We give the cases for coercions and
for values because they are the most interesting. In particular,
canonical(v) must unfold the stacked tags on a naı̈ve-calculus
value and merge them into a single coercion.

Our ultimate goal is soundness: if Γ ` e : T then Γ ` e '
canonical(e) : T . Our proof works in a few stages: first we define
relations ` c ignorable (coercions which are equivalent to Id or
Fail) and ` c failable (coercions which are equivalent to Fail).
We omit the details of these relations for space, though they are
available in the supplementary materials. We then prove lemmas
that allow us to easily work with ignorable and failable coercions
(Lemma 4.1 and Lemma 4.2, respectively). Then we relate non-
canonical coercions to canonical ones (using a separate inductive
relation ` c1 ∼ c2, defined in Figure 14). We show that such
related coercions are logically related on logically related values.
We then prove a separate lemma showing that related coercions are
logically related on related terms—this not a trivial extension of
the similar lemma for values, due to coercion merges. With those
lemmas to hand, we show soundness. Don’t worry—we explain the
proof less tersely as we go.
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Relating coercions

` c′i ignorable ` ci ∼ di

` c′0; c1; c′1; c2; . . . ; c′n−1 ; cn ; c′n ∼ d1; . . . ; dn
R COMPOSITE

` c ignorable

` c ∼ Id
R ID

` c′i ignorable
` (c1 n 1; . . . ; c111) 7→ (c112; . . . ; c1 n 2) ∼ c21 7→ c22

` (c111 7→ c112); c′1; . . . ; c′n ; (c1 n 1 7→ c1 n 2) ∼ c21 7→ c22
R FUN

` c1 failable

` c′1; c1; c′2 ∼ c2
R FAIL

` D ∼ D

` D ! ∼ D !
R TAG

` D ∼ D

` D? ∼ D?
R CHECK

` B ∼ B
R DB

` Fun ∼ Fun
R DFUN

` {x :T | e1} ∼ {x :T | canonical(e1)}
R DPREDCANONICAL

∀v1 ∼ v2 : T . e1[v1/x ] ' e2[v2/x ] : Bool

` {x :T | e1} ∼ {x :T | e2}
R DPREDLR

Figure 14. Relating coercions

Ignorable coercions can be freely added or removed to naı̈ve
terms while preserving logical relation to space-efficient terms.

4.1 Lemma: If 〈c1; c2〉 v1 ' e2 : T and ` c1 ignorable then
〈c2〉 v1 ' e2 : T .

We prove a similar lemma that failable coercions always fail.

4.2 Lemma: If ` c1 failable, then 〈c′1; c1; c′2〉 v1 ' e2 : T .

With ignorable and failable coercions, we can characterize all
non-canonical coercions, relating them to canonical coercions. The
relation ` c1 ∼ c2 relates a non-canonical coercion c1 to a
canonical coercion c2. Note that this inductively defined relation
isn’t the same thing as the logical relation. First we show that well
typed coercions c in the naı̈ve calculus are related to canonical(c).
Then we’ll use this general relation to relate in the logical relation
how coercion forms work on logically related values. We define
two rules for relating the tag D = {x :T | e}, one which uses
canonical (rule R DPREDCANONICAL) and one which uses the
logical relation (rule R DPREDLR). We’ll use the former rule in
the first lemma, and the latter rule in the second lemma; the IH
on term sizes in the soundness theorem will let us convert the
derivations using the first rule to use the second.

4.3 Lemma [Characterizing non-canonical coercions]: If ` c :
T1  T2 then ` c ∼ canonical(c) (using R DPREDCANONICAL).

We now show that any coercions ` c1 ∼ c2 yield related results
when applied to related values. We defined the relation ` c1 ∼ c2
because this lemma is easier to prove on the relation than on the
canonical function itself.

4.4 Lemma [Relating canonical coercions]:
If v1 ∼ v2 : T1 and ` c1 : T1  T2 and ` c1 ∼ c2 (using
R DPREDLR), then 〈c1〉 v1 ' 〈c2〉 v2 : T2.

In Greenberg et al. [17], a similar characterization of casts is
sufficient. In a standard lambda calculus, we would be able to use
the logical relation to reduce e1 and e2 to values and then directly
apply Lemma 4.4. But that strategy won’t work here: reducing
those terms may put new coercions on the outside; these extra
coercions will merge into c1 and c2 (by F MERGE or E MERGE),
possibly disrupting ` c1 ∼ c2.

4.5 Lemma [Relating coercions with merges]: If e1 ' e2 : T1

and ` c1 : T1  T2 and ` c1 ∼ c2 (using R DPREDLR), then
〈c1〉 e1 ' 〈c2〉 e2 : T2.

Proof: First, we can ignore the cases where e1 −→∗n fail or
e1 diverges—those are immediately related. So e1 −→∗n v1 and

e2 −→∗ v2. By induction on the length of the evaluation deriva-
tions, with a long case analysis on the space-efficient side. �

4.6 Theorem [Soundness]: If Γ ` e : T then Γ ` e '
canonical(e) : T .

Proof: We generalize the proof to work also on values and terms.
By lexicographic induction on the typing derivation and the size of
the term (v or e , respectively), using Lemma 4.5 in the T COERCE
case. We use Lemma 4.3 and Lemma 4.4 in the T TAGVAL and
T TAGVALREFINE cases. �

The definition of ∅ ` e1 ' e2 : T gives us our approxi-
mate observational equivalence: either e −→∗n fail, e diverges, or
e −→∗n v1 and canonical(e) −→∗ v2 such that v1 ∼ v2 : T . Note
that for base values, we have exactly the same result on both sides.

5. Space efficiency
The structure of our space-efficiency proof is largely the same as in
prior work. Coercion size is broken down by the order of the types
involved; the maximum size of any coercion is |largest coercion| ·
2tallest type. Inspecting the canonical coercions, the largest is {x :? |
e}!;Fun?; c1 7→ c2;Fun!; {x :? | e ′}?, with a size of 5. The
largest possible canonical coercion therefore has size M = 5 · 2h.

Formally, observe that merging canonical coercions c1 and c2
either produces a smaller coercion or c1; c2 is canonical.

5.1 Lemma [Merge reduces size]: If c1 ∗ c2 ⇒ c3, then either
size(c1) + size(c2) > size(c3), or c3 = c1; c2 is canonical.

Proof: By induction on the derivation of c1 ∗ c2 ⇒ c3. �

Rules with merges (and E MERGE in particular) don’t increase
the size of the largest coercion in the program. Applying this lemma
across an evaluation e −→∗ e ′, we can see that no coercion ever
exceeds the size of the largest coercion in e . If M is the size
of the largest coercion, then there is at most an M -fold space
overhead of coercions. But this size bound is galactic; we find it
hard to believe that this overhead is observable in practice. A much
more interesting notion of space efficiency—not studied here—is
to determine implementation schemes for space-efficient layout of
coercions in memory and time-efficient merges of coercions. We
believe that explicitly enumerating the canonical coercions is a step
towards this goal: the canonical coercions in Table 1 are exactly
those which must be represented.

6. Related work
There are two related threads of work: a more recent line of work
on gradual types, refinement types, and full-spectrum programming
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languages; and an older, more general line of work on coercions,
which may or may not have runtime semantics. Space efficiency
and representation have been studied in both settings.

Space efficiency, gradual typing, and refinement types
In Siek and Taha’s seminal work on gradual typing [34], space ef-
ficiency is already a concern—they point out that the canonical
forms lemma has implications for which values can be unboxed
(the typed ones). Herman, Tomb, and Flanagan [20] compiled a
language like Siek and Taha’s into a calculus with Henglein’s coer-
cions [19], proving a space-efficiency result with a galactic bound
similar to ours. Herman et al. stop at proving that their compilation
is type preserving without proving soundness of their compilation.
(We compare our system to Herman et al.’s in greater detail be-
low.) Siek, Garcia, and Taha [33] explore the design space around
Herman et al.’s result, this time with an observational equivalence
theorem exactly relating two coercion semantics.

Siek and Wadler [35] study an alternative, cast-based formu-
lation of space efficiency, proving tighter bounds than Herman et
al. [20] and an exact observational equivalence. Their insight is
that casts can be factored not merely as a “twosome” 〈S ⇒ T 〉,
but rather as a threesome: 〈S R⇒ T 〉. They maintain the invariant
that S downcasts to R, and R upcasts to T ; merging casts amounts
to calculating a greatest lower bound. They come up with an ele-
gant theory of merging casts, with a detailed accounting for blame.
While the mathematics is beautiful, we believe that their algorithm
is overkill: Herman et al.’s journal article [21] cleanly enumerates
the recursive structure of the canonical coercions for dynamic and
simple types, with only 17 possible structures at the top level. Siek
and Wadler’s theory is the theory of these 17 structures. Many of
the solutions can be simply pre-computed and looked up in a ta-
ble at runtime. We have 37 canonical coercions. We don’t study the
question here, but we believe that a careful analysis would allow
for very compact representations with very fast merges—by pointer
comparison and table lookup when functional coercions aren’t in-
volved. We discuss this issue further in future work (Section 7).

Before considering other full-spectrum languages, we compare
our work to the most closely related work: Herman, Tomb, Flana-
gan [20, 21] and Henglein [19]. Henglein is trying to reason care-
fully about programs written in a dynamic style, rather than think-
ing about multi-paradigm programming (though it is clear that he
knows that his work applies to “dynamic typing in a static lan-
guage”). His theory of coercions has no Fail coercion and treats
Id slightly differently at function types. Herman et al. adapt his
calculus to match the setting of gradual types, though they never
rebuild his theory. Henglein develops a general theory characteriz-
ing canonical coercions, but we enumerate them.

Perhaps the biggest difference is that Henglein and Herman et
al. formulate coercions as having arbitrary composition: c1; c2 is a
coercion that can be used freely. As a consequence, it is somewhat
difficult to reason directly about coercions in the calculus: what
should 〈(c1 7→ c2;Fun!); {x :? | e}?〉 v do? Their solution is to
work with coercions up to an equivalence relation that includes as-
sociativity of coercion composition; coercions normalize in a term
rewriting system modulo this equivalence relation. Henglein stud-
ies some algorithmic rewriting systems. But Herman et al. don’t
develop the rewriting system at all, never showing that their rewrit-
ing system is strongly normalizing, and even when they enumerate
canonical coercions in their journal version [21], they do so with-
out proof. We feel that term rewriting modulo equational theories
is somewhat insufficient for guiding an implementation of a coer-
cion calculus: the compiler needs a concrete representation for co-
ercions and a concrete algorithm for merging them. We accordingly
adopt a constrained form of coercion composition out of a desire to
aid implementation, but also out of expedience: we don’t need to

worry about associativity at all. We don’t believe that free compo-
sition buys anything, anyway: we don’t expect programmers to be
writing coercions by hand, so ease of expression in the coercion
language isn’t particularly important.

The work discussed so far consisted of calculi devised ex-
pressly for space-efficient gradual typing. Findler et al. [12] dis-
cuss space efficiency from the perspective of an implementation in
PLT Racket (then PLT Scheme). Their setting—latent contracts, no
type system—is rather different from the foregoing systems; they
address datatypes, while the foundational calculi omit datatypes.

Considering the world of full-spectrum programming languages
more broadly, we summarize existing solutions. None of the fol-
lowing are space efficient; we are the first to combine space effi-
ciency, gradual types, and refinement types. Ou et al. [30] cover
the spectrum and include dependent types, but allow only a con-
strained set of refinement predicates; Sage [25] covers the entire
spectrum and also includes dependent types, but lacks a sound-
ness proof; Wadler and Findler’s [39] development covers dynamic
types through refinements of base types; Bierman et al. [4] cover
the whole spectrum but (also with dependency) only for first-order
types.

Coercions
There are many other systems that use coercions to other ends. Hen-
glein gives an excellent summary of work up to 1994 in the related
work section of his article [19]. One of the classic uses of coercions
is subtyping [5, 28]; more recent work relates subtyping and poly-
morphism [8]. Work on unboxing [29, 32] confronts similar issues
of space efficiency. Many of these examples carefully ensure that
coercions are erasable, while our coercions are definitely not.

Swamy, Hicks, and Bierman [36] study coercion insertion in
general, showing that their framework can encode gradual types.
We haven’t studied coercion insertion at all, though Swamy et al.’s
framework would be a natural one to use. We are not aware of work
on how coercion insertion algorithms affect space consumption.

7. Future work
The obvious next step is adding blame [11]. Siek and Wadler [35]
are the only space-efficient calculus to have blame, which they ob-
tain with some effort—their threesome merging takes place outside
in, making it hard to compute which label to blame. We believe
that our inside-out coercion merge algorithm offers a straightfor-
ward way to compute blame: we conjecture that blame comes from
left to right.

Extending the calculus to general refinements, where any type
T can be refined to {x :T | e}, would be a challenging but
important step towards adding polymorphism. (You can’t allow
refinement of type variables unless any type can be refined, since
there’s no way to know what type will be substituted in for the
variable.) It wouldn’t be too difficult to add function refinements
{x :(T1→T2) | e} to this calculus, but refinements of refinements
seem to break space efficiency: if {x :B | e}? is canonical, so is
{x :B | e}?; {x :{x :B | e} | e ′}?—there are an infinite number
of canonical coercions. In a monomorphic calculus, the number of
canonical coercions can be bounded by the types in the original
program, but that doesn’t hold for a polymorphic calculus. Prior
work relating dynamic types and polymorphism will apply here, as
well [2, 26].

Adding dependent functions to the coercion calculus above
would complicate matters significantly, but would also add a great
deal of expressiveness. Programs with dependent types have a po-
tentially infinite set of types (and so coercions) as the program
evaluates, but the shape of canonical coercions remain unchanged.

Set semantics for refinement types extend refinement types to
have a set of predicates, rather than a single one. The N PREDSAME
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merge rule skips a check when we would have projected out of and
then back into a refinement type. If refinements were sets, we could
broaden this optimization to allow the space-efficient calculus to
avoid even more redundant checks.
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