
Under consideration for publication in Theory and Practice of Logic Programming 1

Making Incremental SMT Solving Work for Logic
Programming Systems

Aaron Bembenek1, Michael Ballantyne2,
Michael Greenberg3, Nada Amin1

1Harvard University, 2Northeastern University, 3Pomona College

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

There is a natural appeal to connecting logic programming systems to satisfiability modulo theories (SMT)
solvers, as both have proven to be useful tools for automated reasoning tasks. However, a practical challenge
is how to do this while taking advantage of incremental SMT solving, a key performance consideration. In
other settings, it is possible for the programmer to structure computation so that SMT calls are made in
an order with good “solver locality,” and thus amenable to effective incremental solving. This approach
does not work for many logic programming languages where, by design, the programmer does not have
as much control over the order of evaluation. This paper explores whether, and how, such systems can
still take advantage of incremental SMT solving. In particular, it empirically evaluates the effectiveness
of two lightweight encoding mechanisms that mediate between Formulog (a Datalog-like language) and
an external SMT solver. The mechanisms use different capabilities defined in the SMT-LIB standard: the
first explicitly manages a solver’s assertion stack, while the second checks satisfiability under retractable
assumptions. We show that the latter strategy consistently leads to speedups over a non-incremental baseline
across a variety of benchmarks involving different SMT solvers and SMT-LIB logics.

KEYWORDS: SMT, Datalog, Formulog

1 Introduction

SMT solving is a powerful tool for automated reasoning, with applications in domains such as
model checking (Cimatti and Griggio 2012), program synthesis (Jha et al. 2010), and program
verification (Leino 2010). Given logic programming’s historical application to automated reason-
ing tasks, there is a natural appeal to augmenting logic programming systems with the capabilities
of SMT solving. One such hybrid system is Formulog (Bembenek et al. 2020), a Datalog-like
language with terms that represent SMT formulas and an interface to an external SMT solver.

Any client of an SMT solver faces the challenge of using the solver efficiently. In particular,
modern SMT solvers support incremental solving, so there is often an advantage to asking queries
in an order such that the solver can use work from earlier queries when answering new ones.
Thus, clients are incentivized to pose queries in a way that has good “solver locality” and is
amenable to effective incremental solving.

The notion of “solver locality” raises a potential problem for logic programming systems that
embrace Kowalski’s principle of separating the logic of a computation from its control (1979).
In other settings, the programmer can explicitly structure the order of a computation so that
queries have good solver locality. In logic programming, however, the programmer cedes control

2 Bembenek et al.

to the runtime. For example, in the case of Formulog, the runtime might aggressively rewrite
programs, and then evaluate them using a parallelized bottom-up saturation algorithm. It is hard
for the programmer to craft computations with good solver locality in such a setting.

Indeed, it is not easy to say a priori if there is any gain to be had for a system like Formulog
in incremental SMT solving. Take, for example, the case of using Formulog to compute all-pairs
reachability of a directed graph whose edges are labeled with SMT propositions. Further, say that
reachability is modulo path satisfiability — a path is considered feasible only if the conjunction
of its edge propositions is satisfiable — and that the computation eagerly prunes infeasible paths
by checking newly discovered paths with the SMT solver. This computation could have clearly
good solver locality if it consecutively checked the satisfiability of similar paths (e.g., paths with
a large common prefix); such a result might be achieved by using a sequential depth-first search
(DFS) of the graph, starting at each node in turn. However, the same is not obviously the case
for Formulog, which — thanks to its parallelized bottom-up evaluation algorithm — effectively
performs a breadth-first search of the graph starting from each node of the graph in parallel.
Thus, paths discovered around the same time might not share a very large common prefix; in
fact, they might be completely disjoint! Given the lack of obvious solver locality, it is not clear
if this Formulog program should expect any advantage from incremental SMT solving.

We show empirically that incremental SMT solving can in fact speed up logic programs that
make SMT queries. Furthermore, this gain can be achieved through lightweight mechanisms
sitting between the logic programming runtime and the external SMT solver; in the spirit of
Kowalski’s principle, these mechanisms are invisible to the programmer.

Specifically, this paper evaluates the effectiveness of two different strategies a logic program-
ming runtime can use when it poses SMT problems to an external solver that implements the
SMT-LIB standard (Barrett et al. 2017). The first strategy explicitly manages the external solver’s
assertion stack using push and pop commands; these commands are the traditional mechanism
for incremental SMT solving, but the stack discipline works best when the problem space is itself
explored using a DFS — i.e., a stack discipline. The second strategy takes advantage of checking
satisfiability under retractable assumptions using the check-sat-assuming command. Unlike
push and pop, the check-sat-assuming approach does not have a pro-DFS bias — intuitively,
a better fit for systems like Formulog that do not use DFS-based evaluation algorithms.

Our experimental results confirm this intuition: Using Formulog as our guinea pig system, we
show that the strategy based on check-sat-assuming provides some degree of speedup over a
non-incremental baseline on 79 of 105 benchmarks (75%), whereas the push/pop based strategy
provides a speedup on only 39 benchmarks (37%). Of the 37 benchmarks where both strategies
provide a speedup, the approach based on check-sat-assuming provides a larger speedup in
32 cases. Our evaluation uses a range of SMT solvers and SMT logics, giving us confidence that
our results generalize and accurately advertise the potential advantages of black-box, incremental
SMT solving for logic programming systems.

We claim as contributions:

• A characterization of three possible strategies for communicating with an SMT solver
(Section 2) from a logic programming language (Section 3).

• An evaluation of these three strategies on a range of tasks: symbolic execution, refinement
type checking, and proposition graph reachability (Section 4). We offer evidence that the
check-sat-assuming strategy is generally the most effective approach.

Section 5 addresses the limitations of our approach, and discusses related work.

Making Incremental SMT Solving Work for Logic Programming Systems 3

2 Framing SMT problems

Any application using an SMT solver has to make several important decisions. One decision
is whether to run the solver in single-shot mode, where each query is treated independently, or
in incremental mode, where the solver can retain information from query to query. Incremental
mode often — but not always — results in speedups: in addition to sharing query data structures,
the solver can remember things it learned about the shared parts. For the rest of this paper, we
take for granted that the solver is running in incremental mode.

A second decision — the one at the heart of this paper — is how to frame SMT problems in a
way that leads to effective incremental solving. Faced with a conjunction of SMT propositions,
there are many different ways of posing them to an SMT solver to check satisfiability. Just be-
cause the solver is in incremental mode does not mean that a client can blithely assert conjuncts
and expect a gain from incremental solving; rather, care needs to be taken to formulate queries
in a way such that the solver generates intermediate results that can be reused when evaluating
later queries. Furthermore, a given strategy might lead to good incremental solving performance
for some solver workloads and slowdowns for other workloads.

This section describes the strategies we evaluate in this work. We start with our baseline strat-
egy, with no incremental solving, and then continue on to two incremental strategies (push/pop
and check-sat-assuming). Throughout, we use the running example of asking two similar
queries over the boolean variables x, y, and z:

(x∨ y) ∧ (¬x∨¬z) ∧ y ∧ z
(x∨ y) ∧ (¬x∨¬z) ∧ ¬y ∧ z

The queries differ in their third conjunct concerning y; the first query is satisfiable, but the second
one is not — the first two conjuncts imply that y∨¬z holds.

2.1 The baseline strategy

Our baseline strategy does not take advantage of incremental solving at all: Between every satis-
fiability check, we clear the solver’s assertion state. To make an SMT query, we first push a new
frame on the solver’s assertion stack, then we make our assertions and check for satisfiability,
and finally we pop off this new frame with the command pop. At the end, the solver is back in
the state it was in before the initial push command. On our example, this strategy gives us:1

(push) (assert (or x y))
(assert (or (not x) (not z)))
(assert y)
(assert z)
(check -sat) (pop)
(push) (assert (or x y))
(assert (or (not x) (not z)))
(assert (not y))
(assert z)
(check -sat) (pop)

1 We use SMT-LIB’s s-expression syntax; we omit variable declarations and use push for push 1 and pop for pop 1.

4 Bembenek et al.

There is no sharing between calls; we repeat assertions and lose state. For example, after pro-
cessing the first query, the solver will forget that y∨¬z holds, even though it is derivable from
conjuncts common to both queries. While this strategy does not use incremental solving, it still
uses push and pop and the solver must be in incremental solving mode.

2.2 The push/pop strategy

Incremental solving with an SMT solver is traditionally done by explicitly managing a stack of
assertion frames using the commands push and pop. We call this strategy the push/pop or PP
strategy. The command push pushes an assertion frame on the stack, and the command (pop N)
pops N frames off the stack. When an assertion frame is popped off the stack, the solver’s state is
reset to the state it had before that frame was added, forgetting any assertions made since the last
push along with any consequences derived from those assertions.

When posing a query using the PP strategy, we begin by popping off as many frames as
necessary so that the solver’s assertion stack is a prefix of the current query. We then assert the
remaining conjuncts of the query, placing a push command before every assertion. We would
encode our example as:

(push) (assert (or x y))
(push) (assert (or (not x) (not z)))
(push) (assert y)
(push) (assert z)
(check -sat)
(pop 2)
(push) (assert (not y))
(push) (assert z)
(check -sat)

The PP strategy takes advantage of some sharing between queries; for example, it remembers
that y∨¬z must hold, since the first two conjuncts remain the same. However, it will forget that z
must be true, as this conjunct is popped off the stack (only to be reasserted again). In general, the
PP strategy works well for clients who explore a constraint space using depth-first search (since
the stack disciplines match up), but penalizes clients who use search techniques that align less
well with using a stack (breadth-first search, heuristic searches, etc.). We can see this mismatch
in microcosm here: the fourth conjunct z must be asserted twice given the current ordering of
conjuncts. If the third and fourth conjunct were swapped, then z would only be asserted once,
and it would not be forgotten between calls.

2.3 The check-sat-assuming strategy

Our third and final strategy takes advantage of an alternative approach to incremental solving:
SMT solvers can check for the satisfiability of a set of assertions while assuming particular truth
values for some boolean variables. This technique was developed in the context of incremental
SAT solving (Eén and Sörensson 2003) and added to the SMT-LIB standard in version 2.5 in
2015. We call this the check-sat-assuming or CSA strategy.

The check-sat-assuming command takes a list of a boolean variable and checks for the

Making Incremental SMT Solving Work for Logic Programming Systems 5

satisfiability of the current assertions, assuming the boolean variables in the list.2 As a client no
longer needs to manage an explicit stack of assertions, the client is not penalized for exploring
the search space in a way that does not align well with using a stack. Intuitively, this should be a
boon for logic programming systems like Formulog that do not use a DFS-based search.

In the CSA strategy, assertions are made under a level of indirection: instead of asserting a
conjunct φ directly, we assert a =⇒ φ , where a is a fresh boolean variable; we refer to these
variables as “assumption variables.” When we want to check the satisfiability of a query including
φ , we include a in the list of literals provided to the check-sat-assuming command. On our
example queries, this gives us:

(assert (=> a0 (or x y)))
(assert (=> a1 (or (not x) (not z))))
(assert (=> a2 y))
(assert (=> a3 z))
(check -sat -assuming (a0 a1 a2 a3))
(assert (=> a4 (not y)))
(check -sat -assuming (a0 a1 a4 a3))

Each variable aN is an assumption variable. The CSA strategy allows a high degree of sharing
between satisfiability checks: the fact that three of the four conjuncts are the same in each query
is directly reflected in the fact that the lists of literals supplied to each check-sat-assuming
command includes the assumption variables a0, a1, and a3. The CSA strategy allows for more
sharing than in the PP strategy, where only two assertions are remembered between calls.

2.4 Handling unknown

In general, an SMT solver returns one of three results for a satisfiability check: sat for satisfiable,
unsat for unsatisfiable, and unknown when the solver is not able to determine an answer. This
third case arises when working in logics that are undecidable (for example, non-linear integer
arithmetic, or various fragments with universal quantifiers). Whether a solver returns unknown
to a query depends partly on how that query is encoded. Unfortunately, the three strategies above
cannot be used interchangeably. In particular, the CSA strategy seems to result in unknown for
queries that the other strategies do not. To rule out these “spurious” unknowns, it is necessary
for the CSA strategy to double-check an unknown result using one of the other strategies (in our
experiments, it uses the PP strategy). Thus, the CSA strategy incurs some additional overhead
when working with theories that might yield unknown.

3 System design

A Formulog user builds complex terms representing SMT formulas and reasons about them with
built-in operators like is_sat and get_model. The is_sat operator takes a list of formulas,
translates them to SMT assertions, and queries an external solver to determine whether their
conjunction is satisfiable. It returns one of three values: sat, unsat, or unknown.3 Formulog

2 Technically, it accepts a list of literals, where a literal is a boolean variable or its negation. In our experiments, we only
include positive literals, as we found including negative literals led to worse performance.

3 Our description of the Formulog SMT interface is slightly simplified, but captures the key parts relevant to this paper.

6 Bembenek et al.

r(X, Y, Z) :- p(X), q(Y, Z),
Phi1 = ‘X #= bv_add(Y, Z)’,
Phi2 = ‘Y #= bv_mul(2, Z)’,
is_sat ([Phi1 , Phi2]) = unsat.

Fig. 1. Example Formulog program.

for X in p:
for (Y, Z) in q:

Phi1 = ‘X #= bv_add(Y, Z)’
Phi2 = ‘Y #= bv_mul(2, Z)’
if query_solver ([Phi1 , Phi2]) == unsat: r += (X, Y, Z)

Fig. 2. Evaluation of the example Formulog program in Figure 1.

provides a library of constructors for building formulas involving SMT-LIB constructs such as
uninterpreted functions, integers, bit vectors, arrays, and algebraic data types.

For a concrete example, consider the Formulog rule in Figure 1. The body of this rule first
looks up a value x in relation p and a pair (y,z) in relation q. It then assigns to Phi1 and Phi2
terms representing the formulas x = y+ z and y = 2 ∗ z, respectively, where x, y, and z are in-
terpreted as bit vectors; formula terms are single-quoted. If the conjunction of these formulas is
unsatisfiable, the rule succeeds and derives the tuple (x,y,z) for the r relation. Formulog uses a
bottom-up saturation strategy in the style of semi-naive evaluation (Bancilhon 1986). Conceptu-
ally, our example rule is evaluated like the pseudocode in Figure 2. Relation lookups translate to
nested for loops, and the operator is_sat translates to a call to the function query_solver.
The query_solver function mediates the interaction between Formulog evaluation and SMT
solving: It encodes the given list of assertions into SMT-LIB, transmits the encoded assertions to
an external solver, and relays back the result.

Different versions of the function query_solver implement the three strategies we explore in
this paper: namely, the baseline non-incremental strategy, the PP strategy, and the CSA strategy.
In each case, the function treats each member of its input list as an independent assertion.

The baseline version of query_solver maintains no state; upon receiving assertions, it issues
a push command, poses the assertions, checks for satisfiability, and then issues a pop command.

The PP version of query_solver maintains a stack of assertions, with the invariant that the
solver currently has an equivalent stack of assertions. When query_solver is invoked with a list
of assertions, it finds the largest shared prefix of its stack and the list, starting with the bottom of
the stack and the end of the list, and moving upwards through the stack and backwards through
the list.4 Stack items beyond this prefix are popped from the solver; list items beyond this prefix
are added to the solver (in the reversed iteration order), each one preceded by a push command.

The CSA version of query_solver maintains a map from assertions to assumption variables,
with the invariant that an entry φ 7→ a in the map means that the external solver has the assertion

4 Linked lists in Formulog are “consed” together as stacks: i.e., a new head element is added to the front of a pre-
existing list, so the last element of the list represents the longest-standing member of the list, in the same way that the
bottom-most element is the longest-standing member of the stack.

Making Incremental SMT Solving Work for Logic Programming Systems 7

a =⇒ φ in its assertion stack. When we first meet a new assertion φ , a fresh solver variable a is
created, the map is updated with an entry from this assertion to the variable, and the implication
a =⇒ φ is added to the solver. Once all assertions have been accounted for, a call is made to
CSA with the relevant assumption variables enabled.

Whether or not these strategies provide good solver locality depends on how a given Formu-
log program generates SMT queries. For instance, consider evaluating the example program in
Figure 1 on these (ordered) relations:

p = [a, b]; q = [(c, d), (e, f)]

where a, b, etc. refer to arbitrary terms of an appropriate bit vector type. Doing so will result in
the query_solver function being invoked with four lists, in this order:

[‘a #= bv_add(c, d)’, ‘c #= bv_mul(2, d)’]
[‘a #= bv_add(e, f)’, ‘e #= bv_mul(2, f)’]
[‘b #= bv_add(c, d)’, ‘c #= bv_mul(2, d)’]
[‘b #= bv_add(e, f)’, ‘e #= bv_mul(2, f)’]

There are some shared assertions between these lists — in particular, ‘c #= bv_mul(2, d)’
and ‘e #= bv_mul(2, f)’ each occur in two lists — but there will be no sharing between any
of the solver calls using the push-pop approach, as no two consecutive lists (read backwards)
share a non-empty prefix. On the other hand, the check-sat-assuming approach will cache
and reuse these shared assertions.

As another wrinkle, the for loops in Figure 2 are parallelized in Formulog: different iterations
of the loops happen in different threads. Each evaluation thread is associated with its own solver
instance, and the stateful versions of the function query_solver maintain thread-local state
that correctly reflects the state of the corresponding solver for that thread. The distribution of
queries between threads has a direct impact on the extent to which the different versions of
query_solver can share assertions. In this example, if the first and third queries wind up on the
same thread and the second and fourth queries on another, then both the PP and CSA versions
will get sharing between calls. On the other hand, if the first two queries are on one thread and
the second two on another, then neither strategy will have any sharing.

The bottom-up evaluation strategy, and the parallelism it enables, are important design ele-
ments of Formulog, which is targeted for building scalable SMT-based static analyses. However,
these design choices make it hard to predict how effectively the different query_solver versions
will share formulas during incremental solving.

4 Evaluation

This section empirically evaluates two hypotheses. First, it should be possible for Formulog
to take advantage of incremental SMT solving. We consider this hypothesis to hold if, on
many benchmarks, either the PP strategy or the CSA strategy outperforms the non-incremental
baseline strategy. Second, given our context, the CSA strategy should deliver more consistent
and more substantial speedups than the PP strategy.

The evaluation is in three case studies. The first two are substantial static analyses written in
Formulog: a symbolic execution tool (Section 4.1) and a refinement type checker (the only case
study to induce unknown results; Section 4.2). The third case study computes reachability on
graphs with edges labeled by propositions (Section 4.3); a path is feasible only if the conjunction

8 Bembenek et al.

of the propositions along that path is satisfiable. Section 4.4 summarizes our results, confirming
that our two hypotheses do in fact hold.

For all experiments, we used an Ubuntu Server 16.04 LTS machine with a 3.1 GHz Intel Xeon
Platinum 8175 processor (24 physical CPUs/48 virtual CPUs) and 192 GiB of memory. We set
the Formulog runtime to use 40 threads. For each result, we report the median of three trials.
Instead of absolute times, we report times relative to the non-incremental baseline strategy; we
calculate this by dividing the baseline time by the time for the encoding strategy in question.5

Thus, speedups correspond to numbers greater than 1, and slowdowns to numbers less than 1. In
cases where a strategy times out, we treat its time as being the timeout limit for that case study.
In tables, we identify slowdowns relative to the baseline in red; we identify the best speedup for
a benchmark with bold font. We mark with a dagger † cases in which some trials timed out and
with an asterisk ∗ cases in which some trials crashed.

In the experiments, we variously use the solvers Z3 v4.8.8 (de Moura and Bjørner 2008),
CVC4 v1.7 (Barrett et al. 2011), Yices v2.6.2 (Dutertre 2014), and Boolector v3.2.1 (Niemetz
et al. 2015). The first three support a wider range of SMT-LIB theories than Boolector, which is
limited to bit vectors, arrays, and uninterpreted functions.

4.1 Case study: symbolic execution

Our first case study is a symbolic execution tool for a subset of LLVM bitcode (Lattner and Adve
2004) that corresponds to a simple imperative language with arrays of machine integers. Some of
these machine integers can be symbolic, which means they represent unknown values. Symbolic
execution is a program testing technique for evaluating programs with symbolic values (King
1976; Cadar and Sen 2013). Initially, a symbolic value is assumed to be any value in its domain.
As the interpreter progresses through the program, we narrow the possible values each sym-
bolic value can have. When the interpreter reaches a branch, it forks and takes both branches,
constraining the state in each fork to be consistent with the branch that has been taken. Each
interpreter branch might directly or indirectly constrain the possible values a symbolic value can
take on. Our symbolic execution tool represents symbolic machine integers as bit vector-valued
SMT formulas, and maintains a state that constrains these values via SMT propositions. When-
ever a branch is taken that is conditioned on a symbolic value, we invoke the SMT solver to
make sure that branch is actually feasible — if not, we can “prune” the branch and ignore it. Our
symbolic executor is ∼800 lines of Formulog.

We have evaluated the symbolic evaluator on six different programs, drawn from three tem-
plate programs. The first template (shuffle-N) shuffles an array of N symbolic integers and as-
serts that the resulting array represents the same set of inputs as the initial array. The second
template (sort-N) uses selection sort to sort an array of N symbolic integers and asserts that the
resulting array is sorted. The third template (numbrix) completes a partially filled-in 4×4 grid
with the integers 1 through 16, such that there is a path through the grid from 1 to 16 follow-
ing consecutive integers; the path uses only vertical and horizontal movements. We evaluate the
path-finding template on both satisfiable (numbrix-sat) and unsatisfiable (numbrix-unsat) grid
instances. These templates lead to very different symbolic execution behavior, both in terms of
number of program paths explored (which effects how Formulog’s parallelism behaves, since
paths are evaluated in parallel) and the number of SMT calls made.

5 Tables with absolute times can be found in Appendix A.

Making Incremental SMT Solving Work for Logic Programming Systems 9

Table 1. Speedups for each strategy in each solver on symbolic execution benchmarks

Z3 CVC4 Boolector
Benchmark # paths # SMT calls PP CSA PP CSA PP CSA

shuffle-4 125 455 1.58 1.58 5.46 4.68 15.94 16.67
shuffle-5 1,296 4,088 2.83 3.16 13.33 10.78 1.26 2.93
sort-6 1,359 18,798 0.90 1.93 1.00† 60.00 1.17 11.89
sort-7 11,035 178,461 0.90 1.71 1.00† 7.69 1.00† 7.73
numbrix-sat 1 97 1.51 1.11 1.07 0.91 1.69 1.69
numbrix-unsat 1 97 1.47 1.11 1.31 1.09 1.50 1.55

Average 1.53 1.77 3.86 14.19 3.76 7.08
Median 1.49 1.65 1.19 6.18 1.38 5.33

We ran experiments using the SMT solvers Z3, CVC4, and Boolector. We set each solver to
use the logic QF_ABV (quantifier-free arrays and bit vectors), although the sort-N benchmarks do
not actually generate formulas with array constructs. Timeouts were set to 30 minutes.

Incremental solving led to some form of speedup for every benchmark and solver (Table 1).
Results were mixed in terms of which strategy was better. On the shuffle-N benchmarks, the
CSA strategy was generally better for Z3 and Boolector, whereas the PP strategy was better for
CVC4. The CSA strategy was the unambiguous champion on the sort-N benchmarks, where the
PP strategy timed out on half of the experiments and also had slowdowns relative to the baseline.
This result intuitively makes sense, as the sort-N benchmarks have the symbolic executor explore
a large number of paths using, effectively, a breadth-first search—exactly the opposite of what
the PP strategy needs On the other hand, the PP strategy was in general more effective for the
numbrix benchmarks. Each of these benchmarks have only a single path for the symbolic execu-
tor to explore, making them a good fit for the PP strategy, and making the additional flexibility
of the CSA strategy unnecessary.

4.2 Case study: refinement type checking

Our second case study is a type checker for Dminor, a first-order functional programming lan-
guage with refinement types (Bierman et al. 2012). Dminor employs semantic subtyping: a type
is a subtype of another if its logical denotation implies the denotation of the supertype. The type
checker uses SMT solving primarily to prove subtyping relations, although it also uses it to prove
that an expression is pure (i.e., is deterministic and terminates) and to prove that a type is empty
(i.e., its denotation implies false). The encoding of types as logical formulas is complex, requiring
SMT-LIB features including arrays, algebraic data types, uninterpreted functions, uninterpreted
sorts, and universally quantified axioms. Our type checker is ∼1.2K lines of Formulog.

We have evaluated the type checker using the three SMT strategies on three benchmarks. To
the best of our knowledge, only nine Dminor programs are open source; of these, the Formulog-
based type checker can handle six (the others require the ability to generate an instance of a type,
an ancillary feature not supported by the Formulog-based type checker). The most substantial
of these programs is an interpreter for a simple imperative language. We have combined these
programs together to form a composite program of ∼150 LOC. For each benchmark, we further

10 Bembenek et al.

Table 2. Speedups for each strategy on refinement type checking benchmarks

PP CSA
Benchmark # SMT calls Speedup # unknown Speedup # unknown

all-1 1,006 1.91 4 1.91 4
all-10 9,619 10.99 40 13.86 40
all-100 89,597 12.04 400 17.82 546

Average 8.31 11.20
Median 10.99 13.86

compose this program on top of itself: the benchmark all-N consists of N copies of the program.
We tested the configurations all-1, all-10, and all-100. Z3 was the only back-end SMT solver
we could use (the other solvers we considered did not have sufficient support for algebraic data
types). Timeouts were set to one hour.

Incremental solving led to consistent speedups on these benchmarks, with the CSA strategy
being the clear winner (Table 2). For the largest case (all-100), the CSA strategy has a speedup
of 17.82× over the baseline strategy, compared to a speedup of 12.04× for the PP strategy.
These speedups might be even more dramatic than reported, as the baseline timed out but we
conservatively treat it as completing in an hour. Because the formulas generated by the type
checker include universal quantifiers, the SMT solver sometimes returns unknown. As mentioned
in Section 2, the CSA strategy sometimes returns a “spurious” unknown when the PP strategy
does not. In all-100, 146 of the 546 unknowns returned by the CSA strategy were spurious.
Although this is a large fragment of the unknowns (27%), only a small percentage (0.6%) of
calls overall result in unknown. The number of spurious unknowns seems to be correlated with
the size of the benchmark (and presumably with the complexity of the solver state), as all-1 and
all-10 had none of them, and all-50 (not reported in the table) had a median of only one.

4.3 Case study: proposition graph reachability

In this case study, we compute all-pairs reachability for proposition graphs, i.e., directed graphs
where edges are labeled with SMT propositions. Reachability is modulo the satisfiability of the
propositions along a path. The program in this case study consists of two rules that compute
tuples of the reach relation, where reach(x,y,~z,~φ) holds if there is a path~z from node x to
node y with the satisfiable path constraint ~φ . Because it is easy to synthesize random proposition
graphs with different types of SMT propositions, this case study gives us the opportunity to
evaluate how well our hypotheses generalize across different SMT-LIB logics — a handy thing
to know, since SMT solvers often use internal solvers specialized to particular logics.

We generate random proposition graphs in a given theory in two phases: first, we generate a
random graph, then we assign propositions to the edges. To generate random graphs, we sampled
uniformly from all directed graphs on ten vertices: each node is connected to each other node
with probability 0.5 — in the Erdős-Rényi model, G(10,0.5) (Erdős and Rényi 1959).6 Given

6 Even though the graphs only contain ten nodes, computing reachability can still be computationally intensive, since
we compute all simple paths and cycles.

Making Incremental SMT Solving Work for Logic Programming Systems 11

Table 3. Speedups for each strategy for each bit vector logic in each solver on proposition graph
reachability benchmarks

SMT Z3 CVC4 Yices Boolector
Benchmark calls PP CSA PP CSA PP CSA PP CSA

QF_BV-1 7,984 0.85 1.47 1.01 12.07 0.98 0.87 1.03 9.53
QF_BV-2 1,994 0.95 1.09 1.06 1.82 0.98 0.96 0.97 2.65
QF_BV-3 9,088 0.86 1.62 1.11 19.67 0.98 1.00 1.10 13.51
QF_UFBV-1 19,729 0.90 1.39 1.06 15.23 0.96 1.09 1.10 8.90
QF_UFBV-2 16,145 0.88 1.20 1.10 4.57 0.97 1.06 1.14 4.27
QF_UFBV-3 18,137 0.87 1.29 1.21 16.44 0.98 1.05 1.15 12.57
QF_ABV-1 22,486 0.93 1.09 0.99 2.56 0.98 0.80 1.11 41.97
QF_ABV-2 59,713 0.91∗ 1.28 1.25 3.16 0.98 0.99 1.08 26.08
QF_ABV-3 12,284 0.92 1.27 1.09 5.82 0.98 1.11 1.00 12.03
QF_AUFBV-1 26,128 0.89 0.93 1.13 4.81 0.98 0.85 1.15 7.55
QF_AUFBV-2 19,136 0.92 1.51 1.06 12.11 0.97 1.10 1.10 17.13
QF_AUFBV-3 26,914 0.94 1.52 1.22 13.41 0.97 1.05 1.16 27.08

Average 0.90 1.31 1.11 9.31 0.98 0.99 1.09 15.27
Median 0.90 1.29 1.10 8.94 0.98 1.02 1.10 12.30

a graph, each edge is assigned a randomly generated formula. To generate a random formula of
size m in a given theory, we randomly generate well-sorted applications of that theory’s operators
to random formulas of size m/2. The leaves of formulas are made up variables and constants; we
generate variables twice as often as constants. We are careful to ensure that variables exist for
every sort mentioned in the theory’s operators. (For bit vectors and integers, we only generated
constants in the range −50 to 50; we use both 4- and 8-bit widths for bit vectors.) We use
Haskell’s QuickCheck to generate random values (Claessen and Hughes 2000).

We used eight different SMT logics in our evaluations; for a given logic L, we generated three
random graphs (named L-1, L-2, and L-3). Timeouts were five minutes.

We tested the logics of quantifier-free bit vectors (QF_BV), plus uninterpreted functions and/or
arrays (QF_UFBV, QF_ABV, and QF_AUFBV), using the solvers Z3, CVC4, Yices, and Boolec-
tor (Table 3). For Z3, CVC4, and Boolector, the CSA strategy provided consistent speedups over
the baseline. These speedups were relatively mild in the case of Z3 (an average of 1.31×), but
substantial in the cases of CVC4 and Boolector (an average of 9.31× and 15.27×, respectively).
For Yices, the CSA strategy was slightly better than the baseline about half the time and slightly
worse the other half; on average, it performed on par with the baseline. The PP strategy was
clearly not as effective on these benchmarks: it was consistently worse than the baseline for
Z3 and Yices, and had relatively small speedups compared to the CSA strategy for CVC4 and
Boolector (an average of 1.11× and 1.09×, respectively).

The story is more mixed for the logics of quantifier-free linear integer arithmetic (QF_LIA),
with uninterpreted functions and/or arrays (QF_UFLIA, QF_ALIA, and QF_AUFLIA), which
we tested using Z3, CVC4, and Yices (Table 4). For the array-free logics, the CSA strategy
provided consistent, if mild, speedups to all the solvers (averages of 1.04×, 1.34×, and 1.03×,
respectively). The strategy performed badly, though, for the logics with arrays, with a slight
slowdown over the baseline for Z3, and substantial slowdowns for CVC4 and Yices (includ-

12 Bembenek et al.

Table 4. Speedups for each strategy for each linear integer arithmetic logic in each solver on
proposition graph reachability benchmarks

Z3 CVC4 Yices
Benchmark # SMT calls PP CSA PP CSA PP CSA

QF_LIA-1 3,967 0.91 1.05 0.93 1.91 0.98 1.01
QF_LIA-2 2,307 0.99 1.00 0.99 1.25 0.96 1.00
QF_LIA-3 3,240 0.92 1.01 0.95 1.12 1.00 1.01
QF_UFLIA-1 16,856 0.88∗ 1.00 0.93 1.16 0.94 1.03
QF_UFLIA-2 13,200 0.86∗ 1.09 0.95 1.26 0.97 1.02
QF_UFLIA-3 44,154 N/A∗ 1.11 0.97 1.34 0.93 1.13

Average 0.91 1.04 0.95 1.34 0.96 1.03
Median 0.91 1.03 0.95 1.26 0.97 1.02

QF_ALIA-1 6,742 0.96 1.08 0.94 0.89 0.99 0.76
QF_ALIA-2 11,375 0.90 0.54 1.00 0.05 0.98 0.27
QF_ALIA-3 21,982 0.87 0.69 1.02 0.09 0.97 0.01†

QF_AUFLIA-1 18,416 0.90 0.92 0.97 0.18 0.99 0.36
QF_AUFLIA-2 7,190 0.97 1.13 0.97 0.49 0.98 0.03
QF_AUFLIA-3 19,037 0.90 1.06 0.97 0.50 0.96 0.15

Average 0.92 0.90 0.98 0.36 0.98 0.26
Median 0.90 0.99 0.97 0.33 0.98 0.21

ing consistent timeouts on the QF_ALIA-3 benchmark in the latter case). The PP strategy was
consistently slightly worse than the baseline for both sets of benchmarks.

To better understand our results, we ran an additional set of experiments using the same propo-
sition graphs (Table A 4). In these experiments, a program computes reachability from a single
distinguished node using a search similar to DFS. Incremental solving gave speedups on 76 of 84
benchmarks (90%). On 54 benchmarks (64%), the PP strategy outperformed the CSA strategy,
suggesting that for workloads with the right solver locality, it can often provide improved perfor-
mance. This indicates that our results for parallel all-pairs reachability, where CSA is consistently
the better strategy, really reflect the fact that the programs do not have good solver locality for PP
(matching our intuition that CSA would be a better fit for non-DFS settings). In these additional
experiments, we also found that the incremental strategies often provided speedups in the bench-
marks combining linear integer arithmetic and arrays, where we previously had no speedups.
This indicates that there is the potential for gains from incremental solving for these logics, but
our strategies are not delivering them for the all-pairs reachability workload; this could perhaps
be more of a reflection of current solver technology than anything fundamental.

4.4 Summary

Our results confirm our two hypotheses:
There is a gain to be had from incremental solving, despite the lack of obvious solver lo-

cality under evaluation strategies like Formulog’s. Across all case studies, we ran 105 distinct

Making Incremental SMT Solving Work for Logic Programming Systems 13

experiments; on 81 of these experiments (77%), either the PP strategy or CSA strategy led to
some speedup over the non-incremental baseline. Furthermore, of the 24 counterexamples, most
of them (14) are among the proposition graph reachability experiments with logics combining
linear integer arithmetic and arrays; these logics seem to be the exception rather than the norm.

Our numbers demonstrate that CSA strategy is more effective than the PP strategy. The
CSA strategy provided a speedup on 79 experiments, compared to 39 for the PP strategy. There
were only two instances where the PP strategy provided a speedup and the CSA strategy did not,
and only five instances where both strategies led to speedups but the PP strategy was faster.

5 Limitations and related work

In an empirical evaluation involving SMT solving, the generality of any result is necessarily lim-
ited, as it reflects only current solver technology. SMT solvers are constantly evolving, and new
heuristics, for example, could dramatically change the performance of a strategy. Nevertheless,
we found relatively consistent and robust results across a variety of benchmarks, SMT solvers,
and SMT logics. We have a reasonable basis to believe that our results should generalize beyond
the context of our evaluation.

This paper has assumed a black-box interaction between the logic programming system and
SMT solver. It might be possible to more tightly integrate the two, passing more information
between them that could improve incremental solving performance. Previous work has explored
this type of integration within SMT solvers (Nieuwenhuis et al. 2006) and constraint answer
set programming solvers (Balduccini and Lierler 2013). However, there are good arguments for
black-box usage of an SMT solver, not least of all is the ability to pull one off the shelf and use
it without substantial changes to the logic programming runtime or SMT solver itself.

Furthermore, we have only evaluated lightweight mechanisms for achieving incremental solv-
ing. Many alternative mechanisms are possible, and could be worth exploring in future work. For
example, a heavier-weight mechanism could maintain a pool of SMT solvers, and given an SMT
query, assign it to a solver in a way to maximize incremental solving, or try different strategies
simultaneously on different solvers, accepting the answer of the first one that finishes, like port-
folio solving (Wintersteiger et al. 2009). Along a different dimension, it might be possible for a
logic programming language to more directly expose an incremental SMT solving interface to
the programmer (albeit this might be less in the spirit of Kowalski’s principle).

Other work has explored how to make effective use of incremental SMT solving for particular
applications, such as bounded model checking (Günther and Weissenbacher 2014) and symbolic
execution (Liu et al. 2014). Our approach is agnostic to the application, but does not address the
question of how an application can generate constraints with shared conjuncts (a prerequisite for
our approach that is not always easy to achieve).

6 Conclusion

This paper has explored whether a logic programming system can take advantage of incremental
solving in an external SMT solver, even when the former does not generate SMT queries in an
order that has obviously good “solver locality” and the latter is used only as a black-box. Across a
range of benchmarks, SMT solvers, and SMT logics, we evaluated two different strategies that the
logic programming system Formulog uses to pose SMT queries to the solver. A strategy based
on the check-sat-assuming command consistently led to speedups over a non-incremental

14 Bembenek et al.

baseline, demonstrating that it is possible to take advantage of incremental SMT solving in a
logic programming setting: one needs to merely maintain a lightweight map from formulas to
assumption variables to mediate between the logic programming runtime and SMT solver.

References

BALDUCCINI, M. AND LIERLER, Y. 2013. Integration schemas for constraint answer set programming: a
case study. Theory and Practice of Logic Programming 13, 4-5, 1–12.

BANCILHON, F. 1986. Naive evaluation of recursively defined relations. In On Knowledge Base Manage-
ment Systems. 165–178.

BARRETT, C., CONWAY, C. L., DETERS, M., HADAREAN, L., JOVANOVIĆ, D., KING, T., REYNOLDS,
A., AND TINELLI, C. 2011. CVC4. In Proc. 23rd Int. Conf. on Computer Aided Verification. 171–177.

BARRETT, C., FONTAINE, P., AND TINELLI, C. 2017. The SMT-LIB standard: Version 2.6. Tech. rep.,
Department of Computer Science, The University of Iowa.

BEMBENEK, A., GREENBERG, M., AND CHONG, S. 2020. Formulog: Datalog for SMT-based static
analysis. In submission.

BIERMAN, G. M., GORDON, A. D., HRIŢCU, C., AND LANGWORTHY, D. 2012. Semantic subtyping
with an SMT solver. Journal of Functional Programming 22, 1, 31–105.

CADAR, C. AND SEN, K. 2013. Symbolic execution for software testing: Three decades later. Commun.
ACM 56, 2 (Feb.), 82–90.

CIMATTI, A. AND GRIGGIO, A. 2012. Software model checking via IC3. In Proc. 24th Int. Conf. on
Computer Aided Verification. 277–293.

CLAESSEN, K. AND HUGHES, J. 2000. QuickCheck: A lightweight tool for random testing of Haskell
programs. In Proc. 5th ACM SIGPLAN Int. Conf. on Functional Programming. 268–279.

DE MOURA, L. AND BJØRNER, N. 2008. Z3: An efficient SMT solver. In Proc. 14th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems. 337–340.

DUTERTRE, B. 2014. Yices 2.2. In In Proc. 26th Int. Conf. on Computer-Aided Verification. 737–744.
EÉN, N. AND SÖRENSSON, N. 2003. Temporal induction by incremental SAT solving. Electronic Notes

in Theoretical Computer Science 89, 4, 543–560.
ERDŐS, P. AND RÉNYI, A. 1959. On random graphs I. Publ. Math. 6, 290–297.
GÜNTHER, H. AND WEISSENBACHER, G. 2014. Incremental bounded software model checking. In Proc.

2014 Int. Symp. on Model Checking of Software. 40–47.
JHA, S., GULWANI, S., SESHIA, S. A., AND TIWARI, A. 2010. Oracle-guided component-based program

synthesis. In Proc. 32nd ACM/IEEE Int. Conf. on Software Engineering. 215–224.
KING, J. C. 1976. Symbolic execution and program testing. Commun. ACM 19, 7, 385–394.
KOWALSKI, R. 1979. Algorithm = logic + control. Commun. ACM 22, 7, 424–436.
LATTNER, C. AND ADVE, V. 2004. LLVM: A compilation framework for lifelong program analysis &

transformation. In Proc. 2nd IEEE/ACM Int. Symp. on Code Generation and Optimization. 75–88.
LEINO, K. R. M. 2010. Dafny: An automatic program verifier for functional correctness. In Int. Conf. on

Logic for Programming Artificial Intelligence and Reasoning. Springer, 348–370.
LIU, T., ARAÚJO, M., D’AMORIM, M., AND TAGHDIRI, M. 2014. A comparative study of incremental

constraint solving approaches in symbolic execution. In Haifa Verification Conference. 284–299.
NIEMETZ, A., PREINER, M., AND BIERE, A. 2014 (published 2015). Boolector 2.0 system description.

Journal on Satisfiability, Boolean Modeling and Computation 9, 53–58.
NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT modulo theories:

From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM
(JACM) 53, 6, 937–977.

WINTERSTEIGER, C. M., HAMADI, Y., AND DE MOURA, L. 2009. A concurrent portfolio approach to
SMT solving. In Proc. 21st Int. Conf. on Computer Aided Verification. 715–720.

Making Incremental SMT Solving Work for Logic Programming Systems 15

Appendix A Additional tables

Table A 1. Time (s) for each strategy in each solver on symbolic execution benchmarks

Z3 CVC4
Benchmark Baseline PP CSA Baseline PP CSA

shuffle-4 5 3 3 33 6 7
shuffle-5 54 19 17 1800† 135 167
sort-6 56 62 29 1800† 1800† 30
sort-7 391 434 228 1800† 1800† 234
numbrix-sat 55 36 49 83 78 92
numbrix-unsat 46 31 41 64 49 59

Table A 1 (cont.). Time (s) for each strategy in each solver on symbolic execution benchmarks

Boolector
Benchmark Baseline PP CSA

shuffle-4 733 46 44
shuffle-5 1800† 1434 614
sort-6 404 345 34
sort-7 1800† 1800† 233
numbrix-sat 202 119 119
numbrix-unsat 186 124 120

Table A 2. Times (s) for each strategy on refinement type checking benchmarks

Benchmark Baseline PP CSA

all-1 10 5 5
all-10 319 29 23
all-100 3600† 299 202

16 Bembenek et al.

Table A 3. Time (ms) for each strategy for each logic in each solver on proposition graph reach-
ability benchmarks

Z3 CVC4
Benchmark Baseline PP CSA Baseline PP CSA

QF_BV-1 3131 3684 2128 27288 26952 2252
QF_BV-2 1327 1399 1216 2302 2162 1267
QF_BV-3 4080 4750 2514 47395 42525 2409
QF_UFBV-1 2688 2988 2514 36054 34115 2367
QF_UFBV-2 1807 2051 1506 7457 6773 1630
QF_UFBV-3 2109 2412 1631 32923 27315 2003
QF_ABV-1 3677 3971 3371 87534 88756 34229
QF_ABV-2 6664 7332∗ 5198 175831 140875 55719
QF_ABV-3 2205 2389 1739 23648 21657 4065
QF_AUFBV-1 3596 4020 3860 30930 27264 6436
QF_AUFBV-2 2856 3114 1893 55150 52046 4554
QF_AUFBV-3 4324 4609 2845 95692 78728 7134
QF_LIA-1 1494 1649 1429 2966 3198 1555
QF_LIA-2 1185 1201 1188 1454 1465 1166
QF_LIA-3 1199 1306 1188 1282 1347 1149
QF_UFLIA-1 1666 1903∗ 1667 2215 2375 1908
QF_UFLIA-2 1628 1898∗ 1492 2359 2492 1866
QF_UFLIA-3 2764 N/A∗ 2494 5492 5681 4085
QF_ALIA-1 1499 1562 1382 1743 1860 1965
QF_ALIA-2 2016 2232 3765 4315 4337 88495
QF_ALIA-3 2343 2688 3409 7287 7134 76707
QF_AUFLIA-1 2017 2234 2192 4213 4321 24004
QF_AUFLIA-2 1785 1838 1577 4032 4176 8290
QF_AUFLIA-3 2133 2373 2010 4065 4202 8193

Making Incremental SMT Solving Work for Logic Programming Systems 17

Table A 3 (cont.). Time (ms) for each strategy for each logic in each solver on proposition graph
reachability benchmarks

Yices Boolector
Benchmark Baseline PP CSA Baseline PP CSA

QF_BV-1 1601 1629 1842 41681 40570 4375
QF_BV-2 1079 1101 1126 6103 6297 2301
QF_BV-3 1820 1851 1827 42880 38867 3173
QF_UFBV-1 1903 1976 1740 39330 35823 4418
QF_UFBV-2 1447 1488 1362 7028 6187 1645
QF_UFBV-3 1652 1693 1569 36019 31422 2866
QF_ABV-1 2176 2211 2703 221540 199575 5279
QF_ABV-2 3826 3929 3876 220352 203139 8448
QF_ABV-3 1792 1821 1616 44170 44061 3672
QF_AUFBV-1 2163 2196 2547 85078 74113 11276
QF_AUFBV-2 1996 2064 1809 60588 55272 3538
QF_AUFBV-3 2766 2842 2644 156223 135087 5770
QF_LIA-1 1207 1237 1190
QF_LIA-2 1081 1126 1077
QF_LIA-3 1125 1126 1111
QF_UFLIA-1 1380 1467 1337
QF_UFLIA-2 1318 1355 1298
QF_UFLIA-3 1893 2032 1679
QF_ALIA-1 1274 1285 1674
QF_ALIA-2 1524 1556 5544
QF_ALIA-3 1863 1918 300000†

QF_AUFLIA-1 1691 1714 4647
QF_AUFLIA-2 1523 1552 50876
QF_AUFLIA-3 1843 1911 12470

18 Bembenek et al.

Table A 4. Speedup for each strategy for each logic in each solver on single-origin, DFS-like
proposition graph reachability benchmarks

SMT Z3 CVC4 Yices Boolector
Benchmark calls PP CSA PP CSA PP CSA PP CSA

QF_BV-1 1798 1.05 1.06 1.32 1.41 1.02 0.97 1.46 2.25
QF_BV-2 293 0.98 0.98 1.01 0.99 1.00 0.97 1.28 1.15
QF_BV-3 966 1.05 1.07 1.28 1.44 1.03 1.01 1.66 1.65
QF_UFBV-1 4591 1.16 1.18 2.82 3.70 1.06 1.08 2.56 5.33
QF_UFBV-2 1388 0.99 1.01 1.12 1.11 0.99 0.98 1.06 1.02
QF_UFBV-3 2088 1.04 1.02 1.34 1.49 1.05 1.02 1.64 2.47
QF_ABV-1 2584 1.15 1.08 1.58 0.96 1.12 1.05 2.46 3.30
QF_ABV-2 8360 1.24 1.25 2.64 2.46 1.14 1.12 3.10 6.64
QF_ABV-3 1086 1.04 1.01 1.17 1.16 1.04 1.00 1.07 1.67
QF_AUFBV-1 4530 1.13 1.09 2.03 2.19 1.15 1.12 2.80 4.22
QF_AUFBV-2 3403 1.12 1.12 2.37 2.82 1.08 1.09 2.47 4.23
QF_AUFBV-3 7002 1.30 1.29 3.30 4.70 1.21 1.13 3.75 9.11
QF_LIA-1 440 1.04 0.99 1.04 0.99 1.03 0.98
QF_LIA-2 395 1.00 1.00 0.97 0.97 0.99 0.97
QF_LIA-3 480 0.93 0.94 0.97 0.95 1.02 0.97
QF_UFLIA-1 1874 1.04 1.00 1.07 1.02 1.03 1.00
QF_UFLIA-2 2689 1.02 1.04 1.04 1.05 1.03 1.03
QF_UFLIA-3 3990 1.06 1.03 1.16 1.12 1.07 1.07
QF_ALIA-1 1444 0.99 1.07 1.03 1.00 1.04 1.01
QF_ALIA-2 2197 1.09 0.97 1.19 0.45 1.10 1.05
QF_ALIA-3 2831 1.10 1.03 1.24 0.69 1.07 0.91
QF_AUFLIA-1 2435 1.05 1.03 1.12 0.88 1.06 1.01
QF_AUFLIA-2 710 0.96 1.03 1.05 0.96 0.98 0.95
QF_AUFLIA-3 6320 1.16 1.14 1.30 0.84 1.17 0.96

Average 1.07 1.06 1.47 1.47 1.06 1.02 2.11 3.59
Median 1.05 1.03 1.18 1.03 1.05 1.01 2.06 2.89

Making Incremental SMT Solving Work for Logic Programming Systems 19

Table A 5. Time (ms) for each strategy for each logic in each solver on single-origin, DFS-like
proposition graph reachability benchmarks

Z3 CVC4
Benchmark Baseline PP CSA Baseline PP CSA

QF_BV-1 1232 1174 1166 1744 1325 1237
QF_BV-2 968 983 986 971 959 982
QF_BV-3 1198 1143 986 1609 1255 1119
QF_UFBV-1 1368 1180 1164 4690 1666 1267
QF_UFBV-2 1067 1077 1056 1160 1038 1046
QF_UFBV-3 1095 1048 1074 1663 1242 1114
QF_ABV-1 1340 1169 1246 4408 2781 4598
QF_ABV-2 1897 1526 1512 8144 3085 3304
QF_ABV-3 1081 1044 1066 1339 1147 1155
QF_AUFBV-1 1461 1289 1336 3734 1841 1708
QF_AUFBV-2 1305 1164 1169 3832 1614 1359
QF_AUFBV-3 1797 1381 1187 10160 3078 2160
QF_LIA-1 994 954 1003 990 951 1002
QF_LIA-2 935 937 934 944 969 978
QF_LIA-3 917 990 980 915 939 961
QF_UFLIA-1 1071 1034 1068 1073 1002 1051
QF_UFLIA-2 1127 1109 1087 1147 1102 1093
QF_UFLIA-3 1159 1092 1127 1283 1104 1151
QF_ALIA-1 1106 1112 1037 1101 1074 1100
QF_ALIA-2 1245 1147 1278 1389 1165 3106
QF_ALIA-3 1223 1108 1192 1505 1216 2191
QF_AUFLIA-1 1163 1105 1124 1298 1162 1473
QF_AUFLIA-2 1073 1122 1044 1133 1080 1180
QF_AUFLIA-3 1478 1270 1295 1864 1432 2209

20 Bembenek et al.

Table A 5 (cont.). Time (ms) for each strategy for each logic in each solver on single-origin,
DFS-like proposition graph reachability benchmarks

Yices Boolector
Benchmark Baseline PP CSA Baseline PP CSA

QF_BV-1 1069 1053 1102 4010 2752 1785
QF_BV-2 929 932 955 1378 1074 1199
QF_BV-3 1042 1008 1029 3102 1864 1878
QF_UFBV-1 1201 1128 1112 7577 2961 1421
QF_UFBV-2 1006 1013 1031 1384 1310 1359
QF_UFBV-3 1066 1014 1044 3532 2157 1429
QF_ABV-1 1233 1106 1174 6422 2615 1944
QF_ABV-2 1520 1337 1357 16080 5192 2421
QF_ABV-3 1050 1010 1046 2140 1997 1283
QF_AUFBV-1 1337 1159 1192 9513 3400 2254
QF_AUFBV-2 1219 1132 1118 7403 2994 1748
QF_AUFBV-3 1518 1253 1341 19133 5108 2100
QF_LIA-1 959 933 982
QF_LIA-2 937 950 962
QF_LIA-3 947 927 973
QF_UFLIA-1 1039 1008 1038
QF_UFLIA-2 1083 1056 1052
QF_UFLIA-3 1139 1062 1065
QF_ALIA-1 1068 1023 1058
QF_ALIA-2 1190 1082 1139
QF_ALIA-3 1175 1096 1296
QF_AUFLIA-1 1141 1081 1125
QF_AUFLIA-2 1057 1081 1114
QF_AUFLIA-3 1481 1271 1547

	Introduction
	Framing SMT problems
	The baseline strategy
	The ;push;/;pop; strategy
	The ;check-sat-assuming; strategy
	Handling ;unknown;

	System design
	Evaluation
	Case study: symbolic execution
	Case study: refinement type checking
	Case study: proposition graph reachability
	Summary

	Limitations and related work
	Conclusion
	References
	Appendix A Additional tables

