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,
Satisfiability modulo theories (SMT) solving has become a critical part of many static analyses, including

symbolic execution, refinement type checking, and model checking. We propose Formulog, a domain-specific

language that makes it possible to write a range of SMT-based static analyses in a way that is both close to

their formal specifications and amenable to high-level optimizations and efficient evaluation.

Formulog extends the logic programming language Datalog with a first-order functional language and

mechanisms for representing and reasoning about SMT formulas; a novel type system supports the construction

of expressive formulas, while ensuring that neither normal evaluation nor SMT solving goes wrong. Our

case studies demonstrate that a range of SMT-based analyses can naturally and concisely be encoded in

Formulog, and that — thanks to this encoding — high-level Datalog-style optimizations can be automatically

and advantageously applied to these analyses.
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1 INTRODUCTION
Satisfiability modulo theories (SMT) solving provides a way to reason logically about common

program constructs such as arrays and bit vectors, and as such has become a key component of

many static analyses. For example, symbolic execution tools use SMT solving to prune infeasible

execution paths [Cadar et al. 2008; Cadar and Sen 2013]; type checkers use it to prove subtyping

relations between refinement types [Bierman et al. 2012; Rondon et al. 2008]; and model checkers

use it to abstract program states [Cimatti and Griggio 2012; McMillan 2006]. This paper presents

Formulog, a domain-specific language for writing SMT-based static analyses. Formulog makes it

possible to concisely encode a range of SMT-based static analyses in a way that is close to their

formal specifications. Furthermore, Formulog is designed so that analyses implemented in it are

amenable to efficient evaluation and powerful, high-level optimizations, including parallelization

and automatic transformation of exhaustive analyses into goal-directed ones.

Formulog is based on Datalog, a logic programming language used to implement static analyses

ranging from points-to analyses [Bravenboer and Smaragdakis 2009; Whaley and Lam 2004] to

decompilers [Flores-Montoya and Schulte 2019; Grech et al. 2019] to security analyses [Grech et al.

2018; Guarnieri and Livshits 2009; Jordan et al. 2016; Livshits and Lam 2005; Tsankov et al. 2018]. Em-

bodying the principle of separating the logic of a computation from the control necessary to perform

that computation [Kowalski 1979], Datalog frees analysis designers from low-level implementation

details and enables them to program at the level of specifications (such as formal inference rules).

This leads to concise implementations [Whaley et al. 2005] that can be easier to reason about and

improve at the algorithmic level compared to analyses in more traditional languages [Smaragdakis

and Bravenboer 2011]. Datalog-based analyses can be fast and scalable, even outperforming the

non-Datalog state-of-the-art [Bravenboer and Smaragdakis 2009]. Indeed, Datalog’s high-level

∗
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nature makes it amenable to high-level optimizations, such as parallelization [Scholz et al. 2016]

and synthesis of goal-directed analyses from exhaustive ones [Reps 1995].

However, despite the appeal of Datalog for static analysis and the importance of SMT solving

in static analysis, until now there has not been a focused study of how to effectively extend the

benefits of Datalog to SMT-based analyses; our work bridges this gap.

Formulog augments Datalog with an interface to an external SMT solver and a first-order

fragment of the functional language ML. It provides a library of constructors for building terms that

are interpreted as logical formulas when applied to special SMT operators; in the backend, these

operators are implemented by calls to an external SMT solver. A Formulog program is essentially a

set of ML-style function definitions and Datalog-style rules; both pieces can refer to each other and

invoke the SMT operators. As in Datalog, the goal of Formulog evaluation is to compute all possible

inferences with respect to the rules, which correspond to logical implications. Unlike Datalog, rule

evaluation might involve both ML evaluation and calls to an SMT solver.

The way this design combines Datalog, ML, and SMT solving gives Formulog some desirable

properties. First, Formulog programs can use SMT solving the way it is used in SMT-based analyses.

This results from the choice to represent SMT formulas as ML terms, and contrasts with the

approach of most prior work combining logic programming and constraint solving (where, e.g.,

checking for formula validity is hard). Second, the combination of Datalog-style rules and ML-style

functions mirrors the combination of inference rules and helper functions commonly used in

analysis specifications, making it easier to translate formal analysis specifications into executable

code. This close correspondence between specification and implementationmeans that specification-

level reasoning is still applicable to analysis implementations (and vice versa: unexpected behavior

in Formulog programs has revealed bugs in specifications). Third, because Formulog is based on

Datalog, analyses written in it can be effectively optimized and evaluated via powerful Datalog

algorithms, making them competitive with analyses written in more mature languages.

It takes care to fit Datalog, ML, and SMT solving together in a way that truly achieves these

properties. Along these lines, part of our technical contribution is a novel bimodal type system that

treats terms appearing in SMT formulas more liberally than terms appearing outside of formulas,

making it possible to construct expressive logical formulas, while still ensuring that neither concrete

(i.e., Datalog/ML) evaluation nor SMT solving goes wrong.

To test the practicality of Formulog, we implemented a fully-featured, prototype Formulog run-

time and wrote three substantial SMT-based analyses in Formulog: a type checker for a refinement

type system, a bottom-up points-to analysis for JVM bytecode, and a bounded symbolic evaluator

for a subset of LLVM bitcode. Our implementations for the first two case studies are almost direct

translations of previously published formal specifications [Bierman et al. 2012; Feng et al. 2015];

indeed, Formulog allowed us to program close enough to the specifications to uncover bugs in both

of them. Despite encoding complex analysis logic, each of our analyses is concise (no more than

1.5K LOC). Furthermore, our Formulog-based implementations have acceptable performance, even

when compared against reference implementations running on more mature language platforms.

In some cases, we actually achieve substantial speedups over the reference implementations.

These performance results are possible only because Formulog’s design allows our runtime to

automatically and effectively apply high-level optimizations to Formulog programs. Our third case

study makes this point emphatically. Due to automatic parallelization, our symbolic evaluator

achieves a speedup of 7× over the symbolic execution tool KLEE [Cadar et al. 2008]. Moreover,

this speedup increases to 12× when we use the magic set transformation [Bancilhon et al. 1985;

Beeri and Ramakrishnan 1991] to automatically transform our exhaustive symbolic evaluator into

a goal-directed one that explores only paths potentially leading to assertion failures. That Datalog
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Programs prog ::= H ∗

Horn clauses H ::= p(e∗) :− P∗

Premises P ::= A | !A
Atoms A ::= p(e∗) | e = e
Expressions e ::= X | c

Variables X ∈ Var

Constructors c ∈ CtorVar

Predicates p ∈ PredVar

Fig. 1. A Datalog program is a collection of Horn clauses that represent rules for making inferences.

can speed up analyses like points-to analysis is well established [Bravenboer and Smaragdakis

2009; Whaley and Lam 2004]; that it can automatically scale symbolic evaluation is a novel result.

In sum, this paper makes the following contributions:

• the design of Formulog (Section 3), a domain-specific language for writing SMT-based static

analyses that judiciously combines Datalog, a fragment of ML, and SMT solving;

• a lightweight bimodal type system (Section 4) that mediates the interface between con-

crete evaluation and SMT solving, enabling the construction of expressive formulas while

preventing many kinds of runtime errors in both concrete evaluation and SMT solving;

• a fully-featured prototype and three substantial case studies (Section 5), showing that the

design of Formulog can be the basis of a practical tool for writing SMT-based analyses; and

• an evaluation of Formulog’s design in light of these case studies (Section 6), demonstrating

how careful design decisions make Formulog an effective medium for encoding a range of

SMT-based analyses in a way that is both close to their formal specifications and amenable

to efficient evaluation and high-level optimizations.

2 BACKGROUND
The starting point for Formulog is Datalog with stratified negation (Figure 1) [Apt et al. 1988;

Gallaire and Minker 1978; Green et al. 2013; Przymusinski 1988; Van Gelder 1989]. A Datalog

program is a collection of Horn clauses, where a clause H consists of a head predicate p(e∗) and a

sequence of body premises P . Each premise P is either a positive atom A or a negated atom !A. An
atom A has one of two forms: It is either a predicate symbol applied to a list of expressions, or the

special equality predicate e = e . An expression e is a variable X or a nullary constructor c , i.e., an
uninterpreted constant. Each predicate symbol p is associated with an extensional database (EDB)

relation or an intensional database (IDB) relation. An EDB relation is tabulated explicitly through

facts (clauses with empty bodies), whereas an IDB relation is computed through rules (clauses with
non-empty bodies). A rule should be read as a universally quantified logical implication, with the

conjunction of the body premises implying the predicate in the head. Datalog evaluation amounts

to computing every possible inference with respect to these implications; the restriction to stratified

negation (a relation cannot be defined, either directly or indirectly, by its complement) ensures that

this can be done via a sequence of fixed point computations.

Datalog has proven to be a natural and effective way to encode a range of static analyses [Braven-

boer and Smaragdakis 2009; Flores-Montoya and Schulte 2019; Grech et al. 2019, 2018; Guarnieri

and Livshits 2009; Jordan et al. 2016; Livshits and Lam 2005; Tsankov et al. 2018; Whaley and Lam

2004]. EDB relations are used to represent the program under analysis; for example, EDB relations

might encode a control flow graph of the input program. The logic of the analysis is encoded using

rules that define IDB relations; these rules are fixed and do not depend on the program under

analysis (which is already captured by the EDB relations). The Datalog program will compute the

contents of the IDB relations, which can be thought of as the analysis results.
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fun mem(X: 'a, Xs: 'a list) : bool =

match Xs with [] => false | H :: T => X = H || mem(X, T) end

reaches(X, Y, [Y], Phi) :- (* reaches is an IDB relation *)

edge(X, Y, Phi), (* edge is an EDB relation , defined below *)

is_sat(Phi) = true.

reaches(X, Z, Y :: Path , `Phi /\ Constraint `) :-

edge(X, Y, Phi),

reaches(Y, Z, Path , Constraint),

mem(Y, Path) = false ,

is_sat(`Phi /\ Constraint `) = true.

edge(1, 2, `#x[bool]`). (* Constraint: SMT variable #x[bool] is true *)

edge(2, 3, `true `). (* Constraint: true is true *)

edge(3, 4, `~#x[bool]`). (* Constraint: negation of #x[bool] is true *)

Fig. 2. This Formulog program computes a form of (non-reflexive) reachability for graphs where edges are
labeled with propositions; here reachability requires the satisfiability of edge labels along a path.

That being said, standard Datalog is a very restricted language and there are many other analyses

that cannot easily be encoded in it, if at all. Recent variants extend Datalog for analyses that operate

over interesting lattices [Madsen et al. 2016; Szabó et al. 2018]. Following in this spirit, Formulog

proposes a way to support analyses that need access to SMT solving.

3 LANGUAGE DESIGN
The design of Formulog is driven by three main desiderata. First, it should be possible to implement

SMT-based static analyses in a form close to their formal specifications. Second, it should be easy

to use logical terms the way that they are commonly used in many analyses. For example, analyses

often need to create formulas about entities such as arrays and machine integers, test those formulas

for satisfiability or validity, and generate models of them. Third, Formulog programs should still be

amenable to powerful Datalog optimizations and evaluable using scalable Datalog algorithms.

Section 6 demonstrates how the design of Formulog largely meets these desiderata. Here, we

give a warm-up example of Formulog, provide an overview of its language features, discuss how

these features support logical formulas, and conclude with its operational semantics.

3.1 Formulog by example
To give the flavor of Formulog, we first present a small example (Figure 2). The “hello world” program

of Datalog is graph transitive closure; here we give a Formulog analogue for directed graphs where

edges are labeled with propositions, and we want to compute non-reflexive reachability modulo

the satisfiability of the edge labels on a path.
1
The input to our program is an EDB relation edge,

where edge(x,y,ϕ) denotes that there is an edge from node x to node y labeled with proposition ϕ.
Our program computes an IDB relation reaches, where reaches(x,y,p,ϕ) denotes that node y is

transitively reachable from node x through path x::p with cumulative constraint ϕ.

1
Computing reflexive reachability is also straightforward, but requires extra machinery (as it does for standard Datalog).
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Types
Types τ ::= t | t smt | t sym | model
Pre-types t ::= B | D τ ∗ | α
Base types B ::= bool | string | bv[k]k ∈N+ | . . .

Terms
Programs prog ::= H ∗ T ∗ F ∗ Z ∗

Horn clauses H ::= p(e∗) :− P∗

Premises P ::= A | !A
Atoms A ::= p(e∗) | e = e
Type definitions T ::= type α∗ D = [c(τ ∗)]∗

Functions F ::= fun f ([X : τ ]∗) : τ = e
SMT declarations Z ::= uninterpreted fun c([t smt]∗) : t smt |

uninterpreted sort α∗ D

Expressions e ::= X | c(e∗) | k | f (e∗) | match e with [c(X ∗) → e]∗ |

let X = e in e | if e then e else e | ⊗(e∗) | `ϕ` | p(w∗)

Constants k ::= true | false | 0 | 1 | . . .
SMT formulas ϕ ::= ,e | cSMT

forall(ϕ,ϕ) | cSMT
let (ϕ,ϕ,ϕ) | cSMT

ctor [c](ϕ
∗) | . . .

Wildcard w ::= ?? | e

Values v ∈ Val ::= k | c(v∗)

Namespaces

Data type names D ∈ ADTVar

Type variables α ∈ TVar

Constructors c ∈ CtorVar

Variables X ∈ Var

Predicates p ∈ PredVar

Functions f ∈ FunVar

Fig. 3. Formulog extends the abstract syntax of Datalog with type definitions, functions, SMT declarations,
and a richer language of expressions.

After using the ML fragment to define a simple function mem that decides list membership, our

program states two rules defining our reaches relation. The first represents the base case: if there

is an edge between nodes X and Y with a satisfiable label Phi, then Y is reachable from X along the

path [X, Y] with condition Phi. The built-in operator is_sat queries an external SMT solver for

the satisfiability of its argument (an SMT proposition). The second rule computes the recursive

case, making sure that the edge being used to extend the transitive closure is not redundant and

that the labels along the prospective new path are satisfiable when taken together.

Given the edge relation in Figure 2, these rules compute that node 1 reaches nodes 2 and 3, node

2 reaches nodes 3 and 4, and node 3 reaches node 4, but node 1 does not reach node 4, since the

path constraint `#x[bool] /\ true /\ ~#x[bool]` is not satisfiable.

3.2 Overview
Formulog extends Datalog with a fragment of first-order ML and a language of SMT formulas

(Figure 3). Accordingly, a program consists of Horn clauses, type and function definitions, and SMT

declarations. The Horn clause fragment is the same as in Datalog, except with a richer variety of

expressions e that can occur as arguments to predicates.
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Type definitions. Formulog users can define ML-style algebraic data types, which can be polymor-

phic and mutually recursive. An algebraic data type definition consists of a list of type variables α , a
type name D, and a list of constructors c with their argument types τ . Section 4 explains Formulog’s

type system in more detail; we provide a brief sketch now. Algebraic data types D τ ∗, base types
B, and type variables α are treated as pre-types; intuitively, a pre-type t is the type of a concrete
(non-formula) term. In addition to pre-types, there are types that represent SMT-relevant terms: a

t-valued SMT formula has type t smt, a t-valued SMT variable has type t sym, and an SMT model

— a finite map from formula variables to concrete terms — has type model. The Formulog type

system distinguishes the first three types where it is computationally relevant (i.e., during concrete

evaluation, where confusing a t-valued formula for a concrete t term might lead to a computation

getting stuck), and collapses them where it is not (i.e., during SMT evaluation, where there is no

meaningful distinction between a t-valued formula and a concrete t value). It also prevents SMT

models, which are not representable as SMT expressions, from flowing into SMT formulas.

Functions. Formulog supports ML-style function definitions, although functions are limited to

being first-order and are not first-class values. They can be polymorphic and mutually recursive.

SMT declarations. Formulog users can declare uninterpreted functions and polymorphic unin-

terpreted sorts. An uninterpreted function amounts to a special constructor for building a purely

symbolic term of type t smt (for some pre-type t ). An uninterpreted sort amounts to a special

symbolic pre-type t , where t is not inhabited by any value, but t sym and t smt are.

Expressions and formulas. Expressions e occur as function bodies and as predicate arguments

in Horn clauses. Although Datalog traditionally limits ground terms to nullary constructors, we

admit n-ary constructors. While this comes with the cost of possibly-diverging programs — adding

n-ary constructors makes Datalog Turing-complete [Green et al. 2013] — many recent Datalog

variants allow complex terms, including Soufflé [Scholz et al. 2016], LogicBlox [Aref et al. 2015],

and Flix [Madsen et al. 2016]. For us, complex terms provide a natural way to reify logical formulas,

and they also can be used to create data structures that make it easier to encode certain analyses.

Additional Formulog expressions include standard ML fare like constants (booleans, strings,

machine integers, and floats), function calls, and match, let, and if-then-else expressions. The

expression ⊗(e∗) represents the application of a primitive operator to a sequence of subexpressions.

These cover both basic arithmetic operations (e.g., addition) and SMT-specific operations (e.g.,

checking for satisfiability, generating models; see Section 3.3.2).

The expression `ϕ` is a quasi-quoted SMT formula, where the language of formulas ϕ consists

of unquoted expressions ,e and formula constructors of the form cSMT
c′ applied to SMT formulas.

Some of these constructors directly reflect SMT formula constructs; for example, the constructor

cSMT
forall builds a universally quantified formula, and the constructor cSMT

let builds an SMT let formula.

Formula constructors can appear only in formulas, and non-formula constructors cannot appear

directly in formulas. We embed algebraic data type constructors in formulas using a family of

formula constructors. Each formula constructor cSMT
ctor [c] lifts the user-defined algebraic data type

constructor c to SMT. Quotes are used to delineate formulas and trigger a different type checking

mode, in which the types t , t smt, and t sym are conflated (with some restrictions, as explained in

Section 4). The unquote operator , escapes from this type checking mode and makes it possible to

inject a non-formula expression into a formula. Section 3.3 discusses formulas in more detail.

We have already seen how the Datalog fragment of Formulog can include expressions from the

ML fragment; the final expression p(w∗) ties the loop by providing a way for the ML fragment

to reference the Datalog fragment. The expression p(w∗) acts like a function call that queries

the contents of the relation p. Its exact behavior depends on its arguments, which are either
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Negation ~ : bool smt → bool smt

Conjunction /\ : (bool smt, bool smt) → bool smt

Implication ==> : (bool smt, bool smt) → bool smt

Equality #=[t] : (t smt, t smt) → bool smt

SMT variable #{·}[t] : 'a → t sym
Bit vector constant bv_const[k] : bv[32] → bv[k] smt

Bit vector addition bv_add : (bv[k] smt, bv[k] smt) → bv[k] smt

Fig. 4. Logical formulas are created in Formulog via built-in constructors, such as the ones shown here.

expressions or the special wildcard term ??. If its arguments contain no wildcards, then p(e∗)
returns a boolean indicating whether the tuple identified by its arguments is in the p relation. If it

has k > 0 wildcards, it returns a list of k-tuples: For each tuple v∗
in the relation corresponding to

p, there is a corresponding k-tuple in this list that is v∗
projected to the wildcard positions; if there

are n matching tuples in p, then the list is of length n. In other words, given complete arguments,

a predicate is really just a predicate; given partial arguments with wildcards, a predicate is the

multiset consisting of matching tuples after they have been appropriately projected.

Remarks. Extending Datalog with our fragment of ML is not foundational, as it can relatively

easily be translated to Datalog rules (this would not necessarily be the case for a higher-order

fragment of ML). However, despite the fact that the ML fragment could be treated as just syntactic

sugar, it has a significant positive impact on the usability of Formulog, as we argue in Section 6.

The concrete syntax of formulas in our prototype (and in the examples we give in this paper)

differs from the abstract syntax given here. First, algebraic data type constructors are allowed to

appear directly in formulas, and are implicitly lifted to the appropriate formula constructor (so data

type constructor c is automatically lifted to cSMT
ctor [c]). Second, we do not support an explicit unquote

operator; instead, we implicitly unquote variables, constants, and invocations of nullary functions.

3.3 Logical formulas
Formulog uses data types and operators to support constructing and reasoning about logical

formulas. Formulog provides a library of data types that define logical terms. Most of the time

during evaluation, these terms are unremarkable and treated just like any other ground term.

However, these terms are interpreted as logical formulas when they are used as arguments to

built-in operators that make calls to an external SMT solver. In our current prototype, it is possible

to create logical terms in first-order logic extended with (fragments of) the SMT-LIB theories of

uninterpreted functions, integers, bit vectors, floating point numbers, arrays, and algebraic data

types [Barrett et al. 2017], as well as the theory of strings shared by the SMT solvers Z3 [de Moura

and Bjørner 2008] and CVC4 [Barrett et al. 2011].

3.3.1 Representing formulas. Users create logical terms through constants and formula constructors.

For example, to represent the formula False =⇒ True , one would use the term `false ==> true`,

where false and true are the standard boolean values and ==> is the infix constructor for implication.

Formulog offers around 70 constructors for creating logical terms ranging from symbolic string

concatenation to logical quantifiers. Figure 4 shows a sample of these constructors and their types.

Some constructors require explicit indices, either to guarantee that type information is available at

runtime when the formula is serialized to SMT-LIB, or to make sure that the type of the arguments

can be determined by the type of the constructed term (which makes type checking easier). For

example, bv_const[k] creates a symbolic k-bit vector value from a concrete 32-bit vector; at runtime,
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Satisfiability is_sat : bool smt → bool

is_sat_opt : (bool smt list, bv[32] option) → bool option

Validity is_valid : bool smt → bool

Model generation get_model : (bool smt, bv[32] option) → model option

Model inspection query_model : ('a sym, model) → 'a option

Fig. 5. Formulog provides built-in operators for reasoning about logical terms.

it is necessary to know the width k so that we can serialize it correctly. On the other hand, in the

case of the constructor #=[t], denoting the equality of two terms of type t smt, the index makes sure

that the type checker knows what types the arguments should have. A programmer typically does

not need to provide these indices explicitly, as they can often be inferred (our prototype does this).

Formulog distinguishes between logic programming variables and formula variables. A formula

variable is a ground term that, when interpreted logically, represents a symbolic value. The term

#{v}[t] is a formula variable of type t sym identified by the value v (which can be of arbitrary

type). Intuitively, v is the “name” of the variable. The term #{v}[t] is guaranteed not to occur in v ,
which means that the variable it represents is fresh with respect to the set of formula variables

in v; this makes it easy to deterministically construct a new variable that is fresh with respect to

an environment, a trick we use often in our case studies. For example, if X is bound to a list of

boolean formula variables, the formula variable #{X}[bool] will not unify with any term in X. The

shorthand #id[t] is equivalent to #{"id"}[t], where id is a syntactically valid identifier.

Importantly, because formula variables are ground terms, we can derive facts containing formula

variables without violating Datalog’s range restriction, which requires that every derived fact is

variable-free. This restriction enables efficient evaluation by simplifying table lookups, one of the

fundamental operations in Datalog evaluation.

3.3.2 Using formulas. Built-in operators provide a way to reason about logical terms as formulas

(Figure 5). When an operator in the SMT interface is invoked, its formula argument is serialized

into the SMT-LIB format and a call is made to an external SMT solver. These operators are assumed

to act deterministically during a single Formulog run; an implementation can achieve this in the

presence of a non-deterministic SMT solver by memoizing operations.

For example, to test the validity of the principle of explosion (any proposition follows from false

premises), one could make the call is_valid(`false ==> #x[bool]`). Like other operators, the SMT

interface operators can be invoked from the bodies of rules, as here:

ok :- #x[bool] != #y[bool],

is_sat(`#x[bool] #= #y[bool]`) = true ,

is_sat (`~(#x[bool] #= #y[bool])`) = true.

This rule derives the fact ok: The term #x[bool] is not unifiable with the term #y[bool], since they

are different formulas, representing different SMT variables. But these terms both may and may

not be equal when interpreted as formula variables via the operator is_sat. Within an invocation

of is_sat, constraints are formed between #x[bool] and #y[bool] — in the first case they must be

equal, and in the second case they must not be — but these constraints do not leak into the larger

context. This is an intentional design decision and differs from the approach taken by paradigms

like constraint logic programming (see Section 6).

Formulog provides two sets of operators for testing the satisfiability and logical validity of

propositions. In general, an SMT solver can return three possible answers to such a query: “yes,”

“no,” and “unknown.” The operators is_sat and is_valid return booleans. In the case that the
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backend SMT solver is not be able to determine whether a formula ϕ is satisfiable, these operators

fail (as explained in Section 4). The operator is_sat_opt(ϕ∗, timeout) provides more fine-grained

control: it takes a list of propositions (interpreted as conjuncts) and an optional timeout, and returns

an optional boolean, with none corresponding to “unknown.” While we suspect that the simpler

versions will be sufficient for most applications, this more complex version does allow applications

to explicitly handle the “unknown” case if need be (e.g., pruning paths in symbolic execution).

The operator get_model takes a proposition and an optional timeout; it returns a model for the

proposition if the SMT solver is able to find one in time, and none otherwise. The values of formula

variables in this model can be inspected using query_model, which returns none if the variable does

not occur free in the formula or if a concrete value for it is not representable in Formulog (for

example, Formulog does not have a type for a concrete 13-bit vector). The values of symbolic

expressions can be indirectly extracted through formula variables: Before finding the model, add

the equality `x #= e` to the formula, where x is a fresh formula variable and e is an expression; in

the extracted satisfying model, x will be assigned the value of e in that model.

3.3.3 Custom types in formulas. Formulog’s algebraic data types can be reflected in SMT formulas

via SMT-LIB’s support for algebraic data types. Thus, Formulog permits arbitrary term constructors

to be used within logical formulas. For example, we can define a type foo with a single nullary

constructor bar and then write formulas involving foo-valued terms:

type foo = | bar

ok :- is_valid(`#x[foo] #= bar `) = true.

This program would derive the fact ok: Since there is only one way to construct a foo — through

the constructor bar — any symbolic value of type foo must be the term bar.

For each algebraic data type, we automatically generate two kinds of constructors that make it

easier to write formulas involving terms of that type. The first kind is a constructor tester. For each

constructor c of a type t , Formulog provides a constructor #is_c of type t smt → bool smt. The

proposition #is_c(e) holds if the outermost constructor of e is c . The second kind is an argument

getter. If c is a constructor for type t with n arguments of types ti for 1 ≤ 1 ≤ n, Formulog generates

n argument getters of the form #c_i, where #c_i has the type t smt → ti smt. When interpreted as a

formula, the term #c_i(e) represents the value of the ith argument of e . For example, we can state

that a symbolic list of booleans is non-empty and its first argument is true:

`#is_cons(#x[bool list]) /\ #cons_1(#x[bool list])`

We could use the operator get_model to find a model of this satisfiable formula; in this model,

#x[bool list] might be assigned the concrete value cons(true, nil).

3.4 Operational semantics
This section presents Formulog’s operational semantics, making reference to a selection of the formal

rules (Figures 6).
2,3

Formulog imposes the standard stratification requirements upon programs:

no recursive dependencies involving negation or aggregation between relations. As a stratifiable

program can be evaluated one stratum at a time, we focus on the evaluation of a single stratum.

A stratum is evaluated by repeatedly evaluating its Horn clauses until no new inferences can be

made. The semantics of a Horn clause H is defined through the judgment ®F ;W ⊢ H → W⊥, where

2
Formulog can also be given a model-theoretic semantics: because the ML features can be desugared into Datalog rules,

the model theory of Formulog is essentially that of stratified Datalog. Appendix F sketches this out further.

3
In the boxed rule schemata, implicit parameters are in gray; we conserve space by stating the rules without threading

implicit parameters through, which are unchanging. We write ®xi for some metavariable x to mean a possibly empty

sequence of xs indexed by i , and write S⊥ for some set S to mean the set S + Err.
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10 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Namespaces and constructs

World W ∈ PredVar → P(Val∗)

Substitution θ ∈ Var⇀ Val

Error ⊥ ∈ Err

u-term u ::= X | k | c( ®ui )

Clause semantics ®F ;W ⊢ H → W⊥

| ®Pi | = n θ0 = · ∀i ∈ [0,n), θi ⊢ Pi → θi+1

®F ;W ⊢ p( ®X j ) :− ®Pi → W[p 7→ W(p) ∪ {θn( ®X j )}]
Clause

Premise semantics ®F ;W;θ ⊢ P → θ⊥

®v ∈ W(p) θ ⊢ ®X ∼ ®v : θ ′
⊥

W;θ ⊢ p( ®X ) → θ ′⊥
PosAtom

θ ⊢ Y ∼ c( ®X ) : θ ′⊥

W;θ ⊢ Y = c( ®X ) → θ ′⊥
EqCtor

Expression semantics ®F ;W;θ ⊢ e ⇓e v⊥ ®F ;W;θ ⊢ ®e ⇓®e ®v⊥

W;θ ⊢ ®e ⇓®e ®v [[⊗]](®v) = v

W;θ ⊢ ⊗(®e) ⇓e v
⇓e -Op

W;θ ⊢ ϕ ⇓ϕ v⊥

W;θ ⊢ `ϕ` ⇓e v⊥
⇓e -Quote

Formula semantics ®F ;W;θ ⊢ ϕ ⇓ϕ v⊥ ®F ;W;θ ⊢ ®ϕ ⇓ ®ϕ ®v⊥

W;θ ⊢ ®ϕ ⇓ ®ϕ ®v

W;θ ⊢ cSMT
c′ ( ®ϕ) ⇓ϕ cSMT

c′ (®v)
⇓ϕ -Ctor

W;θ ⊢ e ⇓e v

W;θ ⊢ ,e ⇓ϕ toSMT(v)
⇓ϕ -Unqote

SMT conversion toSMT(v) = v

toSMT(cSMT
let (v1,v2,v3)) = cSMT

let (v1,v2,v3)
toSMT(cSMT

forall(v1,v2)) = cSMT
forall(v1,v2)

toSMT(c( ®vi )) = cSMT
ctor [c](

−−−−−−−−−→
toSMT(vi ))

. . .

Fig. 6. A fragment of Formulog’s operational semantics (see Appendix C for full formalization).

a world W is a map from predicate symbols to sets of tuples (i.e., those that have been derived

so far). A Horn clause takes a world to either a new world or the error value ⊥. Going wrong can

result for two reasons: either because a variable is unbound at a point where it needs to be bound,

or because an operator is applied to a value outside of its domain. It is important to distinguish

between a rule going wrong and a rule failing to complete because two terms fail to unify: The first

is an undesirable error (ruled out by our type system), whereas the second is expected behavior.

A rule is evaluated by evaluating its premises one-by-one, using a left-to-right order (Clause).

The judgment ®F ;W;θ ⊢ P → θ⊥ defines the semantics of a premise, which takes a world and a

substitution θ (a partial function from variables to values) and returns a new substitution or an error.

The substitution produced by one premise is used as the input to the next one. A successful inference

extends the input world with a (potentially novel) tuple θn( ®X j ), i.e., the result of element-wise

applying the substitution produced by the rightmost premise to the variables in the head of the

rule. Clause evaluation goes wrong if the evaluation of one of the premises goes wrong.
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Without loss of generality, we assume that premises occur in a limited form: predicates are applied

to only variables, written p( ®Xi ), and equality predicates bind variables, as in Y = e . (Our prototype

similarly desugars premises.) An atom p( ®X ) is evaluated by non-deterministically choosing a tuple

®v from the tuples inW(p), and then pairwise unifying its elements with the variables ®X (PosAtom).

The premise Y = c( ®X ) unifies its two terms (EqCtor). The judgment θ ⊢ u1 ∼ u2 : θ⊥ defines

the unification of terms u1 and u2 under the substitution θ ; it results in an error if u1 and u2 both
contain unbound variables, and a new substitution if they are otherwise unifiable.

The semantics for many Formulog expressions are standard. The evaluation of an operator

produces a value if its arguments are evaluated to values in its domain (⇓e -Op); it goes wrong if

the argument values are outside of its domain, e.g., if a string and number are added together. A

quoted formula `ϕ` evaluates to whatever ϕ evaluates to (⇓e -Quote). Formula cSMT
c′ ( ®ϕ) evaluates

to formula cSMT
c′ (®v) if arguments

®ϕ evaluate to values ®v (⇓ϕ -Ctor). If the expression e evaluates to
the value v , then the formula ,e evaluates to the term toSMT(v) (⇓ϕ -Unqote), where the helper

function toSMT lifts a term to its formula version.

4 TYPE SYSTEM
Formulog’s type system is designed to meet three desiderata. The first desideratum is that concrete

evaluation should never go wrong, which might happen if an operator is applied to an operand

outside its domain or a variable is unbound at a point when it needs to be evaluated. The second

desideratum is that SMT solving should never go wrong, which might happen if a term that does

not represent a well-sorted formula under the SMT-LIB standard reaches the external SMT solver

(e.g., a formula representing the addition of a 16-bit vector and 32-bit vector). The third desideratum

is that the type system should make it easy to construct expressive logical formulas, including

formulas that involve terms drawn from user-defined types.

There is some tension between the first and third of these desiderata. The first one requires that

we differentiate between, for example, a concrete bit vector value and a symbolic bit vector value

(e.g., a bit vector-valued formula) since an operator that is expecting a concrete bit vector might

get stuck if its argument is a symbolic bit vector. For instance, we want to rule out this program:

Example 1 (A bad program we would want to reject).
type foo = | bar(bv[32])

fun f(F: foo) : bv[32] = match F with bar(Y) => Y + Y end

not_ok :- X = #x[bv[32]],

f(bar(X)) = 42.

This program gets stuck evaluating f(bar(X)), since Y is bound to a symbolic value in f but the ML

fragment’s addition operator needs concrete arguments. On the other hand, we are able to construct

more expressive formulas if we can occasionally conflate concrete and symbolic expressions:

Example 2 (A good program we would want to accept).
ok :- X = #x[bv[32]],

is_sat(`bar(X) #= bar(5)`) = true.

This rule asks whether there exists a symbolic bit vector x such that bar(x) equals bar(5), where

bar is the constructor defined above. This reasonable formula is not well-typed under a type system

that uniformly distinguishes between concrete and symbolic values, since the constructor bar

expects a concrete bit vector argument but instead receives the symbolic one x .
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12 Aaron Bembenek, Michael Greenberg, and Stephen Chong

Contexts

Data type declarations ∆ ::= · | ∆,D : ∀ ®αi . {
−−−−→
c j : ®τk }

Program declarations Φ ::= · | Φ, f : ∀ ®α , ®τ → τ | Φ,p ⊆ ®τ
Variable contexts Γ ::= · | Γ,x : τ | Γ,α

Clause typing ∆;Φ ⊢ H

· ⊢ P0 ▷ Γ1 . . . Γj ⊢ Pj ▷ Γj+1 . . . Γn ⊢ Pn ▷ Γ′

p ⊆ ®τi ∈ Φ Γ′ ⊢ ®Xi , ®τi ▷ Γ′

⊢ p( ®Xi ) :− ®Pj
H -Clause

Variable binding and typing Γ ⊢ x ,τ ▷ Γ Γ ⊢ ®x , ®τ ▷ Γ

X < dom(Γ)

Γ ⊢ X ,τ ▷ Γ,X :τ
Xτ -Bind

Γ(X ) = τ

Γ ⊢ X ,τ ▷ Γ
Xτ -Check

Premise typing ∆;Φ; Γ ⊢ P ▷ Γ

p ⊆ ®τi ∈ Φ Γ ⊢ ®Xi , ®τi ▷ Γ′

Γ ⊢ p( ®Xi ) ▷ Γ′
P-PosAtom

Γ ⊢ e : τ Γ ⊢ Y ,τ ▷ Γ′

Γ ⊢ Y = e ▷ Γ′
P-Eq-FB

Function and expression well formedness ∆;Φ ⊢ F ∆;Φ; Γ ⊢ e : τ

typeof(⊗) = ®τi → τ Γ ⊢ ei : τi

Γ ⊢ ⊗( ®ei ) : τ
e-Op

Γ ⊢ ϕ : τ

Γ ⊢ `ϕ` : τ
e-Quote

SMT constructors and formula well formedness ∆;Φ; Γ ⊢ cSMT
... : ®τi → τ ∆;Φ; Γ ⊢ ϕ : τ

Γ ⊢ cSMT
c : ®τi → τ Γ ⊢ ϕi : τi

Γ ⊢ cSMT
c ( ®ϕi ) : τ

ϕ-Ctor

Γ ⊢ e : τ

Γ ⊢ ,e : toSMT(τ )
ϕ-Unqote

Γ ⊢ ϕ : t sym

Γ ⊢ ϕ : t smt
ϕ-Promote

SMT representations erase(τ ) = t toSMT(τ ) = τ

erase(B) = B

erase(D ®τi ) = D
−−−−−−−→
erase(τi )

erase(t smt) = erase(t)
erase(t sym) = erase(t)

toSMT(t) = erase(t) smt
toSMT(t smt) = erase(t) smt
toSMT(t sym) = erase(t) sym

Fig. 7. A fragment of Formulog’s type system (see Appendix B for full formalization).

Formulog resolves the tension between these desiderata through a bimodal type system that

acts differently inside and outside formulas (which are demarcated by quotations). In essence, the

Formulog type system differentiates between the pre-type t , the SMT formula type t smt, and
the SMT variable type t sym outside of formulas, but typically conflates them within formulas.

4

4
It does not conflate them in binding positions where formula variables are required, such as in quantifiers.
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This bimodal approach disallows Example 1 (since outside a formula, a term of type bv[32] sym
cannot be used where a term of type bv[32] is expected), while permitting Example 2 (since within

a formula, a term of type bv[32] sym can be used anywhere a term of type bv[32] is expected).
Intuitively, this bimodal approach is safe because it distinguishes between concrete and symbolic

values during concrete evaluation — where conflating them might lead to going wrong — and

conflates them only during SMT evaluation, where the distinction is not meaningful. We have

formalized the Formulog type system and proven it sound with respect to the operational semantics

of Formulog. We present only a small subset of it here (Figure 7); the full system is in Appendix B.

The rule defining a well-typed Horn clause (H -Clause) depends on two notable judgments.

The premise typing judgment Γ ⊢ P ▷ Γ′ takes a variable typing context Γ and a premise P and

produces a new variable typing context Γ′. The variable binding and typing judgment Γ ⊢ x ,τ ▷ Γ′

holds if either X is not in Γ, in which case Γ′ extends Γ with X mapped to τ (Xτ -Bind), or X is

mapped to τ by Γ, in which case Γ = Γ′ (Xτ -Check). As can be seen from rule H -clause, the type

checking of Horn clauses is flow-sensitive and proceeds left-to-right across the clause, with the

“output” context of checking premise Pi used as the “input” context for checking premise Pi+1.
This left-to-right type checking mirrors the left-to-right evaluation strategy Formulog uses; this is

important for ensuring that variables are bound at the correct points.
5
The second line of premises

in rule H -clause ensures that every variable in the head of the rule is bound at the type specified

by the head relation’s signature.

A positive atom is well typed if each of its variable arguments has the type given to that argument

by the relation’s signature (P-PosAtom). A premise of the form Y = e is typed according to a few

different rules depending on which side of the equation is ground with respect to the input context

Γ. The key is that our type system only types premises of the form Y = e when unification is

guaranteed to not go wrong at runtime.

The typing rules for most expressions are standard. An operation is well-typed if its arguments

match its type signature (ϕ-Ctor). A quoted formula `ϕ` types at whatever ϕ types at (e-Quote).

The formula constructor cSMT
c is well typed if the types of its arguments match its type signature

(ϕ-Ctor); in the case of a constructor for an algebraic data type that has been lifted to a formula

constructor, that signature will require the constructed term and all of its arguments to have types

of the form t smt. If an expression types at τ , then the formula ,e types at toSMT(τ ) (ϕ-Unqote).

The helper function toSMT lifts a type to a formula type; for example, it lifts bool to bool smt. The
typing rules for formulas also include a rule promoting from t sym to t smt, reflecting the fact that,
within a formula, a t-valued formula variable can be used anywhere a t-valued formula can be.

6

Type soundness with respect to the semantics of Formulog comes from safety and preservation:

Theorem 4.1 (Safety). If ∆;Φ ⊢ ®Fi ®Hj and ∆;Φ |=W then for all H ∈ ®Hj , ¬( ®Fi ;W ⊢ H → ⊥).

Theorem 4.2 (Preservation). If ∆;Φ ⊢ ®Fi ®Hj and ∆;Φ |=W and ®Fi ;W ⊢ H → W ′ for some
H ∈ ®Hj then ∆;Φ |=W ′.

Safety (Theorem 4.1) guarantees that a Horn clause from a well-typed program, evaluated on a

well-typed world (i.e., one where all the tuples have the right types), cannot step to error. Thus,

safety means that an operator is never applied to an operand outside its domain, and a variable is

never unbound when it needs to be bound. Preservation (Theorem 4.1) guarantees that if a Horn

5
The fact that the operational semantics and type system assume a certain order of evaluation does not prohibit a

Formulog runtime from reordering premises within rules (for example, when applying database-style query planning

optimizations); it just needs to check that the new order is also well typed. This type of rewriting does not affect the result

of running the rule provided that all subexpressions terminate (an assumption we make).

6
The opposite is not true, since some formula constructors (i.e., quantifiers and let expressions) bind formula variables.
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clause, from a well-typed program, is evaluated on a well-typed world and results in a new world,

then that new world is also well-typed. Taken together, these theorems imply that a well-typed

Formulog program does not go wrong during concrete evaluation (see Appendix E for proofs).

The type system is sound with respect to the semantics of SMT-LIB because the types of the

formula constructors provided by Formulog are consistent with the types given by the SMT-LIB

standard. The Formulog type system guarantees that, at runtime, terms (including formulas) are

well-typed, and the type system prevents terms that are not representable in SMT (such as those of

type model) from flowing into SMT formulas. We distinguish between SMT-compatible types and

non-SMT types formally by indexing the type well formedness judgment with a mode, which is

either smt (for those types that can be sent to the solver) or exp (for those types that cannot). It is

fair to think of these modes as kinds with a subkinding relationship: types of kind smt can safely

be treated as general types of kind exp, but not the other way round (Lemma D.1).

Assumptions. An actual implementation of Formulog, such as our prototype, has to contend with

a few sources of going wrong that are not captured in our formal model. First, our model assumes

that patterns in match clauses are exhaustive; this is just for simplicity, and could be statically

checked using standard algorithms. Second, our model assumes that operators are total with respect

to terms with the correct type. There are three places where this assumption might break: 1) division

or remainder by zero; 2) the operators is_sat or is_valid may induce an “unknown” response

from the external SMT solver; and 3) the SMT solver may reject patterns used in trigger-based

quantifier instantiation that it considers to be ill formed (for example, if the pattern contains a

binding operation). The first case is standard for many languages; the second can be avoided if the

programmer uses the option-returning SMT operator is_sat_opt. The last case would be hard to

check statically; however, an implementation could dynamically check patterns before making a

call to the SMT solver, dropping invalid patterns and issuing a warning to the user. Our prototype

uses “hard exceptions” by default, aborting the program. We also support a “soft exception” mode,

which treats all these cases analogously to unification failures, halting execution on the current

path but allowing execution on other paths to continue.

5 IMPLEMENTATION AND CASE STUDIES
In this section we briefly describe our prototype implementation of Formulog, and then discuss

three analyses we have built as case studies: refinement type checking, bottom-up points-to analysis,

and bounded symbolic evaluation.

5.1 Prototype
Our prototype runtime (∼17.5K LOC Java) works in five stages: parsing, type checking, rewriting (for

query specialization), validation, and evaluation. Stratification and the range restriction are checked

during the validation phase. Our parallel implementation of semi-naive evaluation [Bancilhon

1986] uses a work-stealing thread pool; worker threads dispatch SMT queries to a pool of Z3

instances [deMoura and Bjørner 2008]. Our prototype is feature complete, but not heavily optimized.

Unless otherwise noted, we ran experiments on an Ubuntu Server 16.04 LTS machine with a 3.1

GHz Intel Xeon Platinum 8175 processor (24 physical CPUs, each hyperthreaded) and 192 GiB of

memory. We configured our Formulog runtime to use up to 40 threads and up to 40 Z3 instances

(v4.8.7); all comparison systems were set to use the same version of Z3 (with one exception, noted

later). For each result, we report the median of three trials.
7
Times are given as minutes:seconds.

7
For each case study, we use a tool to take a program in the input language (e.g., Java) and turn it into Formulog facts.

We do not include these times, as they are typically quite short. Extracting facts from libraries can take a few minutes, but

this needs to be done only once per library.
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fun accum_nil_axiom : bool smt =

let (F, I) = (#func[closure], #init[enc_val ]) in

`forall F, I : accum(F, v_zero , I). accum(F, v_zero , I) #= I`

Fig. 8. This axiom encodes the denotation of a Dminor accumulate expression over an empty multiset. The
term in the formula between : and . is a quantifier pattern [Detlefs et al. 2005].

5.2 Refinement type checking
We have implemented a type checker in Formulog for Dminor, a first-order functional programming

language for data processing that combines refinement types with dynamic type tests [Bierman

et al. 2012]. This type system can, e.g., prove that

x in Int ? x : (x ? 1 : 0)

type checks as Int in a context in which x has the union type (Int|Bool). Proving this entails

encoding types and expressions as logical formulas and invoking an SMT solver over these formulas.

We built a type checker for Dminor by almost directly translating the formal inference rules used to

describe the bidirectional Dminor type system. In fact, we programmed so closely to the formalism

that debugging an infinite loop in our implementation helped us, along with the Dminor authors,

uncover a subtle typo in the formal presentation! Our Dminor type checker is 1.2K lines of Formulog.

The implementation of Bierman et al. is 3.2K lines of F
♯
and 400 lines of SMT-LIB; we estimate that

the functionality we implemented accounts for over two thousand of these lines.
8

The encoding of Dminor types and expressions is complex, requiring uninterpreted sorts, unin-

terpreted functions, universally quantified axioms, and arrays (among other features). The fact that

we were able to code this relatively concisely speaks to the expressiveness of Formulog’s formula

language. For example, Figure 8 shows an axiom describing the denotation of the base case of a

Dminor accumulate expression, which is essentially a fold over a multiset. Here, the type closure is

an uninterpreted sort, enc_val is an algebraic data type that represents an encoded Dminor value,

and accum and v_zero are uninterpreted functions, where the latter represents an empty multiset.

We defined a set of mutually-recursive functions that encode expressions, environments, and

types. For example, the type encoding function (fragment, Figure 9) takes a type τ and an (encoded)

Dminor value v , and returns two propositions. The first is true when v has type τ . The second
is a conjunction of axioms: new axioms are created to describe the denotation of the bodies of

accumulate expressions as they are encountered when encoding expressions. The first case in

the figure encodes the fact that any value has type Any. The second one says that a value has

type Bool if it is constructed using the constructor ev_bool; the constructor #is_ev_bool is an

automatically-generated constructor tester. The third case handles multiset types. It creates a fresh

encoded value X, uses X to recursively create a proposition representing the encoding of the type S

of items in the multiset, and then returns a proposition requiring the value to be a “good” collection

(defined using the uninterpreted function good_c) and every item in the multiset to have type S

(where mem is another uninterpreted function).

Althoughwe useML-style functions to define the logical denotation of expressions, environments,

and types, we use logic programming rules to define the bidirectional type checker, which allows

us to write rules that are very similar to the inference rules given in the paper. Figure 10 gives the

one rule defining the subtype relation: T is a subtype of T1 in environment Env if T1 is well formed

8
The reference implementation is closed source; the authors have kindly provided us with line counts for each file.
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fun encode_type(T: typ , V: enc_val smt) : bool smt * bool smt =

match T with

| t_any => (`true `, `true `)

| t_bool => (`# is_ev_bool(V)`, `true `)

| t_coll(S) =>

let X = #{(S, V)}[ enc_val] in

let (Phi , Ax) = encode_type(S, `X`) in

(`good_c(V) /\ forall X : mem(X, V). mem(X, V) ==> Phi `, Ax)

Fig. 9. This function (fragment) constructs a formula capturing the logical denotation of a Dminor type.

subtype(Env , T, T1) :-

type_wf(Env , T1),

encode_env(Env) = Phi_env ,

X = `#{(Env , T, T1)}[ enc_val]`,

encode_type(T, X) = (Phi_t , Axioms1),

encode_type(T1, X) = (Phi_t1 , Axioms2),

Premises = [Phi_t , Phi_env , Axioms2 , Axioms1 , axiomatization],

is_sat_opt (`~Phi_t1 ` :: Premises , z3_timeout) = some(false).

Fig. 10. This rule defines Dminor’s semantic subtyping relation. It uses the operator is_sat_opt instead of
is_valid because its SMT queries can sometimes result in “unknown.”

and the denotation of T, given our axioms and the denotation of Env, implies the denotation of T1.

This rule is an almost exact translation of the inference rule given in the paper.

Finally, the type checker needs to ensure that any expressions that occur in refinements are

pure (i.e., terminate and are deterministic). We have written a termination checker based on the

size-change principle [Lee et al. 2001]. Our implementation is another good example of the synergy

between ML-style functions and Datalog rules, as we use the former to define the composition of

two size-change graphs and use the latter to find the fixed point of composing size-change graphs.

We tested our type checker on six of the sample programs included in the Dminor documentation

(the other three examples make use of a feature — the ability to generate an instance of a type —

that we did not implement, although it should be possible to do so; to the best of our knowledge,

these are the only publicly available Dminor programs). We combined these examples into a single

aggregate program of ∼150 LOC. The reference implementation type checked this program in 1.5

seconds using an optimization that tries syntactic subtyping before semantic subtyping; with this

optimization disabled, it took 3.6 seconds.
9
Our implementation completed in 5 seconds; it did not

use this optimization (which is not detailed in the paper), but did use a newer version of Z3. Thanks

to parallelization, our implementation automatically scaled to larger programs: On a synthetic

program consisting of ten copies of the original aggregate program, it completed in 21.4 seconds

(2.1 seconds per program copy); on a synthetic program consisting of 100 copies, it completed in

183.9 seconds (1.8 seconds per program copy). In contrast, the reference implementation did not

scale: even with the syntactic-subtyping optimization enabled, it took 68 seconds on the ten-copy

program and over 100 minutes on the 100-copy program.

9
Here we used a machine with Microsoft Windows Server 2019 and the same hardware specs as our Ubuntu machine.
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instantiate_ptsto(C, O1, Phi1 , O2, widen(C, Phi_all )) :-

instantiate_loc(C, heap(O1), heap(O2), Phi2),

instantiate_constraint(C, Phi1 , Phi3),

Phi_all = conjoin(Phi2 , Phi3).

Fig. 11. This rule describes how a points-to edge to object O1 labeled with constraint Phi1 is instantiated at a
call site C: if at C a heap location heap(O1) can be instantiated to a heap location heap(O2) under constraint
Phi2, and the original constraint on the edge Phi1 can be instantiated to a constraint Phi3, then the points-
to edge to O1 labeled with Phi1 instantiates to a points-to edge to O2 labeled with widen(C, Phi_all),
where Phi_all is the conjunction of Phi2 and Phi3 and widen is a function that widens constraints in
mutually-recursive functions (one of the heuristics we borrowed from Scuba).

5.3 Bottom-up points-to analysis
We have implemented the bottom-up context-sensitive points-to analysis for Java proposed by

Feng et al. [2015]. A points-to analysis computes a static approximation of the objects that stack

variables and heap locations can point to at runtime. A bottom-up points-to analysis does this

through constructing method summaries that describe the effect of a method on the heap; it is

bottom-up in the sense that summaries are propagated up the call graph, from callees to callers.

In Feng et al.’s algorithm, a method summary is an abstract heap that maps abstract locations

to heap objects, where an abstract location might be a stack variable, an explicitly allocated heap

object, or an argument-derived heap location. Edges in the abstract heap are labeled with logical

formulas that describe the conditions under which the edges hold; when a method summary is

instantiated at a call site, a constraint solver can be used to filter out edges with unsatisfiable labels.

Feng et al.’s tool based on this algorithm, Scuba, is ∼15K lines of Java, builds on the Chord

analysis framework [Naik 2011], and uses Z3 to discharge constraints. As for many realistic static

analysis tools, there is a gap between what is implemented in Scuba and the formal specification of

the analysis. This is partly because Scuba is written in Java: Object-oriented programming does

not naturally capture inference rules, the form of the specification. In contrast, our Formulog

implementation, which is ∼1.5K LOC, closely mirrors the inference rules. For example, we can

directly state how a points-to edge is instantiated at a call site (Figure 11), one step of summary

instantiation, a complex process defined through half a dozen mutually recursive relations that

need to be computed as a fixed point. The Java code for encoding this logic is more complex and

further from the formal specification. Programming close to the specification also helps check the

specifications’ correctness: while implementing in Formulog one of the judgments specified by Feng

et al., we discovered an inconsistency between the judgment’s definition and its type signature.

Scuba employs a range of sophisticated heuristics that are essential to making the algorithm

perform in practice, as they tune precision to achieve scalability. Some go far beyond the algorithm

described in the paper and are interesting in their own right. Our implementation uses some

heuristics based on the ones in Scuba. The fact that we were able to implement useful heuristics — a

necessity for a realistic static analysis tool — argues for the practicality of Formulog. Moreover, we

were able to do so such that our code still closely reflects the core algorithm specified in the paper.

We ran both tools on the benchmarks used in the evaluation by Feng et al., which represent a

selection from the pjbench suite plus the benchmark polyglot.
10
These experiments include library

code and use a context-sensitivity of two call sites; reflection is ignored, as are many native methods.

Given an hour timeout, our implementation completed on eight of the ten benchmarks, with times

ranging from five to 18 minutes (Table 1). In the median, we were 6.7× slower than Scuba. However,

10
The pjbench suite is available at https://bitbucket.org/psl-lab/pjbench/src/master/.
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Scuba Formulog

Benchmark Time # main edges Time # main edges

antlr 1:11 3,313 12:16 112,415

avrora 1:05 714 7:40 127,535

hedc 0:57 867 5:04 2,962

hsqldb 0:51 780 4:53 7,039

luindex 1:40 3,395 T/O -

polyglot 0:55 117 4:52 4,245

sunflow 3:48 7,456 T/O -

toba-s 0:58 521 4:57 12,284

weblech 1:10 1,262 17:58 6,785

xalan 0:54 183 5:40 55,722

Table 1. In the median, our implementation of a bottom-up points-to analysis for Java was 6.7× slower than
Scuba, the reference implementation; however, the two tools use different heuristics and thus compute very
different things, as indicated by the discrepancy in the number of points-to edges computed in the summary
for main (which also captures the effect on the heap of methods invoked transitively from it).

a performance comparison between the tools should be taken with a grain of salt: Since they use

different heuristics, they compute very different things.

In sum, we were able to implement the algorithm in a way that is still very close to its specification

and achieve decent performance on many realistic benchmarks while implementing only a small

selection of heuristics. Other heuristics might have helped our version complete on the two

benchmarks it timed out on. Making the algorithm practical is a significant engineering challenge:

Even with its sophisticated heuristics, Scuba does not complete on all benchmarks in pjbench.
11

Moreover, our implementation could be used as a platform for exploring potential optimizations

to Scuba. First, because it is automatically parallelized (with a user-chosen number of worker

threads), it could be used to evaluate how well the underlying points-to algorithm parallelizes

before going through all the trouble of parallelizing Scuba, which uses mutable state in a complex

way. Second, thanks to the magic set transformation, we have automatically derived a goal-directed

version of the analysis that computes only the summaries necessary for constructing user-requested

summaries. The points-to algorithm resulting from this transformation could be used as a road map

for implementing a demand-driven version of Scuba, which Feng et al. describe as future work.

5.4 Bounded symbolic evaluation
We have written a symbolic evaluator (∼800 LOC) for a fragment of LLVM bitcode [Lattner and Adve

2004] corresponding to a simple imperative language with integer arrays and symbolic integers

(a symbolic integer represents a set of integer values that might occur at runtime). It implements

a form of bounded symbolic execution [King 1976], exploring all feasible program paths up to a

given length, evaluating concretely whenever possible, and aggressively pruning infeasible paths.

Our implementation uses a different logic rule to define each of the possible cases during

evaluation, and uses ML functions to manipulate and reason about complex terms representing

evaluator state. For example, one rule defines when an assertion fails (Figure 12). This rule says

that the path Path ends in a failure with evaluator state St if: (1) there is an assert instruction Instr

with argument X, (2) following Path has led the evaluator to that instruction with state St, (3) X

could have the (possibly symbolic) integer value V in state St, and (4) V may be zero. The function

11
For example, we found it timed out on batik, chart, fop, lusearch, and pmd (as did our implementation).
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failed_assert(Path , St) :-

assert_instruction(Instr , X),

stepped(Instr , St, _, Path),

has_value(X, St, v_int(V)),

may_be_zero(V, St) = true.

Fig. 12. This rule states that the symbolic eval-
uator has reached a failing assertion when the
argument of the assert instruction may be zero.

a := array of N symbolic ints;

b := symbolic int;

if (b) { sort a; }

else { sort a; assert a sorted; }

Fig. 13. This pseudocode sketches a C program
that creates an array, branches, sorts it in each
branch, but only asserts that the result is sorted
in one branch.

Benchmark # paths KLEE Formulog Benchmark # paths KLEE Formulog

shuffle-4 125 0:08 0:04 (↑2.0×) sort-7 22,070 25:45 3:48 (↑6.8×)

shuffle-5 1,296 2:53 0:19 (↑9.1×) numbrix-sat 1 0:14 1:19 (↓5.6×)

sort-6 2,718 2:25 0:18 (↑8.1×) numbrix-unsat 1 0:09 1:08 (↓7.6×)

Table 2. We report absolute times for KLEE and a Formulog-based symbolic evaluation tool on six benchmark
programs; for the latter, we also report speedups (↑) and slowdowns (↓) relative to KLEE.

may_be_zero(V, St) returns true if and only if V may be zero given St. We represent symbolic

values as SMT formulas, so when V is symbolic, this function invokes the SMT solver.

We have evaluated our symbolic evaluator on six benchmarks based on three template programs.

The first template (shuffle-N ) non-deterministically shuffles an array of size N and asserts that the

resulting array represents the same set as the input array. The second template (sort-N ; Figure 13)

splits into two branches, sorts an array using selection sort in both branches, and asserts that the

resulting array is sorted in the second branch. The third template completes a partially filled-in 4×4

grid of integers, such that there is a path from 1 to 16 where each integer follows its predecessor and

only horizontal and vertical movements are used; the benchmark numbrix-sat runs this program

on a satisfiable instance, while the benchmark numbrix-unsat runs it on an unsatisfiable one.

We compared our times on these benchmarks against KLEE (v2.1) [Cadar et al. 2008], a well-

known symbolic execution tool (Table 2). On programs with a single path to explore, KLEE has

speedups over our version ranging from 5.6× (numbrix-sat) to 7.6× (numbrix-unsat). However,

thanks to its automatic parallelization, Formulog scales better as the number of paths increases: For

programs with more than 1000 paths, our version achieves speedups over KLEE ranging from 6.8×

(sort-7) to 9.1× (shuffle-5). While the comparison is not totally apples-to-apples (for example, KLEE

handles all of LLVM and needs to maintain a more complex symbolic state), we are encouraged by

the fact that the Formulog-based version seems to scale automatically in a way that KLEE does not.

Furthermore, the Formulog-based symbolic evaluator can be run in a goal-directed mode: If

we only want to check that no assertion fails, we can add the query failed_assert(_Path, _St),

triggering the Formulog runtime to rewrite our evaluator to explore only paths that could potentially

lead to a failed assertion. On the sorting benchmarks (Figure 13), this leads to substantial speedups

over KLEE — 10.4× for sort-6 and 11.8× for sort-7 — as the symbolic evaluator can ignore the first

branch of the program. To further evaluate the effectiveness of this optimization, we compared our

implementation against the bounded model checker CBMC (v5.11) [Clarke et al. 2004], which uses

program slicing [Weiser 1984] to achieve a similar effect. On sort-6 and sort-7, CBMC has speedups

over our symbolic evaluator of 1.3× and 1.4×, respectively. Thus, our automatic optimizations can

put Formulog-based analyses within a reasonable factor of hand-optimized systems.

, Vol. 1, No. 1, Article . Publication date: May 2020.



20 Aaron Bembenek, Michael Greenberg, and Stephen Chong

6 DESIGN EVALUATION
In this section, we evaluate the design of Formulog with respect to our case studies. We argue that

Formulog is an effective and usable tool for writing SMT-based analyses.

Formulog makes it possible to write SMT-based analyses in a way that is close to their mathematical
specification, leading to concise encodings. Our implementations of the Dminor type checker (Sec-

tion 5.2) and the bottom-up points-to analysis (Section 5.3) directly mirror their published formal

specifications; our third case study (Section 5.4), which was not based on any particular formal-

ization, would itself be the basis of a reasonable specification of symbolic evaluation. Formulog

provides language features that are a good match for the way that SMT-based analyses are specified:

algebraic data types naturally encode BNF grammars (a common feature in analysis specifications);

Horn clauses match judgments; ML functions fit helper functions; and the reification of formulas

as terms captures the way that formulas are treated in analysis specifications.

As a corollary, analyses written in Formulog can be concise. Despite encoding quite complex

logic, each of our case studies is less than 1.5K lines of code. In the case of the points-to analysis, this

is 10× smaller than the reference implementation (which also uses functionality defined externally

in Chord). This is partly because Scuba implements heuristics that we do not and Java is a verbose

language; however, we suggest that much of the difference is because Formulog is a better fit for

encoding the logic of the analysis than an imperative, object-oriented language like Java. The

relative concision of Formulog matches the results reported by previous work on Datalog-based

static analysis, which found that Datalog-based analyses can be orders of magnitude more concise

than counterparts written in more traditional languages [Whaley et al. 2005]. The ML fragment of

Formulog also helps it be concise, since ML expressions — through supporting sequenced, nested,

and scoped computation — can encode logic that would be more verbose to write in Datalog.

We have shown that three diverse case studies can be naturally encoded in Formulog, suggesting

that its design is a good match for a range of SMT-based analyses. However, not all analysis logic

can be easily encoded in Formulog. There is currently no way to join facts, a useful operation

for abstract interpretation-based analyses [Cousot and Cousot 1977]. The restriction to stratified

negation is sometimes too severe: For example, one Dminor rule for the type synthesis relation

synth is not directly expressible in Formulog, because it is defined in terms of the negation of the

type well formedness relation, which is in turn defined using the relation synth.12 Finally, given its

lack of mutable state, Formulog is probably not a good fit for analyses that can most naturally be

specified in an imperative manner, such as lazy abstraction model checking [Henzinger et al. 2002].

Because Formulog is designed to be compatible with Datalog, we can expand the type of analysis

logic it supports by taking advantage of research on Datalog extensions. For instance, lattice-based

recursive aggregation [Madsen et al. 2016; Szabó et al. 2018] would make it possible to join facts,

and local stratification [Przymusinski 1988] would support the Dminor logic we previously cited.

Formulog provides a rich and flexible language of formulas that supports the type of logic-based
reasoning found in SMT-based analyses. The formula fragment of Formulog makes it possible to

use formulas the way they need to be used by static analyses. A good example of this is the

decision to reify logical formulas as terms, a departure from the approach taken by constraint

logic programming [Jaffar and Lassez 1987; Jaffar and Maher 1994] and constrained Horn clause

(CHC) solving [Bjørner et al. 2015; Grebenshchikov et al. 2012; Gurfinkel et al. 2015; Hoder and

Bjørner 2012], the two major previous paradigms for combining logic programming and constraint

solving. In these systems, constraints are represented as predicates, not terms, and an inference

is made if the constraints in the body of a rule are satisfiable. This approach makes sense in the

12
To get around this, our implementation uses a less precise rule that drops the negated premise.
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context of programming with constraints; however, it seems overly restrictive in the context of

programming with formulas, which do not necessarily have to be used directly as constraints. For

example, analyses like our Dminor type checker need to check the validity of a formula, which is the

unsatisfiability of its negation. Checking validity does not easily fit in constraint-based paradigms,

since constraint programming is built around satisfiability. Similarly, we might want to write an

analysis that uses Craig interpolants [Craig 1957]. One could imagine extending Formulog’s SMT

interface to include an operator interpolate that takes two formulas and returns a third (optional)

formula, the interpolant; it is not clear how to do this in one of the constraint-based paradigms.

Our treatment of formula variables through the constructor #{e}[t] provides further evidence.
This mechanism makes it easy to identify a formula variable with an object-level construct (e.g., a

variable in the input program) by choosing for e the expression representing that construct. It also

makes it easy to create a variable that is guaranteed to be fresh relative to a set of constructs (e.g.,

fresh with respect to an environment), an extremely useful operation. This is done by choosing for

e a tuple of the constructs that the variable needs to be fresh with respect to. We use this trick in

both the Dminor type checker and the symbolic evaluator. Crucially, this freshness mechanism is

deterministic, which means that we can safely rewrite Formulog programs and parallelize them.

The logic programming language Calypso [Aiken et al. 2007; Hackett 2010] provides a similar

mechanism, except that it requires that all the variables in a formula are identified by terms with

the same type; this severely limits its usability and is too restrictive for our case studies.

Our case studies exercise a range of the SMT-LIB standard and demonstrate the richness of our

formula language. The case studies variously use algebraic data types and uninterpreted functions

(the Dminor type checker and the bottom-up points-to analysis); bit vectors and arrays (the Dminor

type checker and the symbolic evaluator); and integers, uninterpreted sorts, and quantifiers (the

Dminor type checker). It is easy to extend Formulog with additional theories (by adding new

constructors) and different types of logical reasoning (by adding new operators, like interpolate).

As Formulog so loosely couples Datalog evaluation and constraint solving, it is easy to swap in

new solver backends without major changes to the Formulog runtime; our prototype currently

supports Z3 [de Moura and Bjørner 2008], CVC4 [Barrett et al. 2011], and Yices 2 [Dutertre 2014].

The design of Formulog makes it possible to advantageously apply Datalog-style optimizations to
SMT-based analyses, with the result that Formulog programs can compete with analyses written in more
mature languages. All of our case study implementations benefit from automatic parallelization:

this scales our Dminor type checker and symbolic evaluator over the reference implementations,

and helps our bottom-up points-to analysis be reasonably performant. The points-to analysis and

symbolic evaluator also demonstrate the potential of the magic set transformation, as we have used

it to derive demand-driven versions of these SMT-based analyses. While these types of optimizations

could be added by hand to the reference implementations we compare against, the point is that the

design of Formulog means that Formulog-based analyses get these optimizations for free, without

the explicit effort of the analysis designer. Moreover, because of Formulog’s close affinity to Datalog,

a Formulog runtime can be augmented with additional Datalog-style optimizations. For instance,

a Formulog runtime could use an incremental Datalog evaluation algorithm, which efficiently

evaluates Datalog programs while facts are added or retracted from EDB relations [Gupta et al.

1993; Szabó et al. 2018]. This would be helpful for using SMT-based analyses in situations where

the code under analysis changes, such as in IDEs or rapidly evolving codebases.

It speaks to the design of Formulog that the high-level optimizations it enables can, in many cases,

make up for the naivety of our prototype runtime. Nonetheless, we are optimistic that significantly

better performance can be achieved with a sophisticated backend. As we have designed Formulog to

be close to Datalog, we can take advantage of many of the optimizations that have helped Datalog

, Vol. 1, No. 1, Article . Publication date: May 2020.



22 Aaron Bembenek, Michael Greenberg, and Stephen Chong

systems scale. For example, since we maintain the range restriction (which entails that every derived

fact is ground), we can use concurrent data structures specialized for Datalog evaluation [Jordan

et al. 2019]; since Formulog can be evaluated using standard semi-naive evaluation, we can compile

Formulog programs to C++ following Soufflé’s strategy [Jordan et al. 2016].

The ML fragment is an integral part of Formulog and has a substantial impact on its usability.
As discussed in Section 3.2, the first-order fragment of ML we use can be translated in a pretty

straightforward way to Datalog rules, and hence can be thought of as syntactic sugar. Despite this,

the ML fragment is an integral part of the Formulog programming experience. First, it improves

the ergonomics of Formulog, by making it more natural to manipulate complex terms. In particular,

pattern matching and let expressions provide a structured way to reflect on complex terms and

sequence computation on them; this same effect is not always as easy to achieve in Datalog rules.

Second, it helps Formulog achieve its design goal of allowing SMT-based analyses to be implemented

in a style close to their specification, since formal specifications often involve functions in addition

to inference rules. Third, it improves the performance of Formulog, as there is more overhead

involved with evaluating Datalog rules than evaluating an ML expression. A substantial amount

of our case study code is in the ML fragment: To give rough estimates, 65% of the Dminor type

checker, 30% of the bottom-up points-to analysis, and 40% of the symbolic evaluator are in the ML

fragment. Typically, the case studies use Horn clauses to define the overall structure of the analysis,

and ML functions for structuring lower-level control flow, mirroring the use of judgments and

helper functions in analysis specifications.

The limitation to first-order ML has several advantages. From a theoretical perspective, it means

that there is an easy translation from it to Datalog rules, which allows us to give the standard

Herbrandmodel-based semantics to Formulog programs. From a practical perspective, it ensures that

we never have to unify functions, which would require higher-order unification. The specifications

of our case studies did not make heavy use of higher-order functions, so they were not much missed.

However, a future version of Formulog could allow a limited use of higher-order functions (for

example, those programs that can be compiled to the first-order fragment).

7 RELATEDWORK
Datalog-based frameworks and domain-specific languages for static analysis. A variety of static

analysis frameworks have been developed based on more-or-less standard Datalog, such as bddb-

ddb [Whaley et al. 2005], Chord [Naik 2011], Doop [Bravenboer and Smaragdakis 2009], QL [Av-

gustinov et al. 2016], and Soufflé [Scholz et al. 2016]. Recent work has explored synthesizing

Datalog-based analyses [Albarghouthi et al. 2017; Raghothaman et al. 2019]. Flix [Madsen et al.

2016] and IncA [Szabó et al. 2018] extend Datalog for analyses that operate over lattices besides

the powerset lattice. IncA supports incremental evaluation, while Flix (like Formulog) includes

algebraic data types and a pure functional language. Dataflow analysis is used as a case study for

Datafun, a language combining Datalog and higher-order functional programming [Arntzenius

and Krishnaswami 2016]. It might be possible to encode something like Formulog in Datafun;

however, although it has recently been shown that Datafun can be evaluated using semi-naive

evaluation [Arntzenius and Krishnaswami 2020], it is not clear to what extent other Datalog

optimizations can be applied to Datafun programs. By combining Datalog with functional program-

ming, Formulog, Flix, and Datafun are related to functional logic programming [Antoy and Hanus

2010]. The functional fragment of Formulog is less expressive than what is typically found in such

languages, as Formulog functions are not first-class values and not higher-order.

Logic programming with constraints and formulas. The two dominant prior paradigms for combin-

ing logic programming and constraint solving are constraint logic programming (CLP) [Jaffar and
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Lassez 1987; Jaffar and Maher 1994] and constrained Horn clause (CHC) solving [Bjørner et al. 2015;

Grebenshchikov et al. 2012; Gurfinkel et al. 2015; Hoder and Bjørner 2012]. As discussed in Section 6,

these systems typically encode constraints as predicates, not terms, and thus support programming

with constraints as things to be satisfied, rather than programming with formulas, which can be

manipulated in more interesting ways (e.g., validity checking). In the context of static analysis,

these systems have been used primarily for model checking, where a model of the input system

is encoded using Horn clauses [Bjørner et al. 2015; Delzanno and Podelski 1999; Flanagan 2004;

Fribourg and Richardson 1996; Grebenshchikov et al. 2012]. The rules depend on the program being

analyzed, and the solutions to these rules reveal properties of the model; e.g., SeaHorn [Gurfinkel

et al. 2015] checks programs by solving a CHC representation of their verification conditions. This

differs than the approach taken in this paper, where the rules encode an analysis independent of

the input program. The Datalog mode of µZ [Hoder et al. 2011] can be thought of as a bottom-up

CLP system with special support for abstract interpretation.

A few existing logic programming systems support programming with formulas (vs constraints);

we would argue that none do so with the same richness and flexibility as Formulog. Codish et al.

[2008] extend Prolog with an interface to a SAT solver. SICStus Prolog [Carlsson and Mildner

2012], with its CLP extensions, has been used to write model checkers [Delzanno and Podelski

1999; Fribourg and Richardson 1996; Grebenshchikov et al. 2012; Podelski and Rybalchenko 2007];

these implementations typically rely on Prolog’s non-logical features, like assert, making it harder

to apply high-level optimizations like parallelization. Calypso [Aiken et al. 2007; Hackett 2010] is

a Datalog variant that interfaces with external constraint solvers and has specialized support for

bottom-up analyses. Calypso has been used with SAT and integer constraint solvers; in theory, it

could be connected to an SMT solver. However, Formulog offers several advantages over Calypso

for SMT-based analyses. First, Formulog’s approach to constructing formulas (via complex terms)

and manipulating them (via its ML fragment) scales to the complex and heterogeneous formulas

that arise in the SMT context, whereas Calypso’s approach to formulas (opaque terms, constructed

via predicates) would be cumbersome in this setting. Second, Formulog’s type system supports

the construction of expressive (and safe) formulas involving user-defined terms such as algebraic

data types and uninterpreted functions. Third, the ML fragment of Formulog goes a long way

towards making it practical for SMT-based analyses, by closing the gap between specification and

implementation, and improving ergonomics and performance.

The logic programming language λProlog provides a natural way to represent logical formulas

using a form of higher-order abstract syntax based on λ-terms and higher-order unification [Miller

and Nadathur 1987; Pfenning and Elliott 1988]. Although this representation simplifies some aspects

of using formulas, moving to a higher-order setting would complicate Formulog, widen the gap

between Formulog and other Datalog variants, and potentially be an impediment to building a

performant and scalable Formulog implementation. Answer set programming (ASP) uses specialized

solvers to find a stable model (if it exists) of a set of Horn clauses [Brewka et al. 2011; Gelfond and

Lifschitz 1988]. Common extensions support constraints on the shape of the stable model that will

be found. ASP enables concise encoding of classic NP-complete constraint problems such as graph

k-coloring, but it is not obviously applicable to static analysis problems.

Type system engineering. PLT Redex [Felleisen et al. 2009] and Spoofax [Kats and Visser 2010]

support exploratory type system engineering. PLT Redex supports a notion of judgment modeled ex-

plicitly on inference rules. Spoofax’s type engineering framework, Statix, uses a logic programming

syntax to specify type systems, with a custom solver for resolving the binding information in scope

graphs simultaneously with solving typing constraints [van Antwerpen et al. 2018]. Both of these
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systems use custom approaches to finding typing derivations; neither supports SMT queries, but

Statix’s custom solver can resolve constraint systems that might not always terminate in Formulog.

Solver-aided languages. ScalaZ3 [Köksal et al. 2011] supports mixed computations combining nor-

mal Scala evaluation and Z3 solving; we avoid this level of integration. Smten [Uhler and Dave 2013]

is a solver-aided language that supports both concrete and symbolic evaluation; Rosette [Torlak

and Bodik 2013] is a framework for creating solver-aided languages that have this property.

8 CONCLUSION
Formulog is a domain-specific language for writing SMT-based static analyses that judiciously

combines Datalog, ML, and SMT solving (via an external SMT solver). As demonstrated by our case

studies, it makes it possible to concisely implement a range of SMT-based analyses — refinement

type checking, bottom-up points-to analysis, and symbolic evaluation — in a way close to their

formal specifications, while also making it possible to automatically and advantageously apply

high-level optimizations to these analyses like parallelization and goal-directed rewriting.
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Types
Types τ ::= t | t smt | t sym | model
Pre-types t ::= B | D ®τ | α
Base types B ::= bool | bv[k]k ∈N+ | . . .

Contexts

Data type declarations ∆ ::= · | ∆,D : ∀ ®αi . {
−−−−→
c j : ®τk }

Program declarations Φ ::= · | Φ, f : ∀ ®α , ®τ → τ | Φ, uf : ®t → t | Φ,p ⊆ ®τ
Variable contexts Γ ::= · | Γ,x : τ | Γ,α

Terms
Programs prog ::= ®Fi ®Hj

Functions F ::= fun f ( ®Xi : ®τi ) : τ = e

Horn clauses H ::= p( ®Xi ) :− ®Pj
Premises P ::= A | !A
Atoms A ::= p( ®ei ) | X = e
Expressions e ::= k | X | c( ®ei ) | f ( ®ei ) | p( ®ei ) | ⊗( ®ei ) | `ϕ`

let X = e1 in e2 | if e1 then e2 else e3 |

match e with
−−−−−−−−−−→
ci ( ®X j ) → ei

SMT formulas ϕ ::= cSMT
var [x , t]() | cSMT

const[k]() | cSMT
let (ϕ1,ϕ2,ϕ3) |

cSMT
ctor [c](

®ϕi ) | cSMT
forall(ϕ1,ϕ2) | cSMT

uf [uf ]( ®ϕi ) | ,e
Constants k ::= true | false | 0 | 1 | . . .

Namespaces
Type modes m ::= exp | smt
Data type names D ∈ ADTVar

Type variables α ∈ TVar

Constructors c ∈ CtorVar

Formulog variables X ∈ Var

SMT variables x ∈ SMTVar

Predicates p ∈ PredVar

Functions f ∈ FunVar

Uninterpreted functions uf ∈ UninterpFunVar

Fig. 14. Syntax of Formulog’s formal model

A FORMULOG’S FORMAL MODEL
We define a ‘middleweight’ formal model of Formulog, designing a type system (Section B) and an

operational semantics (Section C), relating the two in a proof of type safety (Section D).

Our model characterizes Formulog as a two-level system (Figure 14), comprising Datalog-esque

Horn clauses H and first-order functions F ; Horn clause “rules” are made up of premises P , where
each premise is a series of (possibly negated) atoms A. Each atom A either references a Datalog

predicate or binds a variable to an expression e . Expressions themselves have twomutually recursive
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modes: ordinary functional computation e and quoted SMT terms `ϕ`, which can include unquoted

expressions ,e .
The Datalog fragment of Formulog is fairly standard syntactically, up to the addition of the

atomic form X = e . We constrain premises to a sort of administrative normal form: predicate

references apply only to variables, written p( ®Xi ), and expression constraints bind variables, as in

Y = e . Our implementation can handle compound premises like p(e1, e2); our formal model would

require rewriting such a premise to three premises: p(X ,Y ), X = e1, and Y = e2 (for some fresh X
and Y ).
The functional programming fragment fully annotates the types on its functions F ; variable

names in both fragments are written in capital letters. (Our implementation merely demands that

the first letter be capitalized.) SMT variables are written using lowercase letters and annotated with

their type, as in cSMT
var [x , t](). As described in Section 3.3, our implementation allows any value to

be used as the name of an SMT variable; here, without loss of generality, we treat SMT variables as

being drawn from a distinct universe. Code in the functional fragment can treat Datalog relations

as predicates, i.e., p( ®vi ) returns true when ®vi ∈ p. In our implementation, some elements of ®vi
can be the wildcard ??, turning a Datalog predicate into a list. For example, if p ⊆ bool × bv[32],
then: p(true, 42) yields a bool; p(??, 42) returns a list of bools b such that p(b, 42) holds; p(true, ??)
returns a list of bv[32]s n such that p(true,n) holds; p(??, ??) returns a list of bool × bv[32], i.e., the
relation p. We don’t include this behavior in our formal model.

The set of available base types B must include bool at a minimum; any other SMT-embeddable

base types are acceptable, e.g., k-width bit vectors for a statically known k .
As a matter of notation, we write ®ei for a metavariable e to mean a possibly empty sequence of es,

indexed by i . When more than one variable shares the same index, we mean that those sequences

must be of the same length (e.g., in the match syntax, each branch of a match is a triple of a

constructor c , a vector of variable names for c’s arguments, and a corresponding single expression).

B FORMULOG’S TYPE SYSTEM
We begin by presenting type checking rules for Formulog (Figures 15, 16, 17, and 18). Our imple-
mentation of Formulog not only performs type checking, but can also perform type inference, e.g.,

automatically finding type variable substitutions.

Our types are broken into two levels: types τ and pre-types t . Every pre-type t can be directly

considered as a type, but there are two additional types: t smt, the type of SMT formulas yielding

t , and t sym, the type of SMT variables of type t . We factor the syntax in this way to prevent

anomalies like bool smt smt, which would mean SMT formulas that yield SMT formulas that yield

booleans. It is not the case, however, that every pre-type t is necessarily representable as an SMT

type, because data types may contain SMT formulas as arguments; we discuss how we categorize

SMT-representable types shortly.

Before we begin, some further notational clarification. Rules are named by their primary subjects

followed by a hyphen and a descriptive name. Whenever we use indices in rules, we will always

map (stating a single premise in terms of the index, e.g., prog-WF) or fold (stating first, indexed, and

last, e.g., ®X ®τ -All) over the sequence. We omit the indices when selecting an element of a sequence

or set (as in, e.g., e-Match in Figure 17).

All of our typing rules are in terms of a fixed set of data type declarations ∆ and program

declarations Φ (Figure 14). Data type declarations ∆ map data type names D to some number of

type arguments ®αi and a set of constructors ®c j , each of which takes some number of arguments

of type ®τk ; each c j can have a different number of arguments. Program declarations Φ collect the
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Type and typing context well formedness ∆ ⊢ Γ ∆; Γ ⊢m τ

⊢ ·
Γ-Empty

⊢ Γ Γ ⊢exp τ

⊢ Γ,x : τ
Γ-Var

⊢ Γ

⊢ Γ,α
Γ-TVar

Γ ⊢m B
t-Base

α ∈ Γ

Γ ⊢exp α
t-TVar

∆(D) = ∀ ®αi , {. . . } Γ ⊢m τi

Γ ⊢m D ®τi
t-ADT

Γ ⊢smt t

Γ ⊢m t smt
τ -SMT

Γ ⊢smt t

Γ ⊢m t sym
τ -Sym

Γ ⊢exp model
τ -Model

Data type and program signature well formedness ⊢ ∆ ⊢ Φ

⊢ ∆ ⇔ ∀D : ∀ ®α . {c1 : ®τ1, . . . , cn : ®τn} ∈ ∆∀i,
(1) ∀D ′ ∈ dom(∆), ci ∈ ∆(D ′) ⇒ D = D ′

(2) ®α ⊢exp τi
(3) ∀β ∈ ®α , β ∈ ®τi

⊢ ·
Φ-empty

⊢ Φ ∀β ∈ ®αi , β ∈ ®τj ,τ ®αi ⊢exp τj ®αi ⊢exp τ

⊢ Φ, f : ∀ ®αi , ®τj → τ
Φ-Fun

⊢ Φ · ⊢exp τi

⊢ Φ,p ⊆ ®τi
Φ-Rel

⊢ Φ · ⊢smt ti · ⊢smt t

⊢ Φ, uf : ®ti → t
Φ-UFun

Program and function typing ∆;Φ ⊢ prog

⊢ ∆ ⊢ Φ ∆;Φ ⊢ Fi ∆;Φ ⊢ Hj

∆;Φ ⊢ ®Fi ®Hj
prog-WF

Fig. 15. Type, context, and definition well formedness; top-level program typing

signatures of first-order polymorphic functions f : ∀ ®α , ®τ → τ , uninterpreted functions for use in

the SMT solver uf : ®t → t , and relations p ⊆ ®τi .
The highest level typing rule is prog-WF (Figure 15), which ensures that the declarations are

well formed and each part of the program is well formed.

The context and type well formedness rules (Figure 15) are mostly straightforward, type well

formedness being the most interesting. Each type can be found to be well formed in either SMT

mode smt—i.e., it can be exported to the SMT solver–or in expression mode exp, meaning it cannot

be. There is a sub-moding relationship: well formed types at smt are also well formed at exp, but
not necessarily vice-versa: for example, there is no way to export an SMT formula or variable as the

object of another SMT formula, only as a constituent. We assume that all Formulog constants are

SMT representable, i.e., · ⊢smt typeof(k) for all constants k . Data type declarations are polymorphic,

but we disallow phantom type variables. Data types can freely mutually recurse. Uninterpreted

functions must be in terms of pre-types, and those pre-types must be closed and SMT representable

(smt); functions and relations can use any well formed types (exp). Functions can be polymorphic

but we disallow phantom type variables; relations have monomorphic types. Disallowing phantom

types in constructors and functions and keeping relations monomorphic ensure that these forms

are “reverse determinate”, i.e., the types of their arguments uniquely determine their types.
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Variable binding and typing Γ ⊢ x ,τ ▷ Γ Γ ⊢ ®x , ®τ ▷ Γ

X < dom(Γ)

Γ ⊢ X ,τ ▷ Γ,X :τ
Xτ -Bind

Γ(X ) = τ

Γ ⊢ X ,τ ▷ Γ
Xτ -Check

Γ ⊢ X0,τ0 ▷ Γ1 . . . Γi ⊢ Xi ,τi ▷ Γi+1 . . . Γn ⊢ Xn ,τn ▷ Γ′

Γ ⊢ ®Xi , ®τi ▷ Γ′
®X ®τ -All

Premise typing ∆;Φ; Γ ⊢ P ▷ Γ

p ⊆ ®τi ∈ Φ Γ ⊢ ®Xi , ®τi ▷ Γ′

Γ ⊢ p( ®Xi ) ▷ Γ′
P-PosAtom

p ⊆ ®τi ∈ Φ Γ ⊢ ®Xi , ®τi ▷ Γ

Γ ⊢ !p( ®Xi ) ▷ Γ
P-NegAtom

®Xi ⊈ Γ ∆(D) = ∀ ®α j , {. . . , c : ®τi , . . . } Γ ⊢ Y ,D ®τ ′j ▷ Γ Γ ⊢ ®Xi , ®τi [ ®τ
′
j / ®α j ] ▷ Γ′

Γ ⊢ Y = c( ®Xi ) ▷ Γ′

P-EqCtor-BF

®Xi ⊈ Γ Γ ⊢ cSMT
c′ : ®τi → τ Γ ⊢ Y ,τ ▷ Γ Γ ⊢ ®Xi , ®τi ▷ Γ′

Γ ⊢ Y = `cSMT
c′ ( ®,Xi )` ▷ Γ′

P-EqSMT-BF

Γ ⊢ e : τ Γ ⊢ Y ,τ ▷ Γ′

Γ ⊢ Y = e ▷ Γ′
P-Eq-FB

Γ ⊢ e : τ Γ ⊢ Y ,τ ▷ Γ

Γ ⊢ !(Y = e) ▷ Γ
P-NegEq

Clause typing ∆;Φ ⊢ H

· ⊢ P0 ▷ Γ1 . . . Γj ⊢ Pj ▷ Γj+1 . . . Γn ⊢ Pn ▷ Γ′

p ⊆ ®τi ∈ Φ Γ′ ⊢ ®Xi , ®τi ▷ Γ′

⊢ p( ®Xi ) :− ®Pj
H -Clause

Fig. 16. Typing rules: Horn clauses (rules)

Since the declaration environments ∆ and Φ are statically determined for an entire program, we

typically leave them implicit. Implicit parameters are in gray in the boxed rule schemata in the

figures. In proofs we will treat these parameters explicitly, but we conserve space by stating the

rules without threading implicit parameters through. For example, the data type declarations ∆ are

necessary to ensure that t-ADT only allows us to name data types that have actually been defined.

Rather than threading ∆ through every rule for context and type well formedness, we write ∆ in

the rule schemata.

The type checking of the Datalog fragment of Formulog (Figure 16) must encode two Datalog

invariants in addition to conventional typing constraints: the range restriction, i.e., every variable

in the head of a rule appears somewhere in a premise; and appropriate binding, i.e., it is possible to

interpret a Horn clause in such a way that all of the variables will be bound at the end. Our formal

rules ensure that the program has correct binding structure for a left-to-right evaluation of each
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Horn clause. An implementation could determine whether or not an ordering would work and

could reorder programs into an appropriate order automatically. Our formal model does not enforce

that the dependencies between relations are appropriately stratified, though doing so would be

easy: the relation-and-function call graph should not have any “negative” edge in a cycle, where

a negative edge is created whenever there is a negated predicate in a rule body or a predicate is

invoked as a function.

Concretely, H -Clause ensures that (a) a left-to-right binding order produces some appropriate

final context Γ′ (via the premise typing judgment), (b) the range restriction is satisfied, ( ®Xi ⊆ Γ′) by

making sure that (c) every variable is well typed and bound (Γ′ ⊢ ®Xi , ®τi ▷ Γ′—having the same Γ′

means no new bindings were introduce when checking the head variables).

Premise typing Γ ⊢ P ▷ Γ and variable binding and typing Γ ⊢ x ,τ ▷ Γ work together to generate

appropriate types for each premise. Positive references to relations are well formed in binding Γ′

according to P-PosAtom when (a) the use is well typed (p ⊆ ®τi ∈ Φ) and (b) the variables used in

the premise yield the binding Γ′. Negative references to relations !p( ®Xi ) additionally require that all

of the Xi be already bound, i.e., the resulting Γ is the same as the starting one. We split expression

equality constraints Y = e into three main cases:

(1) Y is bound and e is a constructor c( ®Xi ) where all of ®Xi are unbound (P-EqCtor-BF).

(2) Y is bound and e is a quoted SMT constructor `cSMT
c′ ( ®,Xi )` where all of ®Xi are unbound

(P-EqSMT-BF).

(3) Y is possibly unbound and e has no unbound variables (P-Eq-FB).

It is critical that we avoid the case where both Y and some of the Xi are unbound, in which case

we would need to perform true unification (or even higher-order unification, depending on our

treatment of functional programs). In the case where Y is bound and the expression has no unbound

variables, only the P-Eq-FB case could apply. There is a fourth, irrelevant case: P-NegEq. No binding
can possibly occur there, so the constraint is imply checked by running e and making sure it isn’t

equal to Y .
The binding rules come in three forms: Xτ -Bind for adding a new binding, Xτ -Check for

ensuring that an already bound variable is matched at appropriate type, and a vectorized form

®X ®τ -All for folding over a sequence of such bindings. Note that the resulting bindings are the same,

i.e., Γ ⊢ X ,τ ▷ Γ, if and only if X ∈ dom(Γ); the same holds for vectors of variables and types, as

well (Lemma E.5).

We split the rules for expressions e and formulas ϕ in two parts (Figures 17 and 18, respectively).

Expression typing is conventional for functional languages. We adopt a declarative style for type

substitutions (e-Ctor, e-Fun, e-Op, e-Match). Our actual implementation uses Hindley–Damas–

Milner type inference [Damas and Milner 1982; Hindley 1969] to find the correct types to use. As

to Formulog-specific features, we ensure type well formedness is in exp-mode; the `ϕ` expression
switches from expression mode to formula mode. Relations p ⊆ ®τi ∈ Φ are treated as if they are

functions of type ®τi → bool. Since Datalog predicates can occur in functional terms, we must use

the control-flow graph of the program when analyzing for stratification. Consider the following

program:

fun f(X : bv[32]) : bv[32] = if p(X) then ... else X

p(Y) :- q(Y, Y).

q(A, B) :- r(A), B = f(A).

r(42).

Here the relation q calls the function f, which in turn relies on the negation of the relation p (since

the behavior of f is conditioned on the contents of p). As p is defined in terms of q, this leads to a
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Function and expression well formedness ∆;Φ ⊢ F ∆;Φ; Γ ⊢ e : τ

f : ∀ ®α j , ®τi → τ ∈ Φ ®α j ,
−−−−→
Xi : τi ⊢ e : τ

⊢ fun f ( ®Xi : ®τi ) : τ = e
F -WF

⊢ Γ Γ(X ) = τ

Γ ⊢ X : τ
e-Var

Γ ⊢ k : typeof(k)
e-Const

Γ ⊢ e1 : τ1 Γ,X : τ1 ⊢ e2 : τ2

Γ ⊢ let X = e1 in e2 : τ2
e-Let

∆(D) = ∀ ®α j , {. . . , c : ®τi , . . . } Γ ⊢exp τ
′
j Γ ⊢ ei : τi [τ

′
j /α j ]

Γ ⊢ c( ®ei ) : D ®τ ′j

e-Ctor
Γ ⊢ ϕ : τ

Γ ⊢ `ϕ` : τ
e-Quote

p ⊆ ®τi ∈ Φ Γ ⊢ ei : τi

Γ ⊢ p( ®ei ) : bool
e-Rel

f : ∀ ®α j , ®τi → τ ∈ Φ Γ ⊢exp τ
′
j Γ ⊢ ei : τi [τ

′
j /α j ]

Γ ⊢ f ( ®ei ) : τ [τ
′
j /α j ]

e-Fun

typeof(⊗) = ∀ ®α j , ®τi → τ Γ ⊢exp τ
′
j Γ ⊢ ei : τi [τ

′
j /α j ]

Γ ⊢ ⊗( ®ei ) : τ
e-Op

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ
e-If

Γ ⊢ e : D ®τj ∆(D) = ∀ ®α j , {. . . , ci : ®τk , . . . } Γ,
−−−−−−−−−−−−→
Xk : τk [τj/α j ] ⊢ ei : τ

Γ ⊢ match e with
−−−−−−−−−−→
ci ( ®Xk ) → ei : τ

e-Match

Fig. 17. Typing rules: expressions; implicit parameters are in gray

circularity we want to avoid: It is possible to derive q(42, 42), but this derivation nonsensically

relies on q(42, 42) being false (since it requires that p(42) is false).

While Formulog’s expressions compute values, the Formulog’s formulas construct ASTs, to be

shipped off to an SMT solver. Our formal account here uniformly uses SMT constructors to model

the SMT syntax, but our implementation offers special-purpose syntax. For example, we write

cSMT
var [x , bv[32]] in our formalism to name a 32-bit integer variable x , while in our implementation

one might write #x[bv[32]].

Every ϕ-. . . typing rule generates a value with an SMT type, i.e., either t sym or t smt for SMT

types t , i.e., Γ ⊢smt t (Lemma D.9). The c-SMT-* rules yield t sym and t smt. SMT variables cSMT
var [x , t]

are written in lowercase to emphasize their distinction from expression variables X ; these SMT

variables will be used as names in the formulas sent to the SMT solver. We keep track of which

terms are SMT variables cSMT
var [x , t] of type t sym (generated by c-SMT-Var) and which are plain

SMT formulas of type t smt (all other rules). We treat t sym as a subtype of t smt (ϕ-Promote).
The `ϕ` operator is an expression term that introduces quoted SMT formulas represented as

special, SMT constructors of the form cSMT
... (described below); the ,e operator is the corresponding

‘unquote’ operator that introduces an expression (ϕ-Unqote).

While unquoting generally suffices for embedding the results of expressions in formulas, we

treat constructors specially so that we can mix concrete and symbolic (i.e., SMT) arguments in a

single data type constructor (c-SMT-Ctor): we assign them types that are fully SMT-ized via the
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SMT constructors and formula well formedness ∆;Φ; Γ ⊢ cSMT
... : ®τi → τ ∆;Φ; Γ ⊢ ϕ : τ

Γ ⊢smt t

Γ ⊢ cSMT
var [x , t] : · → t sym

c-SMT-Var

Γ ⊢ cSMT
const[k] : · → typeof(k) smt

c-SMT-Const

Γ ⊢smt t1 Γ ⊢smt t2

Γ ⊢ cSMT
let : t1 sym × t1 smt × t2 smt → t2 smt

c-SMT-Let

∆(D) = ∀ ®α j , {. . . , c : ®τi , . . . } Γ ⊢smt τi [t
′
j/α j ] Γ ⊢smt t

′
j

Γ ⊢ cSMT
ctor [c] :

−−−−−−−−−−−−−−−→
toSMT(τi [t

′
j/α j ]) → (D

−→
t ′j ) smt

c-SMT-Ctor

Γ ⊢smt t1

Γ ⊢ cSMT
forall : t1 sym × bool smt → bool smt

c-SMT-Forall

uf : ®ti → t ∈ Φ

Γ ⊢ cSMT
uf [uf ] : −−−−→ti smt → t smt

c-SMT-UFun

Γ ⊢ ϕ : t sym

Γ ⊢ ϕ : t smt
ϕ-Promote

Γ ⊢ e : τ Γ ⊢smt τ

Γ ⊢ ,e : toSMT(τ )
ϕ-Unqote

Γ ⊢ cSMT
c : ®τi → τ Γ ⊢ ϕi : τ

′
i

Γ ⊢ cSMT
c ( ®ϕi ) : τ

ϕ-Ctor

Conversion to SMT types erase(τ ) = t toSMT(τ ) = τ

erase(B) = B

erase(D ®τi ) = D
−−−−−−−→
erase(τi )

erase(t smt) = erase(t)
erase(t sym) = erase(t)

toSMT(t) = erase(t) smt
toSMT(t smt) = erase(t) smt
toSMT(t sym) = erase(t) sym

Fig. 18. Typing rules: SMT constructors and formulas; conversion to SMT types

toSMT function, but unquoting allows for easy mixing of values of SMT-types t as if they were

of type t smt. The toSMT metafunction alters the type of e to make sure it is SMT representable;

toSMT relies on an erase function to avoid nesting . . . smt and . . . sym type constructors. One

can only run these functions on SMT types. For example, we can write terms like the following in

concrete syntax:

let H = 5 in `cons(H , #l[bv[32] list])`

which desugars to the SMT constructors:

let H = 5 in `cSMT
ctor [cons](,H , c

SMT
var [l , bv[32] list]())`

Note that H is an expression variable and l is an SMT variable; the type conversion in ϕ-Unqote

lets us mix them in the same list of 32-bit numbers. The t sym type is used in ϕ-Let and ϕ-Forall,
which construct SMT formuale that use binders. The only way to get a value of type t sym is either

with c-SMT-Var/ϕ-Ctor or with ϕ-Unqote, as in let X = `cSMT
var [x , bv[32]]` in `,X `.
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Uninterpreted functions must be applied to appropriate SMT types (ϕ-UFun); recall that Φ-UFun
ensures that each uninterpreted function’s types are SMT representable.

Finally, there are a suite of SMT constructors of the form cSMT
... . Each of these special cSMT

...

constructors is treated as an ordinary constructor by the operational semantics, even though the

constructors don’t appear in ∆. Rather than making SMT terms opaque, we model them with

constructors to allow for matching on generated formulae in P-EqSMT-BF and P-Eq-FB. The types
of the SMT constructors cSMT

... are given in Figure 18. It is a crucial invariant that all of these types

be SMT types: we would not want to treat an SMT variable cSMT
var [x , bool] as though it were an

actual bool! Reusing the c-SMT-. . . rules is convenient—we need only state the types of these

constructors once and we get precise types in our premises. Several SMT constructors take special

arguments in square brackets: cSMT
var [x , t] is a 0-ary SMT constructor, while cSMT

var itself is a family of

SMT constructors for given variable names x and pre-types t ; similarly, cSMT
const[k] is a 0-ary SMT

constructor, while cSMT
const itself is a family of SMT constructors for given constants k . The embedding

of data type constructors cSMT
ctor [c] is similarly parameterized on a constructor name c , and the

embedding of uninterpreted functions cSMT
uf [uf ] takes an uninterpereted function as a parameter.

Separating these parameters from the interesting, ϕ-shaped subparts of each SMT constructor lets

us reuse the c-SMT-. . . rules when typing premises that might bind to subparts of an SMT formula

(P-EqSMT-. . . , Figure 16).
Our formal model elides some of the detail of our SMT encoding, such as constructors for SMT

operations like bit vector manipulation or equality. These operations are all encoded as more SMT-

specific constructors, i.e., cSMT
ctor [bv32_add](c

SMT
var [x , bv[32]], cSMT

const[1])) represents result of adding the

32-bit vector x and 1. There are some subtle issues around polymorphism and determinacy. We

give a monomorphic interpretation of SMT here, though our SMT constructors can work with our

polymorphic data types. Our implementation treats equality and other polymorphic SMT operations

specially, where each use of a polymorphic operator must be fully instantiated. In practice our

implementation can usually infer the instantiation; users must annotate in those places we cannot

infer.

C OPERATIONAL SEMANTICS
Formulog’s operational semantics operates over worlds W and substitutions θ (Figure 19); the

semantics is a mix of small-step rules modeling a single application of a Datalog rule (Figure 20),

which depend on a small-step rules explaining how premises unify (Figures 21 and 22); the premise

semantics in turn depends on a semantics of expressions (Figures 23 and 24) and formulas (Figure 25).

Our worlds W are (subsets of) Herbrand models. Our small-step semantics iteratively builds up

a world that is in fact a Herbrand model of the original relations in the program. We could have

modeled our semi-naive evaluation model for Formulog in more detail, showing that all programs

generate a worldW that is a well typed Herbrand model of the user’s program (possibly taking

infinite time to do so). Doing so wouldn’t add anything materially interesting to our formulation.

Throughout, the type system’s goal is prevent a program yielding ⊥, the bottom “wrong” value.

Such a value denotes a serious, unrecoverable error, such as using a relation with the wrong arity or

conditioning on a non-boolean. It is important to distinguish bad, ⊥-yielding programs from those

that simply fail to step. The goal of Datalog evaluation is to reach a fixed point, i.e., to be unable to

step! Finally, as is common, we assume that built-in operations do not yield ⊥, i.e., they are total.

While we could in principle design a type system for Formulog that avoids, say, division by zero,

we are more interested in making the hard parts easy (generating well typed SMT formulas) rather

than making the easy parts foolproof (statically protecting partial functions).
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Namespaces
World W ∈ PredVar → P(Val × · · · × Val)

World or error W⊥ ∈ World + Error

Substitution θ ∈ Var⇀ Val

Substitution or error θ⊥ ∈ Substitution + Error

Values
Results v⊥ ::= v | ⊥

Values v ∈ Val ::= k | c( ®vi )

Unifiable term u ∈ UTerm ::= X | k | c( ®ui )

Substitution and world well formedness ∆;Φ; Γ |= θ ∆;Φ |=W

Γ |= θ
⇔

∀X ∈ dom(Γ)

{
(1) X ∈ dom(θ )
(2) · ⊢ θ (X ) : Γ(X )

∆;Φ |=W

⇔

∀p ⊆ ®τi ∈ Φ


(1) p ∈ dom(W)

(2) ®vj ∈ W(p) ⇒ i = j
(3) ∀ ®vi ∈ W(p), ∆;Φ; · ⊢ vi : τi

Fig. 19. Definitions for semantics

Clause semantics ®F ;W ⊢ H → W⊥

· ⊢ P0 → θ1 . . . θi ⊢ Pi → θi+1 . . . θn ⊢ Pn → θ

®F ;W ⊢ p( ®X j ) :− ®Pi → W[p 7→ W(p) ∪ {θ ( ®X j )}]
Clause

· ⊢ P0 → θ1 . . . θi ⊢ Pj → ⊥

®F ;W ⊢ p( ®X j ) :− ®Pi → ⊥
Clause-E1

· ⊢ P0 → θ1 . . . θi ⊢ Pi → θi+1 . . . θn ⊢ Pn → θ ®X j ⊈ dom(θ )

®F ;W ⊢ p( ®X j ) :− ®Pi → ⊥
Clause-E2

Fig. 20. Clause semantics

Rules of the form . . . -En denote ⊥-yielding rules. Each such rule characterizes a form of wrong-

ness avoided by our static type system. We write v⊥ to denote the disjoint sum of values v and the

wrong value ⊥.

During correct execution, Clause takes a Horn clause p( ®X j ) :− ®Pi , executes each premise Pi
from left to right, yielding a final substitution for the variables ®X j in the head of the rule. There are

two possible failing rules. Clause-E1 simply propagates the first error from a premise; Clause-E2

fails because not every X j in the head of the rule is bound by the end. Since Formulog enforces

the range restriction (H -Clause), Clause-E2 can never apply in a well typed program. Finally, the

Clause* operational rules and theH -Clause typing rule both use the fixed, given order of premises
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Premise semantics ®F ;W;θ ⊢ P → θ⊥

®v ∈ W(p) θ ⊢ ®X ∼ ®v : θ ′
⊥

W;θ ⊢ p( ®X ) → θ ′⊥
PosAtom

θ ( ®X ) = ®v ®v <W(p)

W;θ ⊢ !p( ®X ) → θ
NegAtom

θ ⊢ Y ∼ c( ®X ) : θ ′
⊥

W;θ ⊢ Y = c( ®X ) → θ ′⊥
EqCtor

θ ⊢ Y ∼ cSMT
c′ ( ®X ) : θ ′

⊥

W;θ ⊢ Y = `cSMT
c′ ( ®,X )` → θ ′⊥

EqSMT

e is not a constructor W;θ ⊢ e ⇓e v θ ⊢ Y ∼ v : θ ′
⊥

W;θ ⊢ Y = e → θ ′⊥
EqExpr

®X ⊈ dom(θ )

W;θ ⊢ !p( ®X ) → ⊥
NegAtom-E

e is not a constructor W;θ ⊢ e ⇓e ⊥

W;θ ⊢ Y = e → ⊥
EqExpr-E

W;θ ⊢ e ⇓e v θ (Y ) , v

W;θ ⊢ !(Y = e) → θ
NegExpr

W;θ ⊢ e ⇓e ⊥

W;θ ⊢ !(Y = e) → ⊥

NegExpr-E1

Y < dom(θ )

W;θ ⊢ !(Y = e) → ⊥

NegExpr-E2

Fig. 21. Premise semantics

for checking. Different orderings induce different binding orders, some of which may succeed and

some of which may not.

The premise semantics (Figure 21) uses unification (Figure 22) to match and bind variables. Posi-

tive atomsp( ®Xi ) try to unify their arguments with a tuple forp drawn from the worldW (PosAtom).

Negative atoms p( ®Xi ) require that all of their arguments Xi are already bound (NegAtom); failing

to find such bound terms yields an error (NegAtom-E). Rules for equations also use unification,

whether for a constructor over variables (EqCtor) or an expression (EqExpr). The latter can fail if

evaluation fails (EqExpr-E). Before discussing term evaluation, we give rules for unification.

Unification is split into two levels. Unification proper takes a pair of unifiable terms—values

with variables in them—and tries to yield a substitution. Value unification takes a unifiable term

and a value and tries to yield a substitution. The unification rules are of the form uu-. . . . These
rules analyze the two unifiable terms to find which side is completely bound—i.e., applying θ can

completely fill in the variables—and so can be passed to value unification as a value. The B and F

in these rules stand for Bound and Free. The only error in unification is in uu-FF, when neither

unifiable term is bound to a value. We write a case for when both unifiable terms are bound (uu-BB)
and require that they are directly equal—but it would also work to drop this rule and rely on value

unification to identify the equality.

Value unification rules are of the form uv-. . . . The rules here lookup variables in the unifiable

term and either check that the binding conforms to the given value (uv-Eq-Var, cf. Xτ -Check)
or binds the value (uv-Bind-Var, cf. Xτ -Bind). The remaining value unification rules match the

structure of the unifiable term to the structure of the value (uv-Constant, uv-Ctor) or fold value

unification along a vector (®u ®v-All). Value unification never produces ⊥. It isn’t an error when two

values fail to unify, since one might have to search through many tuples for a relation inW to find

a one that matches, say, a given constructor.
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Value unification θ ⊢ u ∼ v ▷ θ θ ⊢ ®u ∼ ®v ▷ θ

θ (X ) = v

θ ⊢ X ∼ v ▷ θ
uv-Eq-Var

X < dom(θ )

θ ⊢ X ∼ v ▷ θ [X 7→ v]
uv-Bind-Var

θ ⊢ k ∼ k ▷ θ
uv-Constant

θ ⊢ ®ui ∼ ®vi ▷ θ
′

θ ⊢ c( ®ui ) ∼ c( ®vi ) ▷ θ
′

uv-Ctor

θ ⊢ u0 ∼ v0 ▷ θ1 . . . θ1 ⊢ ui ∼ vi ▷ θi . . . θn ⊢ un ∼ vn ▷ θ
′

θ ⊢ ®ui ∼ ®vi ▷ θ
®u ®v-All

Unification θ ⊢ u ∼ u : θ⊥ θ ⊢ ®u ∼ ®u : θ⊥

θ (u1) = v1 θ (u2) = v2 v1 = v2

θ ⊢ u1 ∼ u2 : θ
uu-BB

∄v1,θ (u1) = v1 θ (u2) = v2 θ ⊢ u1 ∼ v2 ▷ θ
′

θ ⊢ u1 ∼ u2 : θ
′

uu-FB

θ (u1) = v1 ∄v2,θ (u2) = v2 θ ⊢ u2 ∼ v1 ▷ θ
′

θ ⊢ u1 ∼ u2 : θ
′

uu-BF
∄v1,θ (u1) = v1 ∄v2,θ (u2) = v2

θ ⊢ u1 ∼ u2 : ⊥
uu-FF

θ ⊢ ui ∼ u ′
i ▷ θi

θ ⊢ ®ui ∼ ®u ′
i ▷ θ

®θi
®u®u-All

. . . θ ⊢ u ∼ u ′ ▷ ⊥ . . .

θ ⊢ ®ui ∼ ®u ′
i ▷ ⊥

®u®u-All-E

θ (c( ®ui )) = c(
−−−→
θ (ui ))

Fig. 22. Unification

The expression semantics is an entirely conventional big-step semantics using explicit substi-

tutions. The operational rules implicitly take the function definitions ®F for use in applications

(⇓e -Fun).

There are a variety of wrong behaviors prevented by our type system, mostly concerning

mismatches between values and elimination forms: unbound variables (⇓e -Var-E); mistyped argu-

ments to built-in operations (⇓e -Op-E2); function, relation and constructor arity errors (⇓e -Fun-E2,

⇓e -Rel-E2, ⇓e -Match-E4); non-existent functions and relations (⇓e -Fun-E3, ⇓e -Rel-E3); condi-

tionals on inappropriate values (⇓e -Match-E2, ⇓e -Ite-E2); and ill formed constructor names

(⇓e -Match-E3); The remaining rules propagate errors (⇓e -Let-E, ⇓e -Op-E1, ⇓e -Fun-E1, ⇓e -Rel-E1,

⇓e -Match-E1, ⇓e -Ite-E1). As mentioned in the early discussion of our semantics in this section,

⇓e -Op-E2 is not about division by zero (a form of going wrong our type system doesn’t prevent),
but about mis-application of built-in functions, e.g., taking the boolean negation of a number.

The operational semantics on formulas is simple: the rules generate ASTs for the SMT solver

using the cSMT
... constructors: constants (cSMT

const), SMT variables (cSMT
var ), SMT data types (cSMT

ctor ), let

bindings (cSMT
let ), quantification (cSMT

forall), and uninterpreted function application (cSMT
uf ).

When unquoting values resulting from evaluating expressions, we use the toSMT function to

translate expression values into the SMT’s AST. The toSMT function is an identity on SMT ASTs,

but it explicitly tags the constants and Formulog-defined constructors using cSMT
const and c

SMT
ctor .
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Expression semantics ®F ;W;θ ⊢ e ⇓e v⊥ ®F ;W;θ ⊢ ®e ⇓®e ®v⊥

W;θ ⊢ · ⇓®e ·
⇓®e -Empty

W;θ ⊢ e ⇓e v W;θ ⊢ ®e ⇓®e ®v

W;θ ⊢ e, ®e ⇓®e v, ®v
⇓®e -All

W;θ ⊢ ®ei ⇓®e ®vi

W;θ ⊢ c( ®ei ) ⇓®e c( ®vi )
⇓e -Ctor

W;θ ⊢ ®ei ⇓®e ⊥

W;θ ⊢ c( ®ei ) ⇓e ⊥
⇓e -Ctor-E

W;θ ⊢ k ⇓e k
⇓e -Const

θ (X ) = v

W;θ ⊢ X ⇓e v
⇓e -Var

W;θ ⊢ ϕ ⇓ϕ v⊥

W;θ ⊢ `ϕ` ⇓e v⊥
⇓e -Quote

W;θ ⊢ ®e ⇓®e ®v [[⊗]](®v) = v

W;θ ⊢ ⊗(®e) ⇓e v
⇓e -Op

fun f ( ®Xi : ®τi ) : τ = e ∈ ®F W;θ ⊢ ®ei ⇓®e ®vi W;θ [ ®Xi 7→ ®vi ] ⊢ e ⇓e v⊥

W;θ ⊢ f ( ®ei ) ⇓e v⊥
⇓e -Fun

W;θ ⊢ ®ei ⇓®e ®vi ®vi ∈ W(p)

W;θ ⊢ p( ®ei ) ⇓e true
⇓e -Rel-T

W;θ ⊢ ®ei ⇓®e ®vi ®vi <W(p)

W;θ ⊢ p( ®ei ) ⇓e false
⇓e -Rel-F

W;θ ⊢ e1 ⇓e v1 W;θ [X 7→ v1] ⊢ e2 ⇓e v⊥

W;θ ⊢ let X = e1 in e2 ⇓e v⊥
⇓e -Let

W;θ ⊢ e ⇓e c( ®vi ) W;θ [
−−−−−−−→
Xi 7→ vi ] ⊢ e ⇓e v⊥

W;θ ⊢ match e with . . . c( ®Xi ) → e . . . ⇓e v⊥
⇓e -Match

W;θ ⊢ e1 ⇓e true W;θ ⊢ e2 ⇓e v⊥

W;θ ⊢ if e1 then e2 else e3 ⇓e v⊥
⇓e -IteT

W;θ ⊢ e1 ⇓e false W;θ ⊢ e3 ⇓e v⊥

W;θ ⊢ if e1 then e2 else e3 ⇓e v⊥
⇓e -IteF

Fig. 23. Expression semantics

D METATHEORY
We break the metatheory into two parts: lemmas characterizing the SMT conversion (Section D.1)

and lemmas showing type safety (Section E). The SMT lemmas culminate in two proofs: first,

regularity (Lemma D.9) guarantees that (a) every type or context generated by the operational

semantics is well formed and (b) that formula evaluation generates well typed SMT ASTs; second,

we show that SMT conversion of values agrees with SMT conversion of types (Lemma D.10).

Type safety culminates in theorems showing that premises don’t yield ⊥ and generate well typed

substitutions (Lemma E.4) and so Horn clauses (a) never yield ⊥ (Theorem E.6) and (b) take well

typed worlds to well typed worlds (Theorem E.7).

D.1 SMT conversion
We show a variety of properties of the erasure and SMT conversion functions: smt is a sub-

kind of exp (Lemma D.1); erasures and SMT conversion yield well formed types from SMT types
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Expression semantics (continued) ®F ;W;θ ⊢ e ⇓e v⊥ ®F ;W;θ ⊢ ®e ⇓®e ®v⊥

W;θ ⊢ ®ei ⇓®e ®vi W;θ ⊢ e ⇓e ⊥

W;θ ⊢ ®ei , e, ®ej ⇓®e ⊥
⇓®e -All-E

X < dom(θ )

W;θ ⊢ X ⇓e ⊥
⇓e -Var-E

W;θ ⊢ e1 ⇓e ⊥

W;θ ⊢ let X = e1 in e2 ⇓e ⊥
⇓e -Let-E

W;θ ⊢ ®e ⇓®e ⊥

W;θ ⊢ ⊗(®e) ⇓e ⊥
⇓e -Op-E1

W;θ ⊢ ®e ⇓®e ®v ®v < dom([[⊗]])

W;θ ⊢ ⊗(®e) ⇓e ⊥
⇓e -Op-E2

W;θ ⊢ ®ei ⇓®e ⊥

W;θ ⊢ f ( ®ei ) ⇓e ⊥
⇓e -Fun-E1

fun f ( ®Xi : ®τi ) : τ = e ∈ ®F i , j

W;θ ⊢ f ( ®ej ) ⇓e ⊥
⇓e -Fun-E2

f < ®F

W;θ ⊢ f ( ®ej ) ⇓e ⊥
⇓e -Fun-E3

W;θ ⊢ ®ei ⇓®e ⊥

W;θ ⊢ p( ®ei ) ⇓e ⊥
⇓e -Rel-E1

W(p) ⊆ P(
−−→
Vali ) i , j

W;θ ⊢ p( ®ej ) ⇓e ⊥
⇓e -Rel-E2

p < dom(W)

W;θ ⊢ p( ®ej ) ⇓e ⊥
⇓e -Rel-E3

W;θ ⊢ e ⇓e ⊥

W;θ ⊢ match e with
−−−−−−−−−−→
ci ( ®X j ) → ei ⇓e ⊥

⇓e -Match-E1

W;θ ⊢ e ⇓e v v , c( ®v ′)

W;θ ⊢ match e with
−−−−−−−−−−→
ci ( ®X j ) → ei ⇓e ⊥

⇓e -Match-E2

W;θ ⊢ e ⇓e c( ®vk ) c < { ®ci }

W;θ ⊢ match e with
−−−−−−−−−−→
ci ( ®X j ) → ei ⇓e ⊥

⇓e -Match-E3

W;θ ⊢ e ⇓e c( ®vk ) j , k

W;θ ⊢ match e with
−−−−−−−−−−−−−−−−→
. . . c( ®X j . . . ) → ei ⇓e ⊥

⇓e -Match-E4

W;θ ⊢ e1 ⇓e ⊥

W;θ ⊢ if e1 then e2 else e3 ⇓e ⊥
⇓e -Ite-E1

W;θ ⊢ e1 ⇓e v v < {true, false}

W;θ ⊢ if e1 then e2 else e3 ⇓e ⊥
⇓e -Ite-E2

Fig. 24. Expression semantics (error rules)

(Lemmas D.2, D.3, D.4, and D.5); weakening and strengthening of typing contexts (Lemmas D.6

and D.7); type variable substitution (Lemma D.8)—we have no need of a value substitution lemma

because our semantics uses environments; regularity (Lemma D.9); and, finally, that SMT conversion

of values agrees with SMT conversion of types (Lemma D.10).

Lemma D.1 (smt is a subkind of exp). If Γ ⊢smt τ then Γ ⊢exp τ .

Proof. By induction on τ .

(τ = B) Immediate: τ -Base allows anym.

(τ = α ) Contradictory—type variables are only well formed at exp.

(τ = D ®τi ) By the IH on each τi and t-ADT.
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Formula semantics ®F ;W;θ ⊢ ϕ ⇓ϕ v⊥ ®F ;W;θ ⊢ ®ϕ ⇓ ®ϕ ®v⊥

W;θ ⊢ · ⇓ ®ϕ ·
⇓ ®ϕ -Empty

W;θ ⊢ ϕ ⇓ϕ v W;θ ⊢ ®ϕi ⇓ ®ϕ ®vi

W;θ ⊢ ϕ, ®ϕi ⇓ ®ϕ v, ®vi
⇓ ®ϕ -All

W;θ ⊢ ®ϕi ⇓ ®ϕ ®vi W;θ ⊢ ϕ ⇓ϕ ⊥

W;θ ⊢ ®ϕi ,ϕ, ®ϕ j ⇓ ®ϕ ⊥
⇓ ®ϕ -All-E

W;θ ⊢ e ⇓e v

W;θ ⊢ ,e ⇓ϕ toSMT(v)
⇓ϕ -Unqote

W;θ ⊢ e ⇓e ⊥

W;θ ⊢ ,e ⇓ϕ ⊥
⇓ϕ -Unqote-E

W;θ ⊢ ®ϕi ⇓ ®ϕ ®vi

W;θ ⊢ cSMT
c ( ®ϕ) ⇓ϕ cSMT

c (®v)
⇓ϕ -Ctor

W;θ ⊢ ®ϕi ⇓ ®ϕ ⊥

W;θ ⊢ cSMT
c ( ®ϕi ) ⇓ϕ ⊥

⇓ϕ -Ctor-E

W;θ ⊢ cSMT
c ( ®vi ) ⇓ϕ cSMT

c ( ®vi )
⇓ϕ -SMT-Value

SMT conversion toSMT(v) = v

toSMT(k) = cSMT
const[k]()

toSMT(c( ®vi )) = cSMT
ctor [c](

−−−−−−−−−→
toSMT(vi ))

toSMT(cSMT
const[k]()) = cSMT

const[k]()

toSMT(cSMT
var [x , t]()) = cSMT

var [x , t]()

toSMT(cSMT
ctor [c]( ®vi )) = cSMT

ctor [c]( ®vi )

toSMT(cSMT
let (v1,v2,v3)) = cSMT

let (v1,v2,v3)

toSMT(cSMT
forall(v1,v2)) = cSMT

forall(v1,v2)

toSMT(cSMT
uf [uf ]( ®vi )) = cSMT

uf [uf ]( ®vi )

Fig. 25. Formula semantics

(τ = t smt) Immediate: τ -SMT allows anym.

(τ = t sym) Immediate: τ -SMT allows anym.

(τ = model) Contradictory—model is only well formed at exp. □

Lemma D.2 (Erasure is well formed). If Γ ⊢smt τ then Γ ⊢smt erase(τ ).

Proof. By induction on the well formedness derivation.

(t-Base) Immediate, since erase(B) = B.

(t-TVar) Contradictory—type variables aren’t well typed at smt.

(t-ADT) By the IH on each constituent of D ®τi , and then by t-ADT.

(τ -SMT) Since erase(t smt) = erase(t), by the IH on Γ ⊢smt t .

(τ -Sym) Since erase(t sym) = erase(t), by the IH on Γ ⊢smt t .

(τ -Model) Contradictory—model isn’t well typed at smt. □

Lemma D.3 (SMT types have only SMT parts). If Γ ⊢smt τ , then all of τ ’s subparts are also well
formed at smt.

Proof. By induction on τ .
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(τ = B) Immediate.

(τ = α ) Contradictory—type variables are only well formed at exp.
(τ = D ®τi ) By the IH on each τi .

(τ = t smt) By the IH on t .

(τ = t sym) By the IH on t .

(τ = model) Contradictory—model is only well formed at exp. □

Lemma D.4 (SMT conversion is well formed). If Γ ⊢smt τ then toSMT(τ ) = t sym or t smt
such that Γ ⊢smt t (and so Γ ⊢smt toSMT(τ )).

Proof. By induction on the well formedness derivation.

(t-Base) toSMT(B) = B smt, which is well formed by τ -SMT and t-B.

(t-TVar) Contradictory—type variables are only well formed at exp.
(t-ADT) We know that erase(D ®τi ) is still well formed by Lemma D.2; then by τ -SMT.

(τ -SMT) Since it must be that Γ ⊢smt t , then erase(t) is also well formed by Lemma D.2; then

by τ -SMT.

(τ -Sym) Since it must be that Γ ⊢smt t , then erase(t) is also well formed by Lemma D.2; then

by τ -Sym.

(τ -Model) Contradictory—model is only well formed at smt □

Lemma D.5 (SMT conversion is only for SMT types). toSMT(τ ) is defined iff Γ ⊢smt τ .

Proof. The right-to-left direction is proved by Lemma D.4. For left-to-right, we go by induction

on τ .

(τ = B) By t-Base.

(τ = α ) Contradictory—type variables are undefined for erase.

(τ = D ®τi ) By the IH on each τi and t-ADT.

(τ = t smt) By the IH on t and τ -SMT.

(τ = t sym) By the IH on t and τ -Sym.

(τ = model) Contradictory—model is undefined for erase. □

We say a type t is an “SMT type” when Γ ⊢smt t ; a type τ is an SMT type when it is equal to an

SMT type t or when it is of the form t smt or t sym. Note that toSMT always produces an SMT

type, but does not work on types that contain type variables or the unrepresentable model type.

Lemma D.6 (Weakening). If ⊢ Γ and ⊢ Γ′ and dom(Γ) ∩ dom(Γ′) = ∅ then:
(1) ⊢ Γ, Γ′

(2) If Γ ⊢m τ then Γ, Γ′ ⊢m τ ;
(3) If Γ ⊢ e : τ then Γ, Γ′ ⊢ e : τ ; and
(4) If Γ ⊢ ϕ : τ then Γ, Γ′ ⊢ ϕ : τ .

Proof. By mutual induction on the derivations.

Contexts.
(Γ-Empty) We have Γ′ = ·; immediate by assumption.

(Γ-Var) We have Γ′ = Γ′′,X : τ . By the IH on Γ′′ and Γ-Var, finding Γ, Γ′′ ⊢m τ by part (2)

of the IH.

(Γ-TVar) We have Γ′ = Γ′′,α . By the IH on Γ′′ and Γ-TVar.
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Type well formedness.
(t-Base) Immediate, by t-Base.

(t-TVar) Since Γ and Γ′ have disjoint domains, we know α ∈ Γ—by t-TVar.

(t-ADT) By the IH on each constituent of D ®τi , followed by t-ADT.

(τ -SMT) By the IH on Γ ⊢smt t and then τ -SMT.

(τ -Sym) By the IH on Γ ⊢smt t and then τ -Sym.

(τ -Model) Immediate, by τ -Model. □

Expressions.
(e-Var) Since the domains are disjoint, (Γ, Γ′)(X ) = τ and we can still find e-Var.

(e-Const) Immediate, by e-Const.

(e-Let) By the e-Let and the IH on e1 and e2, α-renaming X appropriately.

(e-Ctor) By e-Ctor and the IH, using part (2) on τ ′j and part (3) on ei .

(e-Quote) By the part (4) of the IH.

(e-Rel) By e-Rel and the IH on each ei .

(e-Fun) By e-Fun and the the IH, using part (2) on τ ′j and part (3) on ei .

(e-Op) By e-Op and the the IH, using part (2) on τ ′j and part (3) on ei .

(e-If) By e-If and the IH on each of the ei .

(e-Match) By e-Match and the IH on e and each of the ei , α-renaming each Xk appropriately.

Formulas.
(ϕ-Var) By ϕ-Var and part (2) of the IH.

(ϕ-Promote) By ϕ-Promote and the IH.

(ϕ-Unqote) By ϕ-Unqote and part (3) of the IH.

(ϕ-Ctor) By ϕ-Ctor and the IH, using part (2) on the τi and part (4) on ϕi , observing that

the actual types are unchanged, and so the toSMT conversions are the same.

Lemma D.7 (Type well formedness strengthening). If Γ,X : τ , Γ′ ⊢m τ ′ then Γ, Γ′ ⊢ τ ′.

Proof. (t-Base) Immediate.

(t-TVar) Immediate: removing the variable binding can’t affect α .

(t-ADT) By the IH on each constituent of D ®τi .

(τ -SMT) By the IH on Γ ⊢smt t .

(τ -Sym) By the IH on Γ ⊢smt t .

(τ -Model) Immediate. □

Lemma D.8 (Type variable substitution). If ⊢ Γ,α , Γ′ and Γ ⊢m τ ′, then:
(1) ⊢ Γ, Γ′[τ/α];
(2) If Γ,α , Γ′ ⊢m τ then Γ, Γ′[τ/α] ⊢m τ ′[τ/α];
(3) If Γ,α , Γ′ ⊢ X ,τ ′ ▷ Γ′′ then Γ, Γ′[τ/α] ⊢ X ,τ ′[τ/α] ▷ Γ′′[τ/α]; and
(4) If Γ,α , Γ′ ⊢ ®Xi , ®τ

′
i ▷ Γ′′ then Γ, Γ′[τ/α] ⊢ ®Xi , ®τ

′
i [τ/α] ▷ Γ′′[τ/α].

Proof. For parts (1) and (2), by mutual induction on the derivations. Note that if α actually

occurs in the type, we could only have found well formedness at exp.

, Vol. 1, No. 1, Article . Publication date: May 2020.



44 Aaron Bembenek, Michael Greenberg, and Stephen Chong

(Γ-Empty) Contradictory: · , Γ,α , Γ′.

(Γ-Var) We have Γ′ = Γ′′,X : τ ′ where Γ, Γ′′ ⊢exp τ ′. By the IH on Γ′′, we know that ⊢

Γ, Γ′′[τ/α]; by part (2), we have Γ, Γ′′[τ/α] ⊢exp τ
′[τ/α]; and sowe have ⊢ Γ, Γ′[τ/α]

by Γ-Var.

(Γ-TVar) We have Γ′ = Γ′′, β ; by the IH on Γ′′, we have ⊢ Γ, Γ′′[τ/α]; since β[τ/α] = β , we
can apply Γ-TVar to find ⊢ Γ, Γ′[τ/α] as desired.

(t-B) Immediate by t-B, since B[τ/α] = B.

(t-TVar) We have τ ′ = β . If α = β , then we have Γ ⊢m α[τ/α] by assumption. If α , β , then
it must be that β ∈ Γ or Γ′—either way, β is unaffected by the substitution and we

have β ∈ Γ, Γ′[τ/α] and so Γ, Γ′[τ/α] ⊢m β by t-TVar.

(t-ADT) By the IH on each premise, followed by t-ADT.

(τ -SMT) By the IH on Γ,α , Γ′ ⊢smt t and then by τ -SMT.

(τ -Sym) By the IH on Γ,α , Γ′ ⊢smt t and then by τ -Sym.

(τ -Model) Immediate by τ -Model.

For parts (3) and (4), by mutual induction on the derivations.

(Xτ -Bind) We have X < dom(Γ,α , Γ′), so it must also be the case that X < dom(Γ, Γ′[τ/α]).
We therefore find Γ, Γ′[τ/α] ⊢ X ,τ ′[τ/α] ▷ Γ, Γ′[τ/α],τ ′[τ/α] by Xτ -Bind.

(Xτ -Check) We have (Γ,α , Γ′)(X ) = τ ′. Is X : τ ′ in Γ or Γ′? Either way we will find Γ, Γ′[τ/α] ⊢
X ,τ ′[τ/α] ▷ Γ, Γ′[τ/α] by Xτ -Check.

If τ ′ ∈ dom(Γ), then Γ ⊢ τ ′ and so τ ′[τ/α] = τ ′ (Γ, Γ′[τ/α])(X ) = τ ′ and we have

Γ, Γ′[τ/α] ⊢ X ,τ ′ ▷ Γ, Γ′[τ/α].

If, on the other hand, τ ′ ∈ dom(Γ′), then (Γ, Γ′[τ/α])(X ) = τ ′[τ/α]. We therefore

have Γ, Γ′[τ/α] ⊢ X ,τ ′[τ/α] ▷ Γ, Γ′[τ/α].

( ®X ®τ -All) By part (3) of the IH on each premise. □

Lemma D.9 (Regularity; formulas have SMT types). (1) If ⊢ Γ and Γ(X ) = τ then Γ ⊢exp τ .
(2) If ⊢ Φ then (a) if f : ∀ ®α j , ®τi → τ ∈ Φ then ®α j ⊢exp τ , and (b) if uf :

®t ′i → t ∈ Φ then · ⊢smt t .
(3) If ∆;Φ; Γ ⊢ e : τ then Γ ⊢exp τ .
(4) If ∆;Φ; Γ ⊢ cSMT

c ( ®ϕi ) : ®τi → τ then τi = ti smt or τi = ti sym and τ = t smt or τ = t sym and
Γ ⊢smt τi and Γ ⊢smt τ .

(5) If ∆;Φ; Γ ⊢ ϕ : τ then τ = t smt or τ = t sym and Γ ⊢smt τ .
(6) If ∆;Φ; Γ ⊢ ®ei : ®τi then Γ ⊢exp τi .
(7) If ∆;Φ; Γ ⊢ ®ϕi : ®τi then τi = ti smt or τ = ti sym and Γ ⊢smt ti (and so Γ ⊢exp τi ).

Proof. By induction on the typing derivation.

Contexts.

(Γ-Empty) Contradictory—there’s no way · has a binding for X .

(Γ-Var) Γ = Γ′,Y : τ . If X = Y , then we know Γ ⊢exp τ by assumption; otherwise, by the IH

on Γ′.

(Γ-TVar) Γ = Γ′,α . By the IH on Γ.
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Program signatures.
(Φ-Empty) Contradictory—there are no function definitions in ·.

(Φ-Fun) Φ = Φ′,д : . . . . For case (a) when f = д, then by assumption. Otherwise, by the IH

on Φ′
.

(Φ-Rel) Φ = Φ′,p ⊆ ®τi . By the IH on Φ.

(Φ-UFun) Φ = Φ′, uf ′ : ®t ′i → t . For case (b) when uf = uf ′, then by assumption. Otherwise,

by the IH on Φ′
.

Expressions.
(e-Var) By the part (1) on ⊢ Γ.

(e-Const) By assumption, we know that Γ ⊢smt typeof(k); by Lemma D.1 we can find Γ ⊢exp
typeof(k).

(e-Let) By the IH on Γ,X : τ1 ⊢ e2 : τ2, using strengthening (Lemma D.7) to find that if

Γ,X : τ1 ⊢exp τ2 then Γ ⊢exp τ2.

(e-Ctor) Since Γ ⊢exp τ
′
j , we know by t-ADT that Γ ⊢exp D ®τ ′j .

(e-Quote) By the IH on part (5), we know that Γ ⊢smt τ (and, less relevantly, that τ = t smt or
t sym). We can find the same well formedness at exp by Lemma D.1.

(e-Rel) Immediate by t-B.

(e-Fun) Since f : ∀ ®α j , ®τi → τ ∈ Φ and ⊢ Φ, we know by part (2) of the IH know that

®α j ⊢exp τ . By weakening (Lemma D.6) we can lift that well formedness judgment to

Γ. Since each Γ ⊢exp τ
′
j , we can find that Γ ⊢ τ [τ ′j /α j ] by substitution (Lemma D.8).

(e-Fun) We have by assumption that typeof(⊗) yields a well-formed type, i.e., ®α j ⊢exp τ
(and also for each τi ). By weakening (Lemma D.6) we can lift that well formedness

judgment to Γ. Since each Γ ⊢exp τ
′
j , we can find that Γ ⊢ τ [τ ′j /α j ] by substitution

(Lemma D.8).

(e-If) By the IH on Γ ⊢ e2 : t .

(e-Match) By the IH on Γ,
−−−−−−−−−−−→
X1 : τ1[τj/α j ] ⊢ e1 : τ we have Γ,

−−−−−−−−−−−→
X1 : τ1[τj/α j ] ⊢ τ ; we can use

strengthening (Lemma D.7) to find Γ ⊢exp τ .

SMT constructors.
(c-SMT-Var) Immediate, with Γ ⊢smt t coming from the rule itself.

(c-SMT-Const) Immediate, since we have by assumption that · ⊢smt typeof(k).

(c-SMT-Let) Immediate, with the necessary well formedness assumptions coming from the rule

itself.

(c-SMT-Ctor) We know that D ®t ′j is well formed by t-ADT. We can find the translation of the

argument types well formed by Lemma D.4 on each of the Γ ⊢smt τi [t
′
j/α j ] deriva-

tions.

(c-SMT-Forall) Immediate, with the necessary Γ ⊢smt t1 coming from the rule itself.

(c-SMT-UFun) Since ⊢ Φ and uf : ®ti → t ∈ Φ, we know that · ⊢smt t by part (2) of the IH and so

· ⊢smt t smt, which we can lift to Γ by weakening (Lemma D.6).

Formulas.
(ϕ-Promote) Since ∆;Φ; Γ ⊢ ϕ : t sym, we know that Γ ⊢smt t and so we are correct in yielding

τ = t smt.
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(ϕ-Unqote) We have ∆;Φ; Γ ⊢ e : τ such that Γ ⊢smt τ . By Lemma D.4 we know that toSMT(τ )
is a well formed SMT type.

(ϕ-Ctor) By the IH part (4) on Γ ⊢ cSMT
c : ®τi → τ .

Vectored expressions and formulas. By the IH for parts (3) and (5), respectively.

□

Lemma D.10 (SMT value conversion is type correct). If ∆;Φ; Γ ⊢ v : τ and Γ ⊢smt τ then
∆;Φ; Γ ⊢ toSMT(v) : toSMT(τ ).

Proof. First, observe that τ and all of its parts must be well formed at smt, by Lemmas D.5

and D.3. By induction on the typing derivation. In expression mode, the applicable rules are e-Const
and e-Ctor; only a few typing rules could even have applied to a value in formula mode: theϕ-Ctor
and ϕ-Promote.

(e-Const) We have Γ ⊢ k : typeof(k); since toSMT(k) = cSMT
const[k]() and toSMT(typeof(k)) =

k smt (since Γ ⊢smt typeof(k) by assumption), we must show that Γ ⊢ cSMT
const[k]() :

typeof(k) smt, which we have by ϕ-SMT-Const.

(e-Ctor) We have v = c( ®vi ) and:

∆(D) = ∀ ®α j , {. . . , c : ®τi , . . . } Γ ⊢exp τ
′
j Γ ⊢ vi : τi [τ

′
j /α j ]

Further, we know that Γ ⊢smt D ®τ ′j (and so each of the subderivations must also

be smt) and that toSMT(c( ®vi )) = cSMT
ctor [c](

−−−−−−−−−→
toSMT(vi )). By the IH on each of these

vi , we know that we find appropriate values at appropriately converted types, i.e.,

Γ ⊢ toSMT(vi ) : toSMT(τi [τ
′
j /α j ]). By Lemma D.4, we know toSMT(τi [τ

′
j /α j ]) is

some well formed SMT type. We are almost able to apply ϕ-SMT-Ctor, but we must

pick appropriate t ′j . We know that toSMT(τ ′j ) is a well formed SMT type of the form

t ′j smt or t ′j sym (Lemma D.4). Whether it’s symbolic or not, let the inner t ′j there be

our t ′j . We can now apply ϕ-SMT-Ctor to find that Γ ⊢ toSMT(c( ®vi )) : toSMT(D ®τ ′j ).

(ϕ-Promote) By the IH on Γ ⊢ v : t sym, we know that Γ ⊢ toSMT(v) : toSMT(t sym), i.e.,

Γ ⊢ toSMT(v) : t sym. By reapplying ϕ-Promote we can find that Γ ⊢ toSMT(v) :
v smt.

(ϕ-Ctor) Immediate: toSMT does nothing to the cSMT
... constructed value nor to the SMT-type

τ assigned to it (which is t smt in all cases except for cSMT
var ).

□

E TYPE SAFETY
To prove type safety, we prove two properties for every mode of evaluation: first, it is safe, i.e, never
yields ⊥; and second, it is type preserving, i.e., well typed inputs yield well typed outputs.

The proofs are fairly conventional. For all but the last step, we prove safety and type preservation

simultaneously. We start with expressions and formulas (Lemma E.2), which requires a modest

notion of canonical forms (Lemma E.1). Next, we prove that value unification (Lemma E.3) is type

preserving, reasoning about unification in general within the lemma showing safety and type

preservation for premises (Lemma E.4). After a brief lemma about bindings (Lemma E.5), we can

prove that program evaluation is safe (Theorem E.6) and type preserving (Theorem E.7).

Lemma E.1 (Canonical forms for t sym). If ∆;Φ; Γ ⊢ v : t sym then v = cSMT
var [x , t]().

Proof. The only typing rule that could have applied is ϕ-SMT-Var. □
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Lemma E.2 (Term and formula type safety). If ∆;Φ |= W and ∆;Φ ⊢ ®F and Γ |= θ , when
either:
(1) ∆;Φ; Γ ⊢ e : τ and W;θ ⊢ e ⇓e v⊥; or
(2) ∆;Φ; Γ ⊢ ϕ : τ and W;θ ⊢ ϕ ⇓ϕ v⊥

(3) ∆;Φ ⊢ fun f ( ®Xi : ®τi ) : τ = e and ®α j ,
−−−−→
Xi : τi |= θ

′ and W;θ ′ ⊢ e ⇓e v⊥

then v⊥ = v (i.e., v⊥ , ⊥) and ∆;Φ; Γ ⊢ v : τ .
Similarly, when either:
(1) if ∆;Φ; Γ ⊢ ei : τi and W;θ ⊢ ®ei ⇓e ®vi then ∆;Φ; Γ ⊢ ®vi⊥ : ®τi ; and
(2) if ∆;Φ; Γ ⊢ ϕi : τi and W;θ ⊢ ®ϕi ⇓ ®ϕ ®vi then ∆;Φ; Γ ⊢ ®vi⊥ : τ

then ®vi⊥ = ®vi (i.e., it is not ⊥) and ∆;Φ; Γ ⊢ vi : τi .

Proof. By mutual induction on derivations and the length of the vectored expressions/formulas,

leaving θ general (for, e.g., e-Let and e-Match).

Expressions.
(e-Var) We have Γ(X ) = τ ; since Γ |= θ , we have θ (X ) = v (and so ⇓e -Var-E didn’t apply).

So it must be the case that ⇓e -Var applied. We can see further that ∆;Φ; · ⊢ v : τ ,
and we are done by weakening (Lemma D.6).

(e-Const) It must be that ⇓e -Const applied, and we immediately see that v⊥ , ⊥ and k is

well typed in any well formed context by assumption and e-Const.

(e-Let) We know that Γ ⊢ e1 : τ1 and Γ,X : τ1 ⊢ e2 : τ2. By the IH on e1, we know that

θ ;W ⊢ e1 ⇓e v1, so it can’t be the case that ⇓e -Let-E applied—it must hae been

⇓e -Let. By the IH on e2, we know that the final result is also not ⊥ and is well

typed.

(e-Ctor) We have ∆(D) = ∀ ®α j , {. . . , c : ®τi , . . . } and Γ ⊢ ei : τi [τ
′
j /α j ]. By the IH, we know

that each of the ®ei must have reduced to non-⊥ values, and so ⇓e -Ctor-E could not

have applied. We can therefore see that each ei reduces to an appropriately typed

vi , and our resulting value is well typed by e-Ctor.

(e-Quote) Only ⇓e -Quote could have applied. By the IH, we know that ϕ reduces to a non-⊥

value v well typed at τ .

(e-Rel) We know that p ⊆ ®τi ∈ Φ and Γ ⊢ ei : τi . The IH on ®ei rules out StepstoE-Rel-E1;
the typing rule rules out the arity mismatch in ⇓e -Rel-E2 and the missing relation

in ⇓e -Rel-E3. So it must be the case that ⇓e -Rel-True or ⇓e -Rel-False applied;

either way, we yield a bool, which is appropriately typed by e-Const.

(e-Fun) We know that f : ∀ ®α j , ®τi → τ ∈ Φ and Γ ⊢ ei : τi [τ
′
j /α j ]. The IH on ®ei rules out

StepstoE-Fun-E1; the typing rule rules out the arity mismatch in ⇓e -Fun-E2 and

the missing function in ⇓e -Fun-E3. So it must be the case that ⇓e -Fun applied. Since

∆;Φ ⊢ F , we know by the IH on part (3) that the resulting value is non-⊥ and well

typed at τ [τ ′j /α j ].

(e-Op) We know that typeof(⊗) = ∀ ®α j , ®τi → τ and Γ ⊢ ei : τi [τ
′
j /α j ]. The IH on ®ei rules out

StepstoE-Op-E1; the typing rule rules out the arity/domain mismatch in ⇓e -Op-E2.

So it must be the case that ⇓e -Op applied. We know that the result is well typed by

our assumption that typeof(⊗) and [[⊗]] agree.

(e-If) We have Γ ⊢ e1 : bool and Γ ⊢ e2 : τ and Γ ⊢ e3 : τ . By the IH on e1, we know
that e1 reduces to true or false (since those are the only values of type bool). So we
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can rule out ⇓e -Ite-E1 and ⇓e -Ite-E2—we must have stepped by either ⇓e -Ite-T

or ⇓e -Ite-F. The IH on e2 or e3 (respectively) guarantees we step to a non-⊥, well

typed value.

(e-Match) We have Γ ⊢ e : D ®τj and ∆(D) = ∀ ®α j , {. . . , ci : ®τk , . . . } and Γ,
−−−−−−−−−−−−→
Xk : τk [τj/α j ] ⊢ ei : τ .

The IH on e guarantees that we get a non-⊥ value at type D ®τj , which rules out

the error case ⇓e -Match-E1, the non-constructor value of ⇓e -Match-E2, the mis-

named constructor of ⇓e -Match-E3, and the arity error of ⇓e -Match-E4. So it must

be the case that we applied ⇓e -Match; by the IH, the matching pattern reduces to

a well typed non-⊥ value.

Formulas.

(ϕ-Promote) We have ∆;Φ; Γ ⊢ ϕ : t sym; by the IH, we know that ϕ steps to a non-⊥ value v
well typed at t sym; by ϕ-Promote we can see that v is also well typed at t smt.

(ϕ-Unqote) We have ,e ; since ∆;Φ; Γ ⊢ e : τ , we know by the IH that e reduces to a non-⊥ value

v that is also well typed at τ . We can therefore rule out ⇓ϕ -Unqote-E, so we must

have stepped by ⇓ϕ -Unqote.

Since ∆;Φ; Γ ⊢ v : τ and Γ ⊢smt τ , we have ∆;Φ; Γ ⊢ toSMT(v) : toSMT(τ ) by
Lemma D.10, as desired.

(ϕ-Ctor) We have cSMT
c ( ®ϕi ) such that Γ ⊢ cSMT

c : ®τi → τ and Γ ⊢ ϕi : τi . We know by the IH

that each ϕi is well typed at τi and so none of them step to ⊥, and so ⇓ϕ -Ctor-E

cannot apply.

Therefore either ⇓ϕ -Ctor or ⇓ϕ -Value applied; the resulting value is well typed

by the IH or remains well typed, respectively.

Functions. By part (1) on ®α j ,
−−−−→
Xi : τi ⊢ e : τ , using weakening (Lemma D.6) to recover typing in Γ.

Vectored expressions and formulas. By induction on the vector length, using parts (1) and (2) in

each case. □

Lemma E.3 (Value unification preservation). If Γ |= θ when either:

(1) Γ ⊢ ®X , ®τ ▷ Γ′ and Γ ⊢ ®v : ®τ and θ ⊢ ®X ∼ ®v : θ ′; or
(2) Γ ⊢ X ,τ ▷ Γ′ and Γ ⊢ v : τ and θ ⊢ X ∼ v ▷ θ ′;

then Γ′ |= θ ′.

Proof. By induction on the derivation of well typing.

(Xτ -Bind) Only uv-Bind-Var could have applied, so we have Γ ⊢ v : τ and Γ |= θ and must

show that Γ,X : τ |= θ [X 7→ v], which we have immediately.

(Xτ -Check) HereX ∈ Γ, so it must be that θ (X ) is defined. One of three rules could have applied:

(uv-Eq-Var) We have Γ′ = Γ and θ ′ = θ , so Γ′ |= θ ′
by assumption.

(uv-Ctor) By the IH, we know that Γ′modelsθ ′
.

(uv-Constant) As for uv-Eq-Var, we have Γ′ = Γ and θ ′ = θ , so Γ′ |= θ ′
by

assumption.

(Xτ -All) It must be that ®u ®v-All applied; by the IH on each sub-derivation, we can find that

Γi |= θi , and so Γ′ |= θ ′
in particular.

□
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User code will never directly trigger a use of uv-Eq-Var directly, because the unification rules

won’t call value unification with a defined LHS (we’d just use uu-BB instead). But a use of ®u ®v-All
could lead to a variable being unified early on and then used again in the same unification process.

Lemma E.4 (Premise preservation and safety). If ∆;Φ; Γ ⊢ P ▷ Γ′ and ∆;Φ |= ®F and ∆;Φ |=W

and Γ |= θ then if ®F ;W;θ ⊢ P → θ ′⊥ then:
(1) θ ′⊥ = θ

′ (i.e., it is not ⊥); and
(2) Γ′ |= θ ′.

Proof. By induction on the premise typing derivation, followed by cases on the step taken.

(P-PosAtom) We have:

p ⊆ ®τi ∈ Φ Γ ⊢ ®Xi , ®τi ▷ Γ′

The only rule that could have applied is PosAtom, i.e., ®v ∈ W(p) and θ ⊢ ®Xi ∼ ®vi :
θ ′⊥. We must show that θ ′⊥ = θ

′
and Γ′ |= θ ′

.

Since ∆;Φ |= W, we know that · ⊢ ®vi : ®τi ; by weakening we have Γ ⊢ ®vi : ®τi
(Lemma D.6).

Syntactically, we know that ®Xi are all variables and that ®vi are all values. For each
one, therefore only two unification rules could possibly apply: uu-BB (Xi is bound)

and uu-FB (Xi is free). In particular, uu-FF cannot apply, and so we cannot produce

⊥, so θ ′⊥ = θ ′ = θ ®θi . By Lemma E.3, we know that Γ′ |= θθi for each i , and so

Γ′ |= θ ®θi .

(P-NegAtom) We have:

p ⊆ ®τi ∈ Φ Γ ⊢ ®Xi , ®τi ▷ Γ

Two rules are possible: NegAtom and NegAtom-E. We must show that the latter

cannot apply and that the former preserves typing.

Since Γ |= θ , it must be that case that each ®Xi ∈ dom(θ ), and so NegAtom-E cannot

have applied. It remains to be seen that Γ |= θ ′—but in NegAtom we have θ = θ ′,
and so we are done.

(P-EqCtor-BF) We have:

∆(D) = ∀ ®α j , {. . . , c : ®τi , . . . }

Γ ⊢ Y ,τ [ ®τ ′j / ®α j ] ▷ Γ ®Xi ⊈ Γ Γ ⊢ ®Xi , ®τi [ ®τ
′
j / ®α j ] ▷ Γ′

The only rule that could have applied is EqCtor, where θ ⊢ Y c( ®Xi ) : θ
′
⊥. We must

show that θ ′
⊥ = θ

′
(i.e., it is not ⊥) and that Γ′ |= θ ′.

Since Γ ⊢ Y ,τ [ ®τ ′j / ®α j ] ▷ Γ, it must be the case that Y ∈ dom(Γ) and so θ (Y ) = v (and

so · ⊢ v : τ [ ®τ ′j / ®α j ], which also holds under Γ thanks to weakening (Lemma D.6)).

Only two rules could have applied to show θ ⊢ Y c( ®Xi ) : θ
′
⊥: uu-BF (when some

of ®Xi are unbound) or uu-BB (when all of the ®Xi are bound). In either case, uu-FF
can’t have a applied, and so θ ′⊥ = θ

′
.

One of two rules could have applied: uv-Eq-Var or uv-Ctor.

In the former case, we applied uu-BB, because θ (c( ®Xi )) = c( ®vi ). We have θ ′ =

θ [X 7→ c( ®vi ) and Γ′ |= θ ′ by substitution on Γ ⊢ ®Xi , ®τi [ ®τ
′
j / ®α j ] ▷ Γ′ (Lemma D.8).

In the latter case, we can find that Γ′ |= θ ′ by Lemma E.3 on the assumption that

Γ ⊢ ®Xi , ®τi [ ®τ
′
j / ®α j ] ▷ Γ′, and the fact θ (Y ) = v is well typed in Γ.
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(P-EqSMT-BF) We have:

Γ ⊢ cSMT
c′ : ®τi → τ Γ ⊢ Y ,τ ▷ Γ ®Xi ⊈ Γ Γ ⊢ ®Xi , ®τi ▷ Γ′

The only rule that could have applied is EqSMT, where θ ⊢ Y ∼ cSMT
c′ ( ®Xi ) : θ

′
⊥. We

must show that θ ′
⊥ = θ

′
(i.e., it is not ⊥ and that Γ |= θ ′

.

Since Γ ⊢ Y ,τ ▷ Γ, it must be the case that Y ∈ dom(Γ) and so θ (Y ) = v . We can

conclude that · ⊢ v : τ and so Γ ⊢ v : τ (Lemma D.6).

Only two rules could have applied to show θ ⊢ Y cSMT
c′ ( ®Xi ) : θ

′
⊥, noting the removal

of the unquote, since unification doesn’t care:uu-BF (when some of ®Xi are unbound)

or uu-BB (when all of the ®Xi are bound). In either case, uu-FF can’t have a applied,
and so θ ′⊥ = θ

′
.

It remains to show that Γ |= θ ′. If the outer unification rule was uu-BB, we have
θ = θ ′ and so Γ |= θ ′ by assumption. If outer unification rule was uu-BF, one of two
rules could have applied to find value unification: either uv-Eq-Var or uv-Ctor.

In the former case, we apply uu-BB inside, because θ (Y ) = cSMT
c′ ( ®vi ). We have

θ ′ = θ [X 7→ cSMT
c′ ( ®vi ) and Γ′ |= θ ′ by substitution on Γ ⊢ ®Xi , ®τi ▷ Γ′ (Lemma D.8).

In the latter case, we can find that Γ′ |= θ ′ by Lemma E.3 on the assumption that

Γ ⊢ ®Xi , ®τi ▷ Γ′, and the fact θ (Y ) = v is well typed in Γ.

(P-Eq-FB) We have:

Γ ⊢ e : τ Γ ⊢ Y ,τ ▷ Γ′

The two possible rules are EqExpr and EqExpr-E. We must show that the latter

could not have applied (and so θ ′⊥ = θ
′
) and that Γ′ |= θ ′. By Lemma E.2, we know

that EqExpr-E cannot apply and thatW;θ ⊢ e ⇓e v (and so Γ ⊢ v : τ ).

Since v is a value, either uu-FB or uu-BB applied, depending on whether or not Y
is bound. Either way, uu-FF couldn’t have applied, and so θ ′⊥ = θ

′
.

We can find that Γ′ |= θ ′ by Lemma E.3 on Γ ⊢ Y ,τ ▷ Γ′ (along with the well typing

of v).

(P-NegEq) We have Γ ⊢ e : τ and Γ ⊢ Y ,τ ▷ Γ. By Lemma E.2, we know that NegEqExpr-E1

cannot apply and thatW;θ ⊢ e ⇓e v (and so Γ ⊢ v : τ ). Since Γ |= θ , it must be that

case that Y ∈ dom(θ ), and so NegAtom-E2 cannot have applied. It remains to be

seen that Γ |= θ ′—but in NegExpr we have θ = θ ′, and so we are done. □

Lemma E.5 (Identical bindings implies containment). If Γ ⊢ X ,τ ▷ Γ, then X ∈ dom(Γ).
Similarly, if Γ ⊢ ®Xi , ®τi ▷ Γ, then ®Xi ⊆ dom(Γ).

Proof. By induction on the derivation.

(Xτ -Bind) Contradictory: this rule could not have applied, since Γ , Γ,X : τ .

(Xτ -Check) We have X ∈ dom(Γ) by assumption.

( ®X ®τ -All) By the IH on each of our premises. □

Theorem E.6 (Program safety). If ∆;Φ ⊢ ®Fi ®Hj and ∆;Φ |=W then for all H ∈ ®Hj , ¬( ®Fi ;W ⊢

H → ⊥).
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Proof. The program prog = ®Fi ®Hj must have been well typed according to prog-WF, and so we

have ⊢ ∆ and ⊢ Φ along with derivations for each F and H :

∆;Φ ⊢ F0 . . . ∆;Φ ⊢ Fi . . . ∆;Φ ⊢ Fn
∆;Φ ⊢ H0 . . . ∆;Φ ⊢ Hj . . . ∆;Φ ⊢ Hm

Let an H = p(Xk ) :− ®Pℓ ∈ ®Hj be given. We know that ∆;Φ ⊢ H by H -Clause, i.e.:

· ⊢ P0 ▷ Γ1 . . . Γℓ ⊢ Pℓ ▷ Γℓ+1 . . . Γp ⊢ Pp ▷ Γ′

p ⊆ ®τk ∈ Φ Γ′ ⊢ ®Xk , ®τk ▷ Γ′

LetW be given such that ∆;Φ |=W. We must show that it is not the case that ®Fi ;W ⊢ H → ⊥,

i.e., Clause-E1 and Clause-E2 cannot apply. We can rule out Clause-E1 by Lemma E.4(1: it is not

the case that a typesafe premise steps to ⊥. To rule out Clause-E2, we need to know that if we can

build a final substitution, i.e.:

· ⊢ P0 → θ1 . . . θℓ ⊢ Pℓ → θℓ+1 . . . θp ⊢ Pp → θ

then ®Xk ∈ dom(θ ). We know that ®Xk ⊆ dom(Γ′) by Lemma E.5 on Γ′ ⊢ ®Xk , ®τk ▷Γ
′
; since Γp ⊢ Pp ▷Γ

′
,

we know by Lemma E.4(2) that Γ′ |= θ . We can therefore conclude that ∀X ∈ dom(Γ′), X ∈ dom(θ ),

and so ®Xk ∈ dom(θ )... and Clause-E2 cannot apply. □

Theorem E.7 (Program preservation). If ∆;Φ ⊢ ®Fi ®Hj and ∆;Φ |=W and ®Fi ;W ⊢ H → W ′

for some H ∈ ®Hj then ∆;Φ |=W ′.

Proof. The program prog = ®Fi ®Hj must have been well typed according to prog-WF, and so we

have ⊢ ∆ and ⊢ Φ along with derivations for each F and H :

∆;Φ ⊢ F0 . . . ∆;Φ ⊢ Fi . . . ∆;Φ ⊢ Fn
∆;Φ ⊢ H0 . . . ∆;Φ ⊢ Hj . . . ∆;Φ ⊢ Hm

Let an H = p(Xk ) :− ®Pℓ ∈ ®Hj be given. We know that ∆;Φ ⊢ H by H -Clause, i.e.:

· ⊢ P0 ▷ Γ1 . . . Γℓ ⊢ Pℓ ▷ Γℓ+1 . . . Γp ⊢ Pp ▷ Γ′

p ⊆ ®τk ∈ Φ Γ′ ⊢ ®Xk , ®τk ▷ Γ′

Let W be given such that ∆;Φ |=W. It must have been the case that we stepped by Clause, and

so:

· ⊢ P0 → θ1 . . . θi ⊢ Pi → θi+1 . . . θn ⊢ Pn → θ

W ′ =W[p 7→ W(p) ∪ θ ( ®X j )]

By Lemma E.4(2), we know that Γi |= θi and Γ′ |= θ . We have ®Xk ⊆ dom(Γ′) by Lemma E.5 on

Γ′ ⊢ ®Xk , ®τk ▷ Γ′, we can conclude that ®Xk ⊆ dom(θ ) and that ∆;Φ; · ⊢ θ (Xk ) : τk by Lemma E.3 on

Γ′ ⊢ ®Xk , ®τk ▷ Γ′.
To see that ∆;Φ |=W, we need to see that adding θ ( ®Xk ) to W(p) is safe. We already knew that

p ⊆ ®τk ∈ Φ and p ∈ dom(W); we have k = k immediately, and we have seen that each θ (Xk ) is

well typed at τk . □

F MODEL-THEORETIC SEMANTICS
We have focused on the operational semantics of Formulog, as it helps us to reason about type

safety. However, since we have kept Formulog close to Datalog, it is also possible to give a model-

theoretic semantics to a Formulog program. First, all ML functions and expressions are desugared

into Datalog rules; this translation is relatively straightforward, with the trickiest part being the

translation of non-mutually exclusive patterns occurring in match expressions. For each primitive
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operator, we introduce a (possibly infinite) EDB relation that defines that operator; for example,

the addition operator + is represented through a ternary relation add(x,y,z), which states that

z is the sum of x and y. Terms of the form p(w∗) (i.e., invocations of predicates as functions) are

translated to aggregate predicates. Formulog requires the use of these terms, as well as negation,

to be stratified; thus, the program resulting from the translation can be given a perfect model

semantics in line with stratified negation [Apt et al. 1988; Przymusinski 1988; Van Gelder 1989]

and stratified aggregation [Mumick et al. 1990].

For a small example, consider this Formulog program:

fun length(Xs: 'a list) : bv[32] =

match Xs with

| [] => 0

| _ :: T => 1 + length(T)

end

ok :- length ([1, 2, 3]) = 3.

This would be translated into a program like this:

length ([], 0).

length(_ :: T, Z) :-

length(T, L),

add(1, L, Z).

ok :- length ([1, 2, 3], 3).

Note that the rules defining the length predicate violate the range restriction, and in fact define

an infinite relation. This does not pose a fundamental problem to the model theory. To make this

program evaluable, we could rewrite the length predicate’s definition (and its uses) via the magic

set transformation; the resulting relations would meet the range restriction. While the magic set

transformation can turn a stratified program into a non-stratified program, there are techniques

to either restore stratification [Meskes and Noack 1993] or correctly evaluate the non-stratified

program [Mumick et al. 1990].
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