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Refinement type checkers are a powerful way to reason about functional programs. For example, one can prove

properties of a slow, specification implementation, porting the proofs to an optimized implementation that

behaves the same. Without functional extensionality, proofs must relate functions that are fully applied. When

data itself has a higher-order representation, fully applied proofs face serious impediments! When working

with first-order data, fully applied proofs lead to noisome duplication when using higher-order functions.

While dependent type theories are typically consistent with functional extensionality axioms, refinement

type systems with semantic subtyping treat naive phrasings of functional extensionality inconsistently, leading

to unsoundness. We demonstrate this unsoundness and develop a new approach to equality in Liquid Haskell:

we define a propositional equality in a library we call PEq. Using PEq avoids the unsoundness while still

proving useful equalities at higher types; we demonstrate its use in several case studies. We validate PEq by
building a small model and developing its metatheory. Additionally, we prove metaproperties of PEq inside
Liquid Haskell itself using an unnamed folklore technique, which we dub ‘classy induction’.

1 INTRODUCTION
Refinement types have been extensively used to reason about functional programs [Constable

and Smith 1987; Rondon et al. 2008; Rushby et al. 1998; Swamy et al. 2016; Xi and Pfenning 1998].

Higher-order functions are a key ingredient of functional programming, so reasoning about function

equality within refinement type systems is unavoidable. For example, Vazou et al. [2018a] prove

function optimizations correct by specifying equalities between fully applied functions. Do these

equalities hold in the context of higher order functions (e.g., maps and folds) or do the proofs need

to be redone for each fully applied context? Without functional extensionality (a/k/a funext), one

must duplicate proofs for each higher-order function. Worse still, all reasoning about higher-order

representations of data requires first-order observations.

Most verification systems allow for function equality by way of functional extensionality, either

built-in (e.g., Lean) or as an axiom (e.g., Agda, Coq). Liquid Haskell and F
∗
, two major, SMT-based

verification systems built on refinement types, are no exception: function equalities come up

regularly. But, in both these systems, the first attempt to give an axiom for functional extensionality

was wrong.
1
A naive funext axiom proves equalities between unequal functions.

Our first contribution is to expose why a naive encoding of unfext is inconsistent (§2). At first

sight, function equality can be encoded as a refinement type stating that for functions f and g, if

we can prove that f x equals g x for all x, then the functions f and g are equal:

funext :: ∀ a b. f:(a → b) → g:(a → b) → (x:a → {f x = g x}) → {f = g}

(The ‘refinement proposition’ {e} is equivalent to {_:() | e}.) On closer inspection, funext

does not encode function equality, since it is not reasoning about equality on the domains of the

functions. What if we instantiate the domain type parameter a’s refinement to an intersection of

the domains of the input functions or, worse, to an uninhabited type? Would such an instantiation

of funext still prove equality of the two input functions? It turns out that this naive extensionality

1
See https://github.com/FStarLang/FStar/issues/1542 for F

∗
’s initial, wrong encoding and §7 for F

∗
’s different solution. We

explain the situation in Liquid Haskell in §2.
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axiom is inconsistent with refinement types: in §2 we assume this naive funext and prove false—

disaster! We work in Liquid Haskell, but the problem generalizes to any refinement type system that

allows for semantic subtyping along with refinement polymorphism, i.e., refinements inferred from

constraints [Rondon et al. 2008]. To be sound, proofs of function equality must carry information

about the domain type on which the compared functions are equal.

Our second contribution is to define a type-indexed propositional equality as a Liquid Haskell

library (§3), where the type indexing uses Haskell’s GADTs and Liquid Haskell’s refinement types.

We call the propositional equality PEq and find that it adequately reasons about function equality:

we can prove the theorems we want, and we can’t prove the (non-)theorems we don’t want. Further,

we prove in Liquid Haskell itself that the implementation of PEq is an equivalence relation, i.e.,

it is reflexive, symmetric, and transitive. To conduct these proofs—which go by induction on the

structure of the type index—we applied a heretofore-unnamed folklore proof methodology, which

we dub classy induction (§3.3).

Our third contribution is to use PEq to prove equalities between functions (§4). As simple examples,

we prove optimizations correct as equalities between functions (i.e., reverse ), work carefully with

functions that only agree on certain domains and dependent codomains, lift equalities to higher-

order contexts (i.e., map), prove equivalences with multi-argument higher-order functions (i.e.,

fold), and showcase how higher-order, propositional equalities can co-exist with and speedup

executable code. We also provide a more substantial case study, proving the monad laws for reader

monads.

Our fourth and final contribution is to formalize λRE , a core calculusmodeling PEq’s two important

features: type-indexed, functionally extensional propositional equality and refinement types with

semantic subtyping (§5). We prove that λRE is sound and that propositional equality implies equality

in a term model of equivalence (§6).

2 FUNCTIONAL EXTENSIONALITY IS INCONSISTENT IN REFINEMENT TYPES
Functional extensionality states that two functions are equal, if their values are equal at every

argument: ∀f ,д : A → B,∀x ∈ A, f (x) = д(x) ⇒ f = д. Most theorem provers consistently admit

functional extensionality as an axiom, which we call funext throughout. Admitting funext is a

convenient way to generate equalities on functions and reuse higher order proofs. For example,

Agda defines functional extensionality as below in the standard library:

Extensionality : (a b : Level) → Set _ -- Axiom.Extensionality.Propositional

Extensionality a b =

{A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g

Having seen funext’s success in other dependently typed languages, we naively admitted the

funext axiom below in Liquid Haskell:

{-@ assume funext :: ∀ a b. f:(a→b) → g:(a→b) → (x:a → {f x = g x}) → {f = g} @-}

funext :: (a → b) → (a → b) → (a → ()) → ()

funext _f _g _pf = ()

The assume keyword introduces an axiom: Liquid Haskell will accept the refinement signature of

funext wholesale and ignore its definition. Also, note that the = symbol in the refinements refers

to SMT equality (see §3.4). Our encoding certainly looks like Agda’s Extensionality axiom. But

looks can be deceiving: in Liquid Haskell, we can use funext to prove false . Why?

Consider two functions on Integers: the incrInt function increases all integers by one; the incrPos

function increases positive numbers by one, returning 0 otherwise:
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incrInt, incrPos :: Integer → Integer

incrInt n = n + 1

incrPos n = if 0 < n then n + 1 else 0

Liquid Haskell easily proves that these two functions behave the same on positive numbers:

{-@ type Pos = {n:Integer | 0 < n } @-}

{-@ incrSamePos :: n:Pos → {incrPos n = incrInt n} @-}

incrSamePos :: Integer → ()

incrSamePos _n = ()

We can use funext to show that incrPos and incrInt are equal, using our proof incrSamePos on

the domain of positive numbers.

{-@ incrExt :: {incrPos = incrInt} @-}

incrExt :: ()

incrExt = funext incrPos incrInt incrSamePos

Having incrExt to hand, it’s easy to prove that every higher-order use of incrPos can be replaced

with incrInt , which is much more efficient—it saves us a conditional branch! For example, incrMap

shows that mapping over a list with incrPos is just the same as mapping over it with incrInt .

{-@ incrMap :: xs:[Pos] → {map incrPos xs = map incrInt xs} @-}

incrMap :: [Integer] → ()

incrMap xs = incrExt

We could prove incrMap without function equality, i.e., if we only knew incrSamePos . To do so,

we would write an inductive proof—and we’d have to redo the proof for every context in which

we would rewrite incrPos to incrInt . So funext is in part about modularity and reuse in theorem

proving. We don’t give a full example here, but funext is particularly critical when trying to equate

structures that are themselves higher order, like difference lists or streams.

Unfortunately, incrExt makes it too easy to prove equivalences... our system is inconsistent! Here’s

a proof that 0 is equal to -4:

{-@ inconsistencyI :: {incrPos (-5) = incrInt (-5)} @-} -- 0 = -4

inconsistencyI :: ()

inconsistencyI = incrExt

What happened here? How can we have that equality... that 0 = -4? Liquid Haskell looked at

incrExt and saw the two functions were equal... without any regard to the domain on which

incrExt proved incrPos and incrInt equal! We forgot the domain, and so incrExt generates a

proof in SMT that those two functions are equal on any domain.

So funext is inconsistent in Liquid Haskell! The problem is that Liquid Haskell forgets the
domain on which the two functions are proved equal, remembering only the equality itself.

We can exploit funext to find equalities between any two functions that share the same Haskell

type on the empty domain, and Liquid Haskell will treat these functions as universally equal. Ouch!

For example, plus2 below defines a function that increases its input by 2 and is obviously not

equal to incrInt on any nontrivial domain.

plus2 :: Integer → Integer

plus2 x = x + 2

Even so, we can use funext to prove that plus2 behaves the same as incrInt on the empty domain,

i.e., for all inputs n that satisfy false .
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{-@ type Empty = {v:Integer | false } @-}

{-@ incrSameEmpty :: n:Empty → {incrInt n = plus2 n} @-}

incrSameEmpty :: Integer → ()

incrSameEmpty _n = ()

Now incrSameEmpty provides enough evidence for funext to show that incrInt equals plus2 ,

which we use to prove another egregious inconsistency.

{-@ incrPlus2Ext :: {incrInt = plus2} @-}

incrPlus2Ext :: ()

incrPlus2Ext = funext incrInt plus2 incrSameEmpty

{-@ inconsistencyII :: {incrInt 0 = plus2 0} @-} -- 1 = 2

inconsistencyII :: ()

inconsistencyII = incrPlus2Ext

Liquid Haskell isn’t like most other dependent type theories: we can’t just admit funext as phrased.

But we still want to prove equalities between higher-order values! What can we do?

2.1 Refined, Type-Indexed, Extensional, Propositional Equality
If we’re going to reason using functional extensionality in Liquid Haskell, we’ll need to be careful

to remember the type at which we show the functions produce equal results. What domains are

involved when we use functional extensionality?

To prove two functions f and д extensionally equal, we must reason about four domains. Let

Df and Dд be the domains on which the functions f and д are respectively defined. Let Dp be the

domain on which the two functions are proved equal and De the domain on which the resulting

equality between the two functions is found. In our incrExt example above, the function domains

are Integer (Df = Dд = Integer), as specified by the function definitions, the domain of the proof

is positive numbers (Dp = Pos), as specified by incrSamePos , and, disastrously, the domain of the

equality itself is unspecified in funext . Liquid Haskell will implicitly set the domain on which the

functions are equal to the most general one where both functions can be called (De = Integer).

Our funext encoding naively imposes no real constraints between these domains. In fact, funext

only requires that Df , Dд , and Dp are supertypes of the empty domain (§5), which trivially holds

for all types, leaving De underconstrained.

To be consistent, we need a functional extensionality axiom that (1) captures the domain of

function equality De explicitly, (2) requires that the domain of the equality, De , is a subtype of the

domain of the proof, Dp , which should be a subtype of the functions domains, Df and Dд , and (3)

ensures that the resulting equality between functions is only used on subdomains of De .

Our solution is to define a refined, type-indexed, extensional propositional equality. We do so in

the Liquid Haskell library PEq, which defines a propositional equality also called PEq. We write

PEq a {el} {er } to mean that the expressions el and er are propositionally equal and of type a.

We carefully crafted PEq’s definition as a refined GADT (§3) to meet our three criteria.

1. PEq is Type-Indexed. The type index a in PEq a {el} {er }makes it easy to track types explicitly.

PEq’s constructor axiomatizing functional extensionality keeps careful track of types:

XEq :: f:(a → b) → g:(a → b) → (x:a → PEq b {f x} {g x}) → PEq (a → b) {f} {g}

The result type of XEq explicitly captures the equality domain as the domain of the return type (i.e.,

a). The standard variance and type checking rules of Liquid Haskell ensure that the domains Df ,

Dд , and Dp are supertypes of De . (See §5 for more detail on type checking.)
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2. Generating Function Equalities. The XEq case of PEq generates equalities at function types using

functional extensionality. Liquid Haskell will check the domains appropriately: it won’t prove

equality between functions at an inappropriate domain.

Returning to our concrete example of incrPos and incrInt , we can use XEq to find these functions

equal on the domain Pos:

{-@ incrExtGood :: PEq (Pos → Integer) {incrPos} {incrInt} @-}

incrExtGood :: PEq (Integer → Integer)

incrExtGood = XEq incrPos incrInt incrEq

XEq checks that the domains of the functions incrPos and incrInt are supertypes of Pos, i.e.,

Pos <: Integer . Further it checks that the domain of the proof incrEq is supertype of Pos.

What might we define for incrEq? Here are three alternatives. Each alternative is either accepted

or rejected by XEq as appropriate for the Pos → Integer type index; each alternative is also possible

or impossible to prove. (See §3 for more on how incrEq can be defined.)

incrEq :: n:Pos → PEq Integer {incrPos n} {incrInt n} -- ACCEPTED and POSSIBLE

incrEq :: n:Integer → PEq Integer {incrPos n} {incrInt n} -- ACCEPTED and IMPOSSIBLE

incrEq :: n:Empty → PEq Integer {incrPos n} {incrInt n} -- REJECTED and POSSIBLE

The first two alternatives, n:Pos and n:Integer , will be accepted by XEq, since both Pos and

Integer are supertypes of Pos... though it is impossible to actually construct a proof for the second

alternative, i.e., a proof that incrPos n equals incrInt n for all integers n. On the other hand, the

last proof on n:Empty is trivial, but XEq rejects it, because Empty is not a supertype of Pos. Liquid

Haskell’s checks on XEq’s type indices prevents inconsistencies like inconsistencyII .

3. Using Function Equalities. Just as PEq’s XEq constructor ensures that the right domains are

checked and tracked for functional extensionality, we have a constructor for ensuring these equali-

ties are used appropriately. The constructor CEq characterizes equality as valid in all contexts, i.e.,

if x and y are equal, they can be substituted in any context ctx and the results ctx x and ctx y

will be equal:

CEq :: x:a → y:a → PEq a {x} {y} → ctx:(a → b) → PEq b {ctx x} {ctx y}

It is easy to use CEq to apply functional equalities in higher order contexts. For example, we can

prove that map incrPos equals map incrInt :

{-@ incrMapProp :: PEq ([Pos] → [Integer]) {map incrPos} {map incrInt} @-}

incrMapProp :: PEq ([Integer] → [Integer])

incrMapProp = CEq incrPos incrInt incrExtGood (map)

We can more generally show that propositionally equal functions produce equal results on equal

inputs. The trick is to flip the context, defining a function app that takes as input two functions f

and g, a proof these functions are equal, and an argument x, returning a proof that f x = g x:

{-@ app :: f:(a → b) → g:(a → b) → PEq (a → b) {f} {g}

→ x:a → PEq b {f x} {g x} @-}

app :: (a → b) → (a → b) → PEq (a → b) → a → PEq b

app f g eq x = CEq f g eq (flip x)

flip x f = f x

The app lemma makes it easy to use function equalities while still checking the domain on which

the function is applied. These checks prevent inconsistencies like inconsistencyI . For instance,

we can try to apply the functional equality incrExtGood to a bad and a good input.
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{-@ badFO ::PEq Integer {incrPos 0} {incrInt 0} @-}

badFO = app incrPos incrInt incrExtGood 0 -- REJECTED

{-@ goodFO :: x:{Integer | 42 < x } → PEq Integer {incrPos x} {incrNat x} @-}

goodFO x = app incrPos incrInt incrExtGood x -- ACCEPTED

Liquid Haskell rejects the bad input in badFO: the number 0 isn’t in the Pos domain on which

incrExtGood was proved. Liquid Haskell accepts the good input in goodFO , since any x greater

than 42 is certainly positive. The goodFO proof yields a first-order equality on any such x, here on

Integer . Such first order equalities correspond neatly with the notion of equality used in the SMT

solvers that buttress all of Liquid Haskell’s reasoning. (For more information on how SMT equality

relates to notions of equality in Liquid Haskell, see §3. For an example of how these first-order

equalities can lead to runtime optimizations, see §4.5.)

2.2 Why Isn’t funext Inconsistent in Agda?
At the beginning of §2, we present Agda’s Extensionality axiom, whose return type is f ≡ g.

Agda’s equality appears to lack a type index. Why doesn’t Agda also suffer from inconsistency?

Agda’s equality only seems to be unindexed. In fact, Agda’s built-in equality is the standard,

type-indexed Leibniz equality used inmost dependent type theories (omitting Level polymorphism):

data _≡_ {A : Set} (x : A) : A → Set a where

refl : x ≡ x

The curly braces around the type index A marks it as implicit, i.e., to be inferred. If we were to

explicitly give implicit arguments by wrapping them in curly braces, Agda’s extensionality axiom

returns (_≡_) {a→b} f g.

Our XEq axiom recovers the type indexing in Agda’s equivalence that’s missing in our original

funext encoding. Of course, (Liquid) Haskell’s lack of implicit type indices makes reasoning about

function equalities verbose. On the other hand, Liquid Haskell’s subtyping can reinterpret functions

at many domains (see §4.2). In Agda, however, it is much more complex to reinterpret functions

and to generate heterogeneous equality relating incrInt and incrPos only on positive inputs.

3 PEQ: A LIBRARY AND GADT FOR EXTENSIONAL EQUALITY
We define the PEq library in Liquid Haskell, implementing the type-indexed propositional equality,

also called PEq. First, we axiomatize equality for base types in the AEq typeclass (§3.1). Next, we
define propositional equality for base and function types with the PEq GADT [Cheney and Hinze

2003; Xi et al. 2003] (§3.2). Refinements on the GADT enforce the typing rules of our formal model

(§6), but we prove some of the metatheory in Liquid Haskell itself (§3.3). Finally, we discuss how

AEq and PEq interact with Haskell’s and SMT’s equalities (§3.4).

3.1 The AEq typeclass, for axiomatized equality
We begin with by axiomatizing equality that can be ported to SMT: such an equality should be an

equivalence relation that implies SMT equality. We use refinements on typeclasses [Liu et al. 2020]

to define a typeclass AEq, which contains the (operational) equality method ≡, three methods that

encode the equality laws, and one method that encodes correspondence with SMT equality.

{-@ class AEq a where

(≡) :: x:a → y:a → Bool

reflP :: x:a → {x ≡ x}

symmP :: x:a → y:a → { x ≡ y ⇒ y ≡ x }
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-- (1) Plain GADT

data PBEq :: * → * where

BEq :: AEq a ⇒ a → a → () → PBEq a

XEq :: (a → b) → (a → b) → (a → PEq b) → PBEq (a → b)

CEq :: a → a → PBEq a → (a → b) → PBEq b

-- (2) Uninterpreted equality between terms e1 and e2

{-@ type PEq a e1 e2 = {v:PBEq a | e1 ⋍ e2} @-}

{-@ measure (⋍) :: a → a → Bool @-}

-- (3) Type refinement of the GADT

{-@ data PBEq :: * → * where

BEq :: AEq a ⇒ x:a → y:a → {v:() | x ≡ y}

→ PEq a {x} {y}

XEq :: f:(a → b) → g:(a → b) → (x:a → PEq b {f x} {g x})

→ PEq (a → b) {f} {g}

CEq :: x:a → y:a → PEq a {x} {y} → ctx:(a → b)

→ PEq b {ctx x} {ctx y} @-}

Fig. 1. Implementation of the propositional equality PEq as a refinement of Haskell’s GADT PBEq.

transP :: x:a → y:a → z:a → { (x ≡ y && y ≡ z) ⇒ x ≡ z }

smtP :: x:a → y:a → { x ≡ y } → { x = y } @-}

To define an instance of AEq one has to define the method (≡) and provide explicit proofs that it is

reflexive, symmetric, and transitive (reflP , symmP , and transP resp.); thus ≡ is, by construction, an

equality. Finally, we require the proof smtP that captures that (≡) implies equality provable by SMT

(e.g., structural equality).
2

3.2 The PBEq GADT and its PEq Refinement
We use AEq to define our type-indexed propositional equality PEq a {e1} {e2} in three steps

(Figure 1): (1) structure as a GADT, (2) definition of the refined type PEq, and (3) axiomatization of

equality by refining of the GADT.

First, we define the structure of our proofs of equality as PBEq, an unrefined, i.e., Haskell, GADT

(Figure 1, (1)). The plain GADT defines the structure of derivations in our propositional equality

(i.e., which proofs are well formed), but none of the constraints on derivations (i.e., which proofs are

valid). There are three ways to prove our propositional equality, each corresponding to a constructor

of PBEq: using an AEq instance (constructor BEq); using funext (constructor XEq); and by congruence
closure (constructor CEq).

Next, we define the refinement type PEq to be our propositional equality (Figure 1, (2)). Two

terms e1 and e2 of type a are propositionally equal when (a) there is a well formed and valid PBEq

proof and (b) we have e1 ⋍ e2, where (⋍) is an uninterpreted SMT function. Liquid Haskell uses

curly braces for expression arguments in type applications, e.g., in PEq a {x} {y}, x and y are

expressions, but a is a type.

2
The three axioms of equality alone are not enough to ensure SMT’s structural equality, e.g., one can define an instance x

≡ y = True which satisfies the equality laws, but does not correspond to SMT equality.
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Finally, we refine the type constructors of PBEq to axiomatize the uninterpreted (⋍) and generate
proofs of PEq (Figure 1, (3)). Each constructor of PBEq is refined to return something of type PEq,

where PEq a {e1} {e2} means that terms e1 and e2 are considered equal at type a. BEq constructs

proofs that two terms, x and y of type a, are equal when x ≡ y according to the AEq instance for a. XEq

is the (type-indexed) funext axiom. Given functions f and g of type a → b, a proof of equality via

extensionality also needs a PEq-proof that f x and g x are equal for all x of type a. Such a proof has

refined type x:a → PEq b {f x} {g x}. Critically, we don’t lose any type information about f or

g! CEq implements congruence closure: for x and y of type a that are equal—i.e., PEq a {x} {y}—and

an arbitrary context with an a-shaped hole (ctx :: a → b), filling the context with x and y yields

equal results, i.e., PEq b {ctx x} {ctx y}.

Design Alternatives. The first design choice we made was to define PEq as a GADT and not an

axiomatized opaque type. While there’s no reason to pattern match on PEq terms, there’s also no

harm in it. A GADT provides a clean interface on how PEq can be generated: it collects all the

axioms as data contructors and prevents the user from arbitrarily adding new constructors. The

second choice we made was to define the type PEq using a fresh uninterpreted equality symbol

(Figure 1, (2)) instead of SMT equality. Again, we made this decision to ensure that all PEq terms

are constructed via the constructors and not implicit SMT automation. The final choice we made

was to define the base case using the AEq constraints. We considered two alternatives:

BEq :: x:a → y:a → {v:() | x = y } → PEq a {x} {y} -- alternative I

BEq :: Eq a ⇒ x:a → y:a → {v:() | x = y } → PEq a {x} {y} -- alternative II

We rejected the first to ensure that the base case does not include functions (which don’t generally

have Eq instances) and to support our metatheory (§3.3). We rejected the second to exclude user-

defined Eq instances that do not correspond to SMT equality (since in §3.4 we define a machanism

to turn PEq to SMT equalities).

Example: Having seen AEq and the BEq case of PEq, we can define the incrEq function from §2:

{-@ incrEq :: x:Pos → PEq Integer {incrPos x} {incrInt x} @-}

incrEq x = BEq (incrPos x) (incrInt x) (reflP (incrPos x))

We start from reflP (incrPos x) :: {incrPos x ≡ incrPos x}, since x is positive, the SMT de-

rives incrPos x = incrInt x, generating the BEq proof term {incrPos x ≡ incrInt x}.

3.3 Equivalence Properties and Classy Induction
We can prove metaproperties of the actual implementation of PEq—reflexivity, symmetry, and

transitivity—within Liquid Haskell itself.

Our proofs in Liquid Haskell go by induction on types. But “induction” in Liquid Haskell means

writing a recursive function, which necessarily has a single, fixed type. To express that PEq is

reflexive, we want a Liquid Haskell theorem refl :: x:a → PEq a {x} {x}, but its proof goes by

induction on the type a, which is not possible in ordinary Haskell functions.
3

The essence of our proofs is a folklore method we call classy induction (see §7 for the history).

To prove a theorem using classy induction on the PEq GADT, one must: (1) define a typeclass with

a method whose refined type corresponds to the theorem; (2) prove the base case for types with

AEq instances; and (3) prove the inductive case for function types, where typeclass constraints on

smaller types generate inductive hypotheses. All three of our proofs follow this pattern. Here’s the

proof for reflexivity.

3
A variety of GHC extensions allow case analysis on types (e.g., type families and generics), but, unfortunately, Liquid

Haskell doesn’t support such fancy type-level programming.
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-- (1) Refined typeclass

{-@ class Reflexivity a where

refl :: x:a → PEq a {x} {x} @-}

-- (2) Base case (AEq types)

instance AEq a ⇒ Reflexivity a where

refl a = BEq a a (reflP a)

-- (3) Inductive case (function types)

instance Reflexivity b ⇒ Reflexivity (a → b) where

refl f = XEq f f (\a → refl (f a))

For (1), the typeclass Reflexivity simply states the desired theorem type, refl :: x:a → PEq a

{x} {x}. For (2), given an AEq a instance, BEq and the reflP method are combined to define the refl

method. To define such a general instance, we enabled the GHC extensions FlexibleInstances
and UndecidableInstances. For (3), XEq can show that f is equal to itself by using the refl instance

from the codomain constraint: the Reflexivity b constraint generates a method refl :: x:b

→ PEq b {x} {x}. The codomain constraint Reflexivity b corresponds exactly to the inductive

hypothesis on the codomain: we are doing induction!

At compile time, any use of refl x when x has type a asks the compiler to find a Reflexivity

instance for a. If a has an AEq instance, the proof of refl x will simply be BEq x x (reflP a). If

a is a function of type b → c, then the compiler will try to find a Reflexivity instance for the

codomain c—and if it finds one, generate a proof using XEq and c’s proof. The compiler’s constraint

resolver does the constructive proof for us, assembling the ‘inductive tower’ to give us a refl for

our chosen type. That is, even though Liquid Haskell can’t mechanically check that our inductive

proofs are in general complete (i.e., the base and inductive cases cover all types), our refl proofs

will work for types where the codomain bottoms out with an AEq instance, i.e., any type consisting

of functions and AEq-equable types.

Our proofs of symmetry and transitivity follow the same pattern, but both also make use

congruence closure. The full proofs can be found in supplementary material [2021]. Here is the

inductive case from symmetry:

instance Symmetry b ⇒ Symmetry (a → b) where

-- sym :: l:(a→b) → r:(a→b) → PEq (a→b) {l} {r} → PEq (a→b) {r} {l}

sym l r pf = XEq r l $ \a → sym (l a) (r a) (CEq l r pf ($ a) ? ($ a l) ? ($ a r)))

Here l and r are functions of type a → b and we know that l ⋍ r; we must prove that r ⋍ l.

We do so using: (a) XEq for extensionality, letting a of type a be given; (b) sym (l a) (r a) as the

IH on the codomain b on (c) CEq for congruence closure on l ⋍ r in the context ($ a). The last

step is the most interesting: if l is equal to r, then plugging them into the same context yields

equal results; as our context, we pick ($ a), i.e., \f → f a, showing that l a ⋍ r a; the IH on

the codomain b yields r a ⋍ l a, and extensionality shows that r ⋍ l, as desired. The operator ?,

defined as x ? p = x, asks Liquid Haskell to encode ‘p‘ into the SMT solver to help prove ‘x‘. Our

use of ? unfolds the definitions $ a l and $ a r to help CEq.

3.4 Interaction of the different equalities.
We have four equalities in our system (Figure 2): SMT equality (=), the (≡) method of the AEq
typeclass(§3.1), the refined GADT PEq (§3.2), and the (==) method of Haskell’s Eq typeclass.

SMT Equality. The single equal sign (=) represents SMT equality, which satisfies the three equality

axioms and is syntactically defined for data types. The SMT-LIB standard [Barrett et al. 2010] permits
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Fig. 2. The four different equalities and their interactions. Haskell equality is in red to highlight its potential
for unsoundness.

the equality symbol on functions but does not specify its behavior. Implementations vary. CVC4

allows for functional extensionality and higher-order reasoning [Barbosa et al. 2019]. When Z3

compares functions for equality, it treats them as arrays, using the extensional array theory to

incompletely perform the comparison. When asked if two functions are equal, Z3 typically answers

unknown . To avoid this unpredictability, our system avoids SMT equality on functions.

Interactions of Equalities. SMT equalities are internally generated by Liquid Haskell using the

reflection and PLE tactic of Vazou et al. [2018b] (see also §4.1). An e1 ≡ e2 equality can be generated

one of three ways: (1) If SMT can prove an SMT equality e1 = e2, then the reflexivity reflP method

can generate that equality, i.e., reflP e1 proves e1 ≡ e1, which is enough to show e1 ≡ e2. (2) Our

system provides AEq instances for the primitive Haskell types using the Haskell equality that we

assume satisfies the four laws, e.g., the instance AEq Int is provided. (3) Using refinements in

typeclasses [Liu et al. 2020] one can explicitly define instances of AEq, which may or may not

coincide with Haskell Eq instances.

Constructors generate PEq proofs, bottoming out at AEq: BEq combined with an AEq term and

XEq or CEq combined with other PEq terms.

Finally, we define a mechanism to convert PEq into an SMT equality. This conversion is useful

when we want to derive an SMT equality f e = д e from a function equality PEq (a → b) {f}

{g} (see §4.5). The derivation requires that the domain b admits the axiomatized equality, AEq. To

capture this requirement we define toSMT that converts PEq to SMT equality as a method of a class

that requires an AEq constraint:

class AEq a ⇒ SMTEq a where

toSMT :: x:a → y:a → PEq a {x} {y} → {x = y}

Non-interaction. Liquid Haskell maps Haskell’s (==) to SMT equality by default. It is surely

unsound to do so, as users can define their own Eq instances with (==) methods that do arbitrarily

strange things. To avoid this built-in unsoundness, our implementation and case studies don’t

directly use Haskell’s equality.

Equivalence Relation Axioms. Each of the four equalities has a different relationship to th equiva-

lence relation axioms (reflexivity, symmetry, transitivity). AEq comes with explicit proof methods

that capture the axioms. For PEq, we prove the equality axioms using classy induction (§3.3). For

SMT equality, we simply trust implementation of the underlying solver. For Haskell’s equality,

there’s no general way to enforce the equality axioms, though users can choose to prove them.
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Two correct and one wrong implementations of reverse

slow, bad, fast :: [a] → [a]

slow [] = []

slow (x:xs) = slow xs ++ [x]

bad xs = xs

fast xs = fastGo [] xs

fastGo :: [a] → [a] → [a]

fastGo acc [] = acc

fastGo acc (x:xs) = fastGo (x:acc) xs

First-Order Theorems relating fast and slow

reverseEq :: xs:[a] → { fast xs = slow xs }

lemma :: xs:[a] → ys:[a] → {fastGo ys xs = slow xs ++ ys}

assoc :: xs:[a] → ys:[a] → zs:[a] → { (xs ++ ys) ++ zs = xs ++ (ys ++ zs) }

rightId :: xs:[a] → { xs ++ [] = xs }

Proofs of the First-Order Theorems

reverseEq x = lemma x [] ? rightId (slow x)

lemma [] _ = ()

lemma (a:x) y = lemma x (a:y) ? assoc (slow x) [a] y

x ? _pf = x

rightId [] = ()

rightId (_:x) = rightId x

assoc [] _ _ = ()

assoc (_:x) y z = assoc x y z

Fig. 3. Reasoning about list reversal.

Computability. Finally, the Eq and AEq classes define the computable equalities used in programs,

(==) and (≡) respectively. The PEq equality only contains proof terms, while the SMT equality

lives entirely inside the refinements; neither can be meaningfully used in programs.

4 CASE STUDIES
We demonstrate our propositional equality in seven case studies. We start by moving from first-

order equalities to equalities between functions (reverse , §4.1). Next, we show how PEq’s type

indices reason about refined domains and dependent codomains of functions (succ, §4.2). Proofs

about higher-order functions demonstrate the contextual equivalence axiom (map, §4.3). Then, we

see that PEq plays well with multi-argument functions (foldl , §4.4). Next, we present how a PEq

proof can speedup code (spec, §4.5). Finally, we present two bigger case studies that prove the

monoid laws for endofunctions (§4.6) and the monad laws for reader monads (§4.7). Complete code

is available in the [supplementary material 2021].

4.1 Reverse: from First- to Higher-Order Equality
Consider three candidate definitions of the list-reverse function (Figure 3, top): a ‘fast’ one in

accumulator-passing style, a ‘slow’ one in direct style, and a ‘bad’ one that is the identity.

First-Order Proofs. The reverseEq theorem neatly relates the two list reversals (Figure 3). The

final theorem reverseEq is a corollary of a lemma and rightId , which shows that [] is a right

identity for list append, (++). The lemma is the core induction, relating the accumulating fastGo

and the direct slow. The lemma itself uses the inductive lemma assoc to show associativity of (++).

All the equalities in the first order statements use the SMT equality, since they are automatically

proved by Liquid Haskell’s reflection and PLE tactic [Vazou et al. 2018b].

Higher-Order Proofs. Plain SMT equality isn’t enough to prove that fast and slow are themselves

equal. We need functional extensionality: the XEq constructor of the PEq GADT.

reverseHO :: PEq ([a] → [a]) {fast} {slow}
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reverseHO = XEq fast slow reversePf

The job of the reversePf lemma is to prove fast xs propositionally equal to slow xs for all xs:

reversePf :: xs:[a] → PEq [a] {fast xs} {slow xs}

There are several different ways to construct such a proof.

Style 1: Lifting First-Order Proofs. The first order equality proof reverseEq lifts directly into

propositional equality, using the BEq constructor and the reflexivity property of AEq.

reversePf1 :: AEq [a] ⇒ xs:[a] → PEq [a] {fast xs} {slow xs}

reversePf1 xs = BEq (fast xs) (slow xs) (reverseEq xs ? reflP (fast xs))

Such proofs rely on SMT equality, which the reflP call turns into axiomatized equality (AEq).

Style 2: Inductive Proofs. Alternatively, inductive proofs can be directly performed in the propo-

sitional setting, eliminating the AEq constraint. To give a sense of what these proofs are like, we

translate lemma into lemmaP :

lemmaP :: (Reflexivity [a], Transitivity [a])

⇒ rest:[a] → xs:[a] → PEq [a] {fastGo rest xs} {slow xs ++ rest}

lemmaP rest [] = refl rest

lemmaP rest (x:xs) = trans (fastGo rest (x:xs)) (slow xs ++ (x:rest))

(slow (x:xs) ++ rest)

(lemmaP (x:rest) xs) (assocP (slow xs) [x] rest)

The proof goes by induction and uses the Reflexivity and Transitivity properties of PEq encoded

as typeclasses (§3.3) along with assocP and rightIdP , the propositional versions of assoc and

rightId (not shown). These typeclass constraints propagate to the reverseHO proof, via reversePf2 .

reversePf2 :: (Reflexivity [a], Transitivity [a])

⇒ xs:[a] → PEq [a] {fast xs} {slow xs}

reversePf2 xs = trans (fast xs) (slow xs ++ [])

(slow xs)

(lemmaP [] xs) (rightIdP (slow xs))

Style 3: Combinations. One can combine the easy first order inductive proofs with the typeclass-

encoded properties. Here refl sets up the propositional context; lemma and rightId complete the

proof.

reversePf3 :: (Reflexivity [a]) ⇒ xs:[a] → PEq [a] {fast xs} {slow xs}

reversePf3 xs = refl (fast xs) ? lemma xs [] ? rightId (slow xs)

Bad Proofs. We could not use any of these styles to generate a bad (non-)proof: neither PEq ([a]

→ [a]) {fast} {bad} nor PEq ([a] → [a]) {slow} {bad} are provable.

4.2 Succ: Refined Domains and Dependent Codomains
Our propositional equality PEq naturally reasons about functions with refined domains and depen-

dent codomains. For example, recall the functions incrInt and incrPos from §2:

incrInt, incrPos :: Integer → Integer

incrInt n = n + 1

incrPos n = if 0 < n then n + 1 else 0

In §2 we proved that the two functions are equal on the domain of positive numbers:
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type Pos = {x:Integer | 0 < x }

posDom :: PEq (Pos → Integer) {incrInt} {incrPos}

posDom = XEq incrInt incrPos $ \x → BEq (incrInt x) (incrPos x) (reflP (incrInt x))

We can also reason about how each function’s domain affects its codomain. For example, we can

prove that these functions are equal and they take Pos inputs to natural numbers.

posRng :: PEq (Pos → {v:Integer | 0 <= v}) {incrInt} {incrPos}

posRng = XEq incrInt incrPos $ \x → BEq (incrInt x) (incrPos x) (reflP (incrInt x))

Finally, we can prove properties of the function’s codomain that depend on the inputs. Below we

show that on positive arguments, the result is always increased by one.

type SPos x = {v:Pos | v = x + 1}

depRng :: PEq (x:Pos → SPos {x}) {incrInt} {incrPos}

depRng = XEq incrInt incrPos $ \x → BEq (incrInt x) (incrPos x) (reflP (incrInt x))

Equalities Rejected by Our System. Liquid Haskell correctly rejects various wrong, (non-)proofs

of equality between the functions incrInt and incrPos . We highlight three:

badDom :: PEq ( Integer → Integer) {incrInt} {incrPos}

badCod :: PEq ( Pos → {v:Integer | v < 0}) {incrInt} {incrPos}

badDCod :: PEq (x:Pos → {v:Integer | v = x+2}) {incrInt} {incrPos}

badDom expresses that incrInt and incrPos are equal for any Integer input, which is wrong, e.g.,

incrInt (-2) yields -1, but incrPos (-2) yields 0. Correctly constrained to positive domains,

badCod specifies a negative codomain (wrong) while badDCod specifies that the result is increased

by 2 (also wrong). Our system rejects all three with a refinement type error.

4.3 Map: Putting Equality in Context
Our propositional equality can be used in higher order settings: we prove that if f and g are

propositionally equal, then map f and map g are also equal. Our proofs use the congruence closure

equality constructor/axiom CEq.

Equivalence on the Last Argument. Direct application of CEq ports a proof of equality to the last

argument of the context (a function). For example, mapEqP below states that if two functions f and

g are equal, then so are the partially applied functions map f and map g.

mapEqP :: f:(a → b) → g:(a → b) → PEq (a → b) {f} {g}

→ PEq ([a] → [b]) {map f} {map g}

mapEqP f g pf = CEq f g pf map

Equivalence on an Arbitrary Argument. To show that map f xs and map g xs are equal for all xs,

we use CEq with flipMap , i.e., a context that puts f and g in a ‘flipped’ context.

mapEq :: f:(a → b) → g:(a → b) → PEq (a → b) {f} {g}

→ xs:[a] → PEq [b] {map f xs} {map g xs}

mapEq f g pf xs = CEq f g pf (flipMap xs) ? fMapEq f xs ? fMapEq g xs

fMapEq :: f:_ → xs:[a] → {map f xs = flipMap xs f}

fMapEq f xs = ()

flipMap xs f = map f xs
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The mapEq proof relies on CEqwith the flipped context and needs to know that map f xs = flipMap

xs f. Liquid Haskell won’t infer this fact on its own in the higher order setting of this proof; we

explicitly provide this evidence with the fMapEq calls.

Proof Reuse in Context. Finally, we use the posDom proof (§4.2) to show how existing proofs can

be reused with map.

client :: xs:[Pos] → PEq [Integer] {map incrInt xs} {map incrPos xs}

client = mapEq incrInt incrPos posDom

clientP :: PEq ([Pos] → [Integer]) {map incrInt} {map incrPos}

clientP = mapEqP incrInt incrPos posDom

client proves that map incrInt xs is equivalent to map incrPos xs for each list xs of positive

numbers, while clientP proves that the partially applied functions map incrInt and map incrPos

are equivalent on the domain of lists of positive numbers.

4.4 Fold: Equality of Multi-Argument Functions
As an example of equality proofs on multi-argument functions, we show that the directly tail-

recursive foldl is equal to foldl', a foldr encoding of a left-fold via CPS. The first-order equiva-

lence theorem is expressed as follows:

thm :: f:(b → a → b) → b:b → xs:[a] → { foldl f b xs = foldl' f b xs }

We lifted the first-order property into a multi-argument function equality by using XEq for all but

the last arguments and BEq for the last, as below:

foldEq :: AEq b ⇒ PEq ((b → a → b) → b → [a] → b) {foldl} {foldl'}

foldEq = XEq foldl foldl' $ \f →

XEq (foldl f) (foldl' f) $ \b →

XEq (foldl f b) (foldl' f b) $ \xs →

BEq (foldl f b xs) (foldl' f b xs)

(thm f b xs ? reflP (foldl f b xs))

One can avoid the first-order proof and the AEq constraint, by using the second, typeclass-oriented

style of §4.1, (see supplementary material [2021] for details).

4.5 Spec: Function Equality for Program Efficiency
Function equality can be used to prove optimizations sound. For example, consider a critical

function that, for safety, can only run on inputs that satisfy a specification spec, and fastSpec , a

fast implementation to check spec.

spec, fastSpec :: a → Bool

critical :: x:{ a | spec x } → a

A client function can soundly call critical for any input x by performing the runtime fastSpec x

check, given a PEq proof that the functions fastSpec and spec are equal.

client :: PEq (a → Bool) {fastSpec} {spec} → a → Maybe a

client pf x =

if fastSpec x ? toSMT (fastSpec x) (spec x) (CEq fastSpec spec pf (\x f → f x))

then Just (critical x)

else Nothing
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Monoid Instance for Endofunctions

type Endo a = a → a

mempty :: Endo a

mempty a = a

_ =~= y = y

mappend :: Endo a → Endo a → Endo a

mappend f g a = f (g a) -- a/k/a (<>)

Endofunction Monoid Laws

mLeftIdentity :: (Reflexivity a, Transitivity a)

⇒ x:Endo a → PEq (Endo a) {mappend mempty x} {x}

mRightIdentity :: (Reflexivity a, Transitivity a)

⇒ x:Endo a → PEq (Endo a) {x} {mappend x mempty}

mAssociativity :: (Reflexivity a, Transitivity a)

⇒ x:(Endo a) → y:(Endo a) → z:(Endo a)

→ PEq (Endo a) {mappend (mappend x y) z} {mappend x (mappend y z)}

Proofs By Reflexivity and Transitivity

mLeftIdentity x = XEq (mappend mempty x) x $ \a →

refl (mappend mempty x a) ? (mappend mempty x a =~= mempty (x a) =~= x a *** QED)

mRightIdentity x = XEq x (mappend x mempty) $ \a →

refl (x a) ? (x a =~= x (mempty a) =~= mappend x mempty a *** QED)

mAssociativity x y z =

XEq (mappend (mappend x y) z) (mappend x (mappend y z)) $ \a →

refl (mappend (mappend x y) z a) ?

(mappend (mappend x y) z a =~= (mappend x y) (z a) =~= x (y (z a))

=~= x (mappend y z a)

=~= mappend x (mappend y z) a *** QED)

Fig. 4. Case study: Endofunction Monoid Proofs.

The toSMT call generates the SMT equality that fastSpec x = spec x, which, combined with the

branch condition check fastSpec x, lets the path-sensitive refinement type checker decide that

the call to critical x is safe in the then branch.

Our propositional equality (1) co-exists with practical features of refinement types, e.g., path

sensitivity, and (2) can help optimize executable code.

4.6 Monoid Laws for Endofunctions
Endofunctions form a law-abiding monoid. A function f is an endofunction when its domain and

codomain types are the same. A monoid is an algebraic structure comprising an identity element

(mempty) and an associative operation (mappend ). For the monoid of endofunctions, mempty is the

identity function and mappend is function composition (Figure 4; top).

To be a monoid, mempty must really be an identity with respect to mappend ( mLeftIdentity and

mRightIdentity) and mappend must really be associative ( mAssociativity) (Figure 4; middle).

Proving the monoid laws for endofunctions demands functional extensionality (Figure 4; bottom).

For example, consider the proof that mempty is a left identity for mappend , i.e., mappend mempty

x = x. To prove this equation between functions, we can’t use SMT equality. With functional
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Monad Instance for Readers

type Reader r a = r → a

kleisli :: (a → Reader r b)

→ (b → Reader r c)

→ a → Reader r c

kleisli f g x = bind (f x) g

pure :: a → Reader r a

pure a _r = a

bind :: Reader r a → (a → Reader r b)

→ Reader r b

bind fra farb = \r → farb (fra r) r

Reader Monad Laws

monadLeftIdentity :: Reflexivity b ⇒ a:a

→ f:(a → Reader r b) → PEq (Reader r b) {bind (pure a) f} {f a}

monadRightIdentity :: Reflexivity a

⇒ m:(Reader r a) → PEq (Reader r a) {bind m pure} {m}

monadAssociativity :: (Reflexivity c, Transitivity c)

⇒ m:(Reader r a) → f:(a → Reader r b) → g:(b → Reader r c)

→ PEq (Reader r c) {bind (bind m f) g} {bind m (kleisli f g)}

Identity Proofs By Reflexivity

monadLeftIdentity a f =

XEq (bind (pure a) f) (f a) $ \r →

refl (bind (pure a) f r) ?

(bind (pure a) f r =~= f (pure a r) r

=~= f a r *** QED)

monadRightIdentity m =

XEq (bind m pure) m $ \r →

refl (bind m pure r) ?

(bind m pure r =~= pure (m r) r

=~= m r *** QED)

Associativity Proof By Transitivity and Reflexivity

monadAssociativity m f g = XEq (bind (bind m f) g) (bind m (kleisli f g)) $ \r →

let { el = bind (bind m f) g r ; eml = g (bind m f r) r ; em = (bind (f (m r)) g) r

; emr = kleisli f g (m r) r ; er = bind m (kleisli f g) r }

in trans el em er (trans el eml em (refl el) (refl eml))

(trans em emr er (refl em) (refl emr))

Fig. 5. Case study: Reader Monad Proofs.

extensionality, each proof reduces to three parts: XEq to take an input of type a; reflon the left-

hand side of the equation, to generate an equality proof; and (=~=) to give unfolding hints to the

SMT solver. The (=~=) operator is defined as _ =~= y = y, and it is unrefined, i.e., it is not checking

equality of its arguments.

The Reflexivity constraints on the theorems make our proofs general in the underlying type a:

endofunctions on the type a form a monoid whether a admits SMT equality or if it’s a complex

higher-order type (whose ultimate result admits equality). Haskell’s typeclass resolution ensures

that an appropriate refl method will be constructed whatever type a happens to be.

4.7 Monad Laws for Reader Monads
A reader is a function with a fixed domain r, i.e., the partially applied type Reader r (Figure 5,

top left). Readers form a monad and their composition is a useful way of defining and composing

functions that take some fixed information, like command-line arguments or configuration files.

Our propositional equality can prove the monad laws for readers.
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The monad instance for the reader type is defined using function composition (Figure 5, top).

We also define Kleisli composition of monads as a convenience for specifying the monad. We prove

that readers are in fact monads, i.e., their operations satisfy the monad laws (Figure 5, bottom). We

also prove that they satisfy the functor and applicative laws in supplementary material [2021]. The

reader monad laws are expressed as refinement type specifications using PEq. We prove the left

and right identities following the pattern of §4.6, i.e., XEq, followed by reflexivity with (=~=) for

function unfolding (Figure 5, middle). We use transitivity to conduct the more complicated proof of

associativity (Figure 5, bottom).

Proof by Associativity and Error Locality. As noted earlier, the use of (=~=) in proofs by reflex-

ivity is not checking intermediate equational steps. So, the proof either succeeds or fails without

explanation. To address this problem, during proof construction, we employed transitivity. For

instance, in the monadAssociativity proof, our goal is to construct the proof PEq _ {el} {er}. To

do so, we pick an intermediate term em; we might attempt an equivalence proof as follows:

trans el em er

(refl el) -- proof of el = em; local error

(trans em emr er -- proof of em = er

(refl em) -- proof of em = emr

(refl emr)) -- proof of emr = er

The refl el proof will produce a type error; replacing that proof with an appropriate trans to con-

nect el and em via eml completes the monadAssociativity proof (Figure 5, bottom). Writing proofs

in this trans/refl style works well: start with refl and where the SMT solver can’t figure things

out, a local refinement type error tells you to expand with trans (or look for a counterexample).

Our reader proofs use the Reflexivity and Transitivity typeclasses to ensure that readers are

monads whatever the return type amay be (with the type of ‘read’ values fixed to r). Having generic

monad laws is critical: readers are typically used to compose functions that take configuration

information, but such functions usually have other arguments, too! For example, an interpreter

might run readFile >>= parse >>= eval, where readFile :: Config → String and parse

:: String → Config → Expr and eval :: Expr → Config → Value . With our generic proof

of associativity, we can rewrite the above to readFile >>= (kleisli parse eval) even though

parse and eval are higher-order terms without Eq instances. Doing so could, in theory, trigger

inlining/fusion rules that would combine the parser and the interpreter.

5 TYPE CHECKING XEQ: DID WE GET IT RIGHT?
We’ve seen that XEq is effective at proving equalities between functions (§4) and we’ve argued that

we avoid the inconsistency with funext . Things seem to work in Liquid Haskell. But: Why do things

go so wrong with funext? Does XEq really avoid funext’s issues? We give a schematic example

showing why Liquid Haskell works with XEq consistently but works with funext inconsistently.

(We give a detailed, formal model of our propositional equality in §6.)

Suppose we have two functions h and k, defined on domains dh and dk and codomains rh and rk,
respectively. Let’s also assume we have some lemma that proves, for all x in some domain dp , we
have an equality el ⋍ er , where el and er are arbitrary expressions of type {v:β | rp}.

h :: x:{α | dh} → {v:β | rh}

k :: x:{α | dk} → {v:β | rk}

lemma :: x:{α | dp} → PEq {v:β | rp} {el} {er }

We can pass these along to our XEq constructor (of §3) to form a proof that h equals k on some

domain de :
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Typing Environmennt

Γ � { XEq : ∀αβ . f : (α → β) → д : (α → β) → (x : α → PEq β{ f x}{д x}) → PEq (α → β){ f }{д}
, h : x : {|dh|} → {|rh|}, k : x : {|dk|} → {|rk|}, lemma : x : {|dp |} → PEq {|rp |}{el }{er } }

Type Checking

1.Γ ⊢ XEq :: ∀αβ . f :(α→β) → д:(α→β) → (x :α→PEq β { f x}{д x}) → PEq (α → β){ f }{д}

2.Γ ⊢ XEq @{|κα |} :: ∀β . f :({|κα |}→β) → д:({|κα |}→β) → (x :{|κα |}→PEq β { f x}{д x}) → PEq ({|κα |} → β){ f }{д}

3.Γ ⊢ XEq @{|κα |} @{|κβ |} :: f :({|κα |}→{|κβ |}) → д:({|κα |}→{|κβ |}) → (x :{|κα |}→PEq {|κβ |} { f x}{д x}) → PEq ({|κα |} → {|κβ |}){ f }{д}

4.Γ ⊢ XEq @{|κα |} @{|κβ |} h :: д : ({|κα |} → {|κβ |}) → (x : {|κα |} → PEq {|κβ |}{h x}{д x}) → PEq ({|κα |} → {|κβ |}){h}{д} Sub-H

5.Γ ⊢ XEq @{|κα |} @{|κβ |} h k :: (x : {|κα |} → PEq {|κβ |}{h x}{k x}) → PEq ({|κα |} → {|κβ |}){h}{k} Sub-K

6.Γ ⊢ XEq @{|κα |} @{|κβ |} h k lemma :: PEq ({|κα |} → {|κβ |}){h}{k} Sub-L

7.Γ ⊢ XEq @{|κα |} @{|κβ |} h k lemma :: PEq ({|κα |} → {|κβ |}){h}{k} Sub-Sub

8.Γ ⊢ XEq @{|κα |} @{|κβ |} h k lemma :: PEq ({|de |} → {|re |}){h}{k}

Subtyping Derivation Leaves

i . κα ⇒ dh

Γ ⊢ {|κα |} ⪯ {|dh|}

κα ⇒ rh ⇒ κβ

Γ,x : {|κα |} ⊢ {|rh|} ⪯ {|κβ |}

Γ ⊢ x : {|dh|} → {|rh|} ⪯ {|κα |} → {|κβ |}
Sub-H

ii . κα ⇒ dk

Γ ⊢ {|κα |} ⪯ {|dk|}

κα ⇒ rk ⇒ κβ

Γ,x : {|κα |} ⊢ {|rk|} ⪯ {|κβ |}

Γ ⊢ x : {|dk|} → {|rk|} ⪯ {|κα |} → {|κβ |}
Sub-K

iii . κα ⇒ dp

Γ ⊢ {|κα |} ⪯ {|dp |}

κα ⇒ rp ⇒ κβ

Γ,x : {|κα |} ⊢ {|rp |} ⪯ {|κβ |}

κα ⇒ κβ ⇒ rp

Γ,x : {|κα |} ⊢ {|κβ |} ⪯ {|rp |} iv . κα ⇒ el ⋍ er ⇒ h x ⋍ k x

Γ,x : {|κα |} ⊢ PEq {|rp |}{el }{er } ⪯ PEq {|κβ |}{h x}{k x}

Γ ⊢ x : {|dp |} → PEq {|rp |}{el }{er } ⪯ x : {|κα |} → PEq {|κβ |}{h x}{k x}
Sub-L

vi . de ⇒ κα

Γ ⊢ {|de |} ⪯ {|κα |}

κα ⇒ κβ ⇒ re

Γ,x : {|de |} ⊢ {|κβ |} ⪯ {|re |}

Γ ⊢ {|κα |} → {|κβ |} ⪯ {|de |} → {|re |}

v . κα ⇒ de

Γ ⊢ {|κα |} ⪯ {|de |}

κα ⇒ re ⇒ κβ

Γ,x : {|κα |} ⊢ {|re |} ⪯ {|κβ |}

Γ ⊢ {|de |} → {|re |} ⪯ {|κα |} → {|κβ |} h ⋍ k ⇒ h ⋍ k

Γ ⊢ PEq ({|κα |} → {|κβ |}){h}{k} ⪯ PEq ({|de |} → {|re |}){h}{k}
Sub-Sub

Fig. 6. Type checking XEq h k lemma. For space, we write {|d|} to mean the refined type {v : t | d}.

XEq h k lemma :: PEq ({v:α | de} → {v:β | re}) {h} {k}

When type checking this use of XEq, we need to check that the lemma equates the right expressions

(i.e., forall x . el ⋍ er implies h x ⋍ k x). Critically, type checking must also ensure that the final

equality domain (de ) is stronger than the domains for the functions (dh, dk) and for the lemma (dp ).
Liquid Haskell goes through a complex series of steps to enforce both required checks (Figure 6).

We haven’t modified Liquid Haskell’s typing rules or implementation at all; we merely defined PEq
in such a way that the existing type checking rules in Liquid Haskell implement the right checks to

soundly show extensional equality between functions.

It’s easiest to understand how type checking works from top to bottom (“Type Checking”,

Figure 6). First, we look up XEq’s type in the environment (1). Since the XEq is polymorphic, we

instantiate the type arguments with the types, {v : α | κα } (2) and {v : β | κβ } (3). (We write

{|κα |} as a short for {v : α | κα }, since we focus on the refinements assuming the Haskell types

match.) Here κα and κβ are refinement type variables; type checking will generate constraints on

them that liquid type inference will try to resolve [Rondon et al. 2008]. Next we apply each of

the arguments: h (4), k (5), and lemma (6). Each application applies standard dependent function

application, with consideration for subtyping. That is, each application (a) substitutes the applied

argument in the codomain type and (b) checks that the type of the argument is a subtype of the

function’s domain type. Application leads to the subtyping constraints Sub-H, Sub-K, and Sub-L

set off in boxes, resolved below. Now Liquid Haskell has inferred a type for the checked expression

(7). To conclude the check, it introduces the final subtype constraint Sub-Sub: the inferred type

should be a subtype of the type the user specified (8).
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The four instances of subtyping during type checking generate 13 logical implications to resolve

for the original expression to type check (“Subtyping Derivation Leaves”, Figure 6). The six purple

implications with Roman numerals place requirements on the domain; we’ll ignore the others,

which impose less interesting constraints on the functions’ codomains. The Sub-H and Sub-K

derivations require (via contravariance) that the refinement variable κα implies the refinements on

the functions’ domains, dh and dk. Similarly, the derivation Sub-L requires that κα implies the proof

domain dp . Since PEq is defined as refined type alias (§3), Sub-L also checks that the refinements

given imply the top level refinements of PEq, i.e., that the result of the lemma is sufficient to show

XEq’s precondition. The Sub-Sub derivation checks subtyping of two PEq types, by treating the

type arguments invariantly. (We mark covariant implications in red and contravariant implications

in blue.) Liquid Haskell treats checks invariantly because PEq’s definition uses its type parameter in

both positive and negative positions. Sub-Sub will ultimately require that the refinement variable

κα is equivalent to the equality domain de .
To sum up, type checking imposes the following six implications as constraints:

i . κα ⇒ dh ii . κα ⇒ dk iii . κα ⇒ dp
iv . κα ⇒ el ⋍ er ⇒ h x ⋍ k x v . κα ⇒ de vi . de ⇒ κα

Implications v and vi require the refinement variable κα to be equivalent to the equality domain

de . Given that equality, implications i–iii state that the equality domainde should imply the domains

of the functions (i and ii) and lemma (iii). Implication iv requires that the lemma’s domain implies

equality of the two functions for each argument x that satisfies the domain de . All together, these
constraints exactly capture the requirements of functional extensionality.

Naive Functional Extensionality with funext. When, in §2, we use the non-type-indexed funext

in Liquid Haskell, the typing derivation looks almost exactly the same, but one critical thing changes:

the type-indexed PEq t {el} {er } is replaced by a refined unit {v:() | el = er }. This only affects

the Sub-L and Sub-Sub derivations, which lose the red and blue parts and become:

iii ′. κα ⇒ dp

Γ ⊢ {|κα |} ⪯ {|dp |}

iv ′. κα ⇒ el = er ⇒ h x = k x

Γ,x : {|κα |} ⊢ {v : () | el = er } ⪯ {v : () | h x = k x}

Γ ⊢ x :{|dp |}→{v : () | el = er } ⪯ x :{|κα |}→{v : () | h x = k x}
Sub-L-Naive

h x = k x ⇒ h x = k x

Γ ⊢ {v : () | h x = k x} ⪯ {v : () | h x = k x}
Sub-Sub-Naive

Sub-L-Naive generates the implications iii ′ and iv ′
that are essentially the same as before. But,

Sub-Sub-Naive won’t generate any meaningful checks, because equality is just a unit type. We lost

implications v and vi! We are now left with an implication system in which the refinement variable

κα only appears in the assumptions. Since Liquid Haskell always tries to infer the most specific

refinement possible, it will find a very specific refinement for κα : false! Having inferred false

for κα , the entire use of funext trivially holds and can be used on other, nontrivial domains—with

inconsistent results.

6 A REFINEMENT CALCULUS WITH BUILT-IN TYPE-INDEXED EQUALITY
Because funext is inconsistent in Liquid Haskell (§2), we developed PEq to reason consistently

about extensional equality, using the GADT PBEq and the uninterpreted equality PEq (§3). We’re

able to prove some interesting equalities (§4) and Liquid Haskell’s type checking seems to be doing

the right thing (§5). But how do we know that our definitions suffice? Formalizing all of Liquid

Haskell is a challenge, but we can build a model to check the features we use. We formalize a core

calculus λRE with Refinement types, semantic subtyping, and type-indexed propositional Equality.
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Constants c ::= true | false | unit | (==b ) | (==(c,b))

Expressions e ::= c | x | e e | λx :τ . e | bEqb e e e | xEqx :τ→τ e e e

Values v ::= c | λx :τ . e | bEqb e e v | xEqx :τ→τ e e v

Refinements r ::= e

Basic Types b ::= Bool | ()

Types τ ::= {x :b | r } | x :τ → τ | PEqτ {e} {e}

Typing Environment Γ ::= ∅ | Γ,x : τ

Closing Substitutions θ ::= ∅ | θ ,x 7→ v

Equivalence Environments δ ::= ∅ | δ , (v,v)/x

Evaluation Contexts E ::= • | E e | v E | bEqb e e E | xEqx :τ→τ e e E

Reduction e ↪→ e

E[e] ↪→ E[e ′], if e ↪→ e ′

(λx :τ . e) v ↪→ e[v/x]
(==b ) c1 ↪→ (==(c1,b))

(==(c1,b)) c2 ↪→ c1 = c2, syntactic equality on constants

Fig. 7. Syntax and Dynamic Semantics of λRE .

λRE contains just enough to check the core interactions between refinement types and a type-

indexed propositional equality resembling our PBEq definition (§6.1). We omit plenty of important

features from Liquid Haskell (e.g., algebraic data types): our purpose here is not to develop a

complete formal model, but to check that our implementation holds together.

Using λRE ’s static semantics (§6.2), we prove several metatheorems (§6.3). Most importantly, we

define a logical relation that characterizes λRE equivalence and reflects λRE ’s propositional equality.
Propositional equivalence in λRE implies equivalence in the logical relation (Theorem 6.2); both are

reflexive, symmetric, and transitive (Theorems 6.3 and 6.4).

6.1 Syntax and Semantics of λRE

We present λRE , a core calculus with Refinement types and type-indexed Equality (Figure 7).

Expressions. λRE expressions include constants (booleans, unit, and equality operations on base

types), variables, lambda abstraction, and application. There are also two primitives to prove

propositional equality: bEqb and xEqx :τx→τ construct proofs of equality at base and function types,

respectively. Equality proofs take three arguments: the two expressions equated and a proof of their

equality; proofs at base type are trivial, of type (), but higher types use functional extensionality.
These two primitives correspond to BEq and XEq constructors of §3; we did not encode congruence

closure since it can be proved by induction on expressions, which is impossible in Haskell.

Values. The values of λRE are constants, functions, and equality proofs with converged proofs.

Types. λRE ’s basic types are booleans and unit. Basic types are refined with boolean expressions r
in refinement types {x :b | r }, which denote all expressions of base type b that satisfy the refinement

r . In addition to refinements, λRE ’s types also include dependent function types x :τx → τ with

arguments of type τx and result type τ , where τ can refer back to the argument x . Finally, types
include our propositional equality PEqτ {e1} {e2}, which denotes a proof of equality between the

two expressions e1 and e2 of type τ . We write b to mean the trivial refinement type {x :b | true}.
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[|{x :b | r }|] � {e | e ↪→∗ v∧ ⊢B e :: b ∧ r [e/x] ↪→∗ true}
[|x :τx → τ |] � {e | ∀ex ∈ [|τx |]. e ex ∈ [|τ [ex /x]|]}

[|PEqb {el } {er }|] � {e | ⊢B e :: PBEqb ∧ e ↪→∗ bEqb el er epf ∧ el ==b er ↪→
∗ true}[��PEqx :τx→τ {el } {er }

��] � {e | ⊢B e :: PBEq ⌊x :τx→τ ⌋ ∧ e ↪→∗ xEq
_
el er epf

∧ el , er ∈ [|x :τx → τ |] ∧ ∀ex ∈ [|τx |] .epf ex ∈
[��PEqτ [ex /x ] {el ex } {er ex }��]}

Fig. 8. Semantic typing: a unary syntactic logical relation interprets types.

We omit polymorphic types to avoid known and resolved metatheoretical problems [Sekiyama

et al. 2017]. Yet, xEq equality primitive is defined as a family of operators, one for each refinement

function type, capturing the essence of polymorphic function equality.

Environments. The typing environment Γ binds variables to types, the (semantic typing) closing

substitution θ binds variables to values, and the (logical relation) pending substitution δ binds

variables to pairs of equivalent values.

Runtime Semantics. The relation · ↪→ · evaluates λRE expressions using contextual, small step,

call-by-value semantics (Figure 7, bottom). The semantics are standard with bEqb and xEqx :τx→τ
evaluating proofs but not the equated terms. Let · ↪→∗ · be the reflexive, transitive closure of · ↪→ ·.

Type Interpretations. Semantic typing uses a unary logical relation to interpret types in a syntactic

term model (closed terms, Figure 8; open terms, Figure 9).

The interpretation of the base type {x :b | r } includes all expressions which yield b-value v that

satisfy the refinement, i.e., r evaluates to true onv . To decide the unrefined type of an expression we

use ⊢B e :: b (defined in §B.1). The interpretation of function types x :τx → τ is logical: it includes

all expressions that yield τ -results when applied to τx arguments. The interpretation of base-type

equalities PEqb {el } {er } includes all expressions that satisfy the basic typing (PBEqτ is the unrefined
version of PEqτ {el } {er }) and reduce to a basic equality proof whose first arguments reduce to equal

b-constants. Finally, the interpretation of the function equality type PEqx :τx→τ {el } {er } includes
all expressions that satisfy the basic typing (based on the ⌊·⌋ operator; §B.1). These expressions

reduce to a proof whose first two arguments are functions of type x :τx → τ and the third, proof

argument takes τx arguments to equality proofs of type PEqτ [ex /x ] {el ex } {er ex }. We write these

proofs as xEq
_
, since the type index does not need to be syntactically equal to the index of the type.

Constants. For simplicity, λRE constants are only the two boolean values, unit, and equality

operators for basic types. For each basic type b, we define the type indexed “computational” equality

==b . For two constants c1 and c2 of basic type b, c1 ==b c2 evaluates in one step to (==(c1,b)) c2,

which then steps to true when c1 and c2 are the same and false otherwise.
Each constant c has the type TyCon(c), as defined below.

TyCon(true) � {x :Bool | x ==Bool true}
TyCon(false) � {x :Bool | x ==Bool false}
TyCon(unit) � {x :() | x ==() unit}
TyCon(==b ) � x :b → y:b → {z:Bool | z ==Bool (x ==b y)}

Our system could of course be extended with further constants, as long as they belong in the

interpretation of their type. This requirement is formally defined by the Property 1 which, for the

four constants of our system is proved in Theorem B.1

Property 1 (Constants). c ∈ [|TyCon(c)|]
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Type checking Γ ⊢ e :: τ

Γ ⊢ e :: τ Γ ⊢ τ ⪯ τ ′

Γ ⊢ e :: τ ′
TSub

Γ ⊢ e :: {z:b | r }

Γ ⊢ e :: {z:b | z ==b e}
TSelf

Γ ⊢ c :: TyCon(c)
TCon

x : τ ∈ Γ

Γ ⊢ x :: τ
TVar

Γ ⊢ τx Γ,x : τx ⊢ e :: τ

Γ ⊢ λx :τx . e :: x :τx → τ
TLam

Γ ⊢ ex :: τx Γ ⊢ e :: x :τx → τ

Γ ⊢ e ex :: τ [ex /x]
TApp

Γ ⊢ el :: τl Γ ⊢ τl ⪯ {x :b | true}
Γ ⊢ er :: τr Γ ⊢ τr ⪯ {x :b | true}
Γ, l : τl , r : τr ⊢ e :: {x :() | l ==b r }

Γ ⊢ bEqb el er e :: PEqb {el } {er }
TEqBase

Γ ⊢ el :: τl Γ ⊢ τl ⪯ x :τx → τ
Γ ⊢ er :: τr Γ ⊢ τr ⪯ x :τx → τ Γ ⊢ x :τx → τ
Γ, l : τl , r : τr ⊢ e :: (x :τx → PEqτ {l x} {r x})

Γ ⊢ xEqx :τx→τ el er e :: PEqx :τx→τ {el } {er }
TEqFun

Well-formedness Γ ⊢ τ ⊢ Γ

⌊Γ⌋,x : b ⊢B r :: Bool

Γ ⊢ {x :b | r }
WFBase

Γ ⊢ τx Γ,x : τx ⊢ τ

Γ ⊢ x :τx → τ
WFFun

Γ ⊢ τ Γ ⊢ el :: τ Γ ⊢ er :: τ

Γ ⊢ PEqτ {el } {er }
WFEq

⊢ ∅
WFEmp

⊢ Γ Γ ⊢ τ

⊢ Γ,x : τ
WFBind

Subtyping Γ ⊢ τ ⪯ τ

∀θ ∈ [|Γ |] , [|θ · {x :b | r }|] ⊆ [|θ · {x ′:b | r ′}|]

Γ ⊢ {x :b | r } ⪯ {x ′:b | r ′}
SBase

Γ ⊢ τ ′x ⪯ τx Γ,x : τ ′x ⊢ τ ⪯ τ ′

Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′
SFun

Γ ⊢ τ ⪯ τ ′ Γ ⊢ τ ′ ⪯ τ

Γ ⊢ PEqτ {el } {er } ⪯ PEqτ ′ {el } {er }
SEq

Semantic typing and closing substitutions θ ∈ [|Γ |] Γ |= e ∈ τ

∅ ∈ [|∅|]
CEmp

v ∈ [|τ |] θ ∈ [|Γ[v/x]|]

x 7→ v,θ ∈ [|x : τ , Γ |]
CSub Γ |= e ∈ τ ⇔ ∀θ ∈ [|Γ |] , θ · e ∈ [|θ · τ |]

Fig. 9. Typing of λRE .

6.2 Static Semantics of λRE

λRE ’s static semantics comes in two parts: as typing judgments (§6.2.1) and as a binary logical

relation characterizing equivalence (§6.2.2).

6.2.1 Typing of λRE . Type checking in λRE uses three mutually recursive judgments (Figure 9):

type checking, Γ ⊢ e :: τ , for when e has type τ in Γ; well formedness, Γ ⊢ τ , for when when τ is well

formed in Γ; and subtyping, Γ ⊢ τl ⪯ τr , for when when τl is a subtype of τr in Γ.

Type Checking. Beyond the conventional rules for refinement type systems [Knowles and Flana-

gan 2010; Ou et al. 2004; Rondon et al. 2008], the interesting rules are concerned with equality

(TEqBase, TEqFun).

The rule TEqBase assigns to the expression bEqb el er e the type PEqb {el } {er }. To do so, we

guess types τl and τr that fit el and er , respectively. Both these types should be subtypes of b that are

strong enough to derive that if l : τl and r : τr , then the proof argument e has type {_:() | l ==b r }.
Our formal model allows checking of strong, selfified types (rule TSelf), but does not define an

algorithmic procedure to generate them. In Liquid Haskell, type inference [Rondon et al. 2008]
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Value equivalence relation v ∼ v :: τ ;δ

c ∼ c :: {x :b | r };δ � ⊢B c :: b ∧ δ1 · r [c/x] ↪→
∗ true ∧ δ2 · r [c/x] ↪→

∗ true
v1 ∼ v2 :: x :τx → τ ;δ � ∀v3 ∼ v4 :: τx ;δ . v1 v3 ∼ v2 v4 :: τ ;δ , (v3,v44)/x
v1 ∼ v2 :: PEqτ {el } {er };δ � δ1 · el ∼ δ2 · er :: τ ;δ

Expression equivalence relation e ∼ e :: τ ;δ

e1 ∼ e2 :: τ ;δ � e1 ↪→
∗ v1, e2 ↪→

∗ v2, v1 ∼ v2 :: τ ;δ

Open expression equivalence relation δ ∈ Γ Γ ⊢ e ∼ e :: τ

δ ∈ Γ � ∀x : τ ∈ Γ, δ1(x) ∼ δ2(x) :: τ ;δ Γ ⊢ e1 ∼ e2 :: τ � ∀δ ∈ Γ, δ1 · e1 ∼ δ2 · e2 :: τ ;δ

Fig. 10. Definition of equivalence logical relation.

automatically and algorithmically derives such strong types. We don’t encumber λRE with inference,

since, formally speaking, we can always guess any type that inference can derive.

The rule TEqFun gives the expression xEqx :τx→τ el er e type PEqx :τx→τ {el } {er }. As in TEqBase,
we guess strong types τl and τr to stand for el and er such that with l : τl and r : τr , the proof
argument e should have type x :τx → PEqτ {l x} {r x}, i.e., it should prove that l and r are

extensionally equal. We require that the index x :τx → τ is well formed as technical bookkeeping.

Well Formedness. Refinements should be booleans (WFBase); functions are treated in the usual

way (WFFun); and the propositional equality PEqτ {el } {er } is well formed when the expressions

el and er are typed at the index τ , which is also well formed (WFEq).

Subtyping. Basic types are related by set inclusion on the interpretation of those types (SBase,

and Figure 8). Concretely, for all closing substitutions (CEmp, CSub) the interpretation of the left-

hand side type should be a subset of the right-hand side type. The rule SFun implements the usual

(dependent) function subtyping. Finally, SEq reduces subtyping of equality types to subtyping of

the type indices, while the expressions to be equated remain unchanged. Even though covariant

treatment of the type index would suffice for our metatheory, we treat the type index invariantly

to be consistent with the implementation (§5) where the GADT encoding of PEq is invariant. Our

subtyping rule allows equality proofs between functions with convertible types (§4.2).

6.2.2 Equivalence Logical Relation for λRE . We characterize equivalence with a term-model binary

logical relation. We lift a relation on closed values to closed and then open expressions (Figure 10).

Instead of directly substituting in type indices, all three relations use pending substitutions δ , which
map variables to pairs of equivalent values.

Closed Values and Expressions. We read v1 ∼ v2 :: τ ;δ as saying that values v1 and v2 are related

under the type τ with pending substitutions δ . The relation is defined as a fixpoint on types, noting

that the propositional equality on a type, PEqτ {e1} {e2}, is structurally larger than the type τ .
For refinement types {x :b | r }, related values must be the same constant c . Further, this constant

should actually be a b-constant and it should actually satisfy the refinement r , i.e., substituting c for
x in r should evaluate to true under either pending substitution (δ1 or δ2). Two values of function

type are equivalent when applying them to equivalent arguments yield equivalent results. Since we

have dependent types, we record the arguments in the pending substitution for later substitution

in the codomain. Two proofs of equality are equivalent when the two equated expressions are

equivalent in the logical relation at type-index τ—equality proofs ‘reflect’ the logical relation. Since
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the equated expressions appear in the type itself, they may be open, referring to variables in the

pending substitution δ . Thus we use δ to close these expressions, using the logical relation on δ1 · el
and δ2 · er . Following the proof irrelevance notion of refinement typing, the equivalence of equality

proofs does not relate the proof terms—in fact, it doesn’t even inspect the proofs v1 and v2.

Two closed expressions e1 and e2 are equivalent on type τ with pending substitions δ , written
e1 ∼ e2 :: τ ;δ , iff they respectively evaluate to equivalent values v1 and v2.

Open Expressions. A pending substitution δ satisfies a typing environment Γ when its bindings are
relates pairs of values at the type in Γ. Two open expressions, with variables from Γ are equivalent

on type τ , written Γ ⊢ e1 ∼ e2 :: τ , iff for each δ that satisfies Γ, we have δ1 · e1 ∼ δ2 · e2 :: τ ;δ .
The expressions e1 and e2 and the type τ might refer to variables in the environment Γ. We use δ
to close the expressions eagerly, while we close the type lazily: we apply δ in the refinement and

equality cases of the closed value equivalence relation.

6.3 Metaproperties: PEq is an Equivalence Relation
Finally, we show various metaproperties of λRE . Theorem 6.1 proves soundness of syntactic typing

with respect to semantic typing. Theorem 6.2 proves that propositional equality implies equivalence

in the term model. Theorems 6.3 and 6.4 prove that both the equivalence relation and propositional

equality define equivalences, i.e., satisfy the three equality axioms. All the proofs are in Appendix B.

λRE is semantically sound: syntactically well typed programs are also semantically well typed.

Theorem 6.1 (Typing is Sound). If Γ ⊢ e :: τ , then Γ |= e ∈ τ .

The proof goes by induction on the derivation tree. Our system could not be proved sound using

purely syntactic techniques, like progress and preservation [Wright and Felleisen 1994], for two

reasons. First, and most essentially, SBase needs to quantify over all closing substitutions and

purely syntactic approaches flirt with non-monotonicity (though others have attempted syntactic

approaches in similar systems [Zalewski et al. 2020]). Second, and merely coincidentally, our

system does not enjoy subject reduction. In particular, SEq allows us to change the type index of

propositional equality, but not the term index. Why? Consider the term:

(λx :{x :Bool | true}. bEqBool x x ()) e

such that e ↪→ e ′ for some e ′. The whole application has type PEqBool {e} {e}; after we take a step,
it will have type PEqBool {e

′} {e ′}. Subject reduction demands that the latter is a subtype of the

former. We have

PEqBool {e} {e} ⇒ PEqBool {e
′} {e ′}

so we could recover subject reduction by allowing a supertype’s terms to parallel reduce (or

otherwise convert) to a subtype’s terms. Adding this condition would not be hard: the logical

relations’ metatheory already demands a variety of lemmas about parallel reduction, relegated

to supplementary material(Appendix C) to avoid distraction and preserve space for our main

contributions. We haven’t made this change because subject reduction isn’t necessary for our

purposes.

Theorem 6.2 (PEq is Sound). If Γ ⊢ e :: PEqτ {e1} {e2}, then Γ ⊢ e1 ∼ e2 :: τ .

The proof (see Theorem B.13)is a corollary of the fundamental property of the logical rela-

tion(Theorem B.22), i.e., if Γ ⊢ e :: τ then Γ ⊢ e ∼ e :: τ , which is proved in turn by induction on

the typing derivation.

Theorem 6.3 (The logical relation is an Eqivalence). Γ ⊢ e1 ∼ e2 :: τ is reflexive, symmetric,

and transitive:
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• Reflexivity: If Γ ⊢ e :: τ , then Γ ⊢ e ∼ e :: τ .
• Symmetry: If Γ ⊢ e1 ∼ e2 :: τ , then Γ ⊢ e2 ∼ e1 :: τ .
• Transitivity: If Γ ⊢ e2 :: τ , Γ ⊢ e1 ∼ e2 :: τ , and Γ ⊢ e2 ∼ e3 :: τ , then Γ ⊢ e1 ∼ e3 :: τ .

Reflexivity is also called the fundamental property of the logical relation. The other proofs go by

structural induction on τ (Theorem B.23). Transitivity requires reflexivity on e2, so we also assume

that Γ ⊢ e2 :: τ .

Theorem 6.4 (PEq is an Eqivalence). PEqτ {e1} {e2} is reflexive, symmetric, and transitive on

equable types. That is, for all τ that do not contain equalities themselves:

• Reflexivity: If Γ ⊢ e :: τ , then there exists v such that Γ ⊢ v :: PEqτ {e} {e}.
• Symmetry: If Γ ⊢ v12 :: PEqτ {e1} {e2}, then there exists v21 such that Γ ⊢ v21 :: PEqτ {e2} {e1}.

• Transitivity: If Γ ⊢ v12 :: PEqτ {e1} {e2} and Γ ⊢ v23 :: PEqτ {e2} {e3}, then there exists v13 such

that Γ ⊢ v13 :: PEqτ {e1} {e3}.

The proofs go by induction on τ (Theorem B.24). Reflexivity requires us to generalize the inductive

hypothesis to generate appropriate τl and τr for the PEq proofs.

7 RELATEDWORK
Functional Extensionality and Subtyping with an SMT Solver. F

∗
also uses a type-indexed funext

axiom after having run into similar unsoundness issues [FStarLang 2018]. Their extensionality

axiommakes a more roundabout connection with SMT: function equality uses ==, a proof-irrelevant,

propositional Leibniz equality. They assume that their Leibniz equality coincides with SMT equality.

Liquid Haskell can’t just copy F
∗
: there are no dependent, inductive type definitions, nor a dedicated

notion of propositions. Our PEq GADT approximates F
∗
’s approach, with different compromises.

Dafny’s SMT encoding axiomatizes extensionality for data, but not for functions [Leino 2012].

Function equality is utterable but neither provable nor disprovable in their encoding into Z3.

Ou et al. [2004] introduce selfification, which assigns singleton types using equality (as in our

TSelf rule). SAGE assigns selfified types to all variables, implying equality on functions [Knowles

et al. 2006]. Dminor avoids the question: it lacks first-class functions [Bierman et al. 2012].

Extensionality in Dependent Type Theories. Functional extensionality (funext) has a rich history

of study. Martin-Löf type theory comes in a decidable, intensional flavor (ITT) [Martin-Löf 1975] as

well as an undecidable, extensional one (ETT) [Martin-Löf 1984]. NuPRL implements ETT [Constable

et al. 1986], while Coq and Agda implement ITT [2008; 2020]. Lean’s quotient-based reasoning can

prove funext [de Moura et al. 2015]. Extensionality axioms are independent of the rules of ITT;

funext is a common axiom, but is not consistent in every model of type theory [von Glehn 2014].

Hofmann [1996] shows that ETT is a conservative but less computational extension of ITT with

funext and UIP. Pfenning [2001] and Altenkirch and McBride [2006] try to reconcile ITT and ETT.

Dependent type theories often care about equalities between equalities, with axioms like UIP (all

identity proofs are the same), K (all identity proofs are refl), and univalence (identity proofs are

isomorphisms, and so not the same). If we allowed equalities between equalities, we could add UIP.

Our propositional equality isn’t exactly Leibniz equality, so axiom K would be harder to encode.

Zombie’s type theory uses an adaptation of a congruence closure algorithm to automatically

reason about equality [Sjöberg and Weirich 2015]. Zombie can do some reasoning about equalities

on functions but cannot show equalities based on bound variables. Zombie is careful to omit a

λ-congruence rule, which could be used to prove funext, “which is not compatible with [their]

‘very heterogeneous’ treatment of equality” [Ibid., §9].

Cubical type theory offers alternatives to our propositional equality [Sterling et al. 2019]. Such

approaches may play better with F
∗
’s approach using dependent, inductive types than the ‘flatter’
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approach we used for Liquid Haskell. Univalent systems like cubical type theory get funext ‘for
free’—that is, for the price of the univalence axiom or of cubical foundations.

Classy Induction: Inductive Proofs Using Typeclasses. We used ‘classy induction’ to prove metaprop-

erties of PEq inside Liquid Haskell (§3.3), using ad-hoc polymorphism and general instances to

generate proofs that ‘cover’ some class of types. We did not invent classy induction—it is a folklore

technique that we named. We have seen five independent uses of “classy induction” in the litera-

ture [Boulier et al. 2017; Dagand et al. 2018; Guillemette and Monnier 2008; Tabareau et al. 2019;

Weirich 2017].

Any typeclass system that accommodates ad-hoc polymorphism and a notion of proof can use

classy induction. Sozeau [2008] generates proofs of nonzeroness using something akin to classy

induction, though it goes by induction on the operations used to build up arithmetic expressions

in the (dependent!) host language (§6.3.2); he calls this the ‘programmation logique’ aspect of

typeclasses. Instance resolution is characterized as proof search over lemmas (§7.1.3). Sozeau and

Oury [2008] introduce typeclasses to Coq; their system can do induction by typeclasses, but they do

not demonstrate the idea in the paper. Earlier work on typeclasses focused on overloading [Nipkow

and Prehofer 1993; Nipkow and Snelting 1991; Wadler and Blott 1989], with no notion of classy

induction even in settings with proofs [Wenzel 1997].

8 CONCLUSION
In a refinement type system with subtyping a naive encoding of funext is inconsistent. We

explained the inconsistency by examples (that proved false) and by standard type checking

(where the equality domain is inferred as false). We implemented a type-indexed propositional

equality that avoids this inconsistency and validated it with a model calculus. Several case studies

demonstrate the range, effectiveness, and power of our work.
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Γ(funext) = ∀a b .Eq b ⇒ f : (a → b) → д : (a → b) → (x : a → { f x == д x}) → { f ⋍ д}

Γ ⊢ funext :: ∀a b .Eq b ⇒ f : (a → b) → д : (a → b) → (x : a → { f x == д x}) → { f ⋍ д}

Γ ⊢ funext @{|κα |} :: ∀b .Eq b ⇒ f : ({|κα |} → b) → д : ({|κα |} → b) → (x : {|κα |} → { f x == д x}) → { f ⋍ д}

Γ ⊢ funext @{|κα |} @{|κβ |} :: Eq {|κβ |} ⇒ f : ({|κα |} → {|κβ |}) → д : ({|κα |} → {|κβ |}) → (x : {|κα |} → { f x == д x}) → { f ⋍ д}
Γ(d) = Eq α

Γ ⊢ d :: Eq α Γ ⊢ Eq α ⪯ Eq {|κβ |}
Sub-D

Γ ⊢ funext @{|κα |} @{|κβ |} d :: f : ({|κα |} → {|κβ |}) → д : ({|κα |} → {|κβ |}) → (x : {|κα |} → { f x == д x}) → { f ⋍ д}
Γ(h) = x : {|dh|} → {|rh|}

Γ ⊢ h :: x : {|dh|} → {|rh|}

. . .

Γ ⊢ x : {|dh|} → {|rh|} ⪯ {|κα |} → {|κβ |}
Sub-H

Γ ⊢ funext @{|κα |} @{|κβ |} d h :: д : ({|κα |} → {|κβ |}) → (x : {|κα |} → {h x == д x}) → {h ⋍ д}
Γ(k) = x : {|dk|} → {|rk|}

Γ ⊢ k :: x : {|dk|} → {|rk|}

. . .

Γ ⊢ x : {|dk|} → {|rk|} ⪯ {|κα |} → {|κβ |}
Sub-K

Γ ⊢ funext @{|κα |} @{|κβ |} d h k :: (x : {|κα |} → {h x == k x}) → {h ⋍ k}
Γ(lemma) = x : {|dp |} → {p}

Γ ⊢ lemma :: x : {|dp |} → {p}

. . .

Γ ⊢ x : {|dp |} → {p} ⪯ x : {|κα |} → {h x == k x}
Sub-L

Γ ⊢ funext @{|κα |} @{|κβ |} d h k lemma :: {h ⋍ k}

κα ⇒ dh

Γ ⊢ {|κα |} ⪯ {v : α | dh}

κα ⇒ rh ⇒ κβ

Γ,x : {|κα |} ⊢ {v : β | rh} ⪯ {|κβ |}

Γ ⊢ x : {|dh|} → {|rh|} ⪯ {|κα |} → {|κβ |}
Sub-H

κα ⇒ dk

Γ ⊢ {|κα |} ⪯ {v : α | dk}

κα ⇒ rk ⇒ κβ

Γ,x : {|κα |} ⊢ {v : β | rk} ⪯ {|κβ |}

Γ ⊢ x : {|dk|} → {|rk|} ⪯ {|κα |} → {|κβ |}
Sub-K

κα ⇒ true

Γ ⊢ {|κα |} ⪯ α

κα ⇒ p ⇒ h x == k x

Γ,x : {|κα |} ⊢ {p} ⪯ {h x == k x}

Γ ⊢ x : {|dp |} → {p} ⪯ x : {|κα |} → {h x == k x}
Sub-L

Fig. 11. Complete type checking of naive extensionality in theoremEq.
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Expressions e ::= as in λRE

Types t ::= Bool | () | PBEqtee | t → t

Typing Environment G ::= ∅ | G,x : t

Basic Type checking G ⊢B e :: t

G ⊢B c :: ⌊TyCon(c)⌋
BTCon

x : t ∈ G

G ⊢B x :: t
BTVar

G ⊢B e :: tx → t G ⊢B ex :: tx

G ⊢B e ex :: t
BTApp

G,x : ⌊τx ⌋ ⊢B e :: t

G ⊢B λx :τx . e :: ⌊τx ⌋ → t
BTLam

G ⊢B e :: ()
G ⊢B e1 :: b G ⊢B e2 :: b

G ⊢B bEqb e1 e2 e :: PBEqbe1e2

BTEqBase

G ⊢B e :: ()
G ⊢B e1 :: ⌊τx → τ ⌋ G ⊢B e2 :: ⌊τx → τ ⌋

G ⊢B xEqx :τx→τ e1 e2 e :: PBEq ⌊τx→τ ⌋e1e2

BTEqFun

Fig. 12. Syntax and Typing of λE .

B PROOFS AND DEFINITIONS FOR METATHEORY
In this section we provide proofs and definitions ommitted from §6.

B.1 Base Type Checking
For completeness, we defined λE , the unrefined version of λRE , that ignores the refinements on

basic types and the expression indices from the typed equality.

The function ⌊·⌋ is defined to turn λRE types to their unrefined counterparts.

⌊Bool⌋ � Bool
⌊()⌋ � ()

⌊PEqτ {e1} {e2}⌋ � PBEq ⌊τ ⌋

⌊{v :b | r }⌋ � b
⌊x :τx → τ ⌋ � ⌊τx ⌋ → ⌊τ ⌋

Figure 12 defines the syntax and typing of λE that we use to define type denotations of λRE .

B.2 Constant Property
Theorem B.1. For the constants c = true, false, unit, and ==b , Property 1 holds, i.e., c ∈

[|TyCon(c)|].

Proof. Below are the proofs for each of the four constants.

• e ≡ true and e ∈ [|{x :Bool | x ==Bool true}|]. We need to prove the below three require-

ments of membership in the interpretation of basic types:

– e ↪→∗ v , which holds because true is a value, thus v = true;
– ⊢B e :: Bool, which holds by the typing rule BTCon; and

– (x ==Bool true)[e/x] ↪→
∗ true, which holds because

(x ==Bool true)[e/x] = true ==Bool true
↪→ (==(true,Bool)) true
↪→ true = true
= true
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• e ≡ false and e ∈ [|{x :Bool | x ==Bool false}|]. We need to prove the below three require-

ments of membership in the interpretation of basic types:

– e ↪→∗ v , which holds because false is a value, thus v = false;
– ⊢B e :: Bool, which holds by the typing rule BTCon; and

– (x ==Bool false)[e/x] ↪→
∗ true, which holds because

(x ==Bool false)[e/x] = false ==Bool false
↪→ (==(false,Bool)) false
↪→ false = false
= true

• e ≡ unit and e ∈
[��{x :() | x ==() unit}

��]
. We need to prove the below three requirements

of membership in the interpretation of basic types:

– e ↪→∗ v , which holds because unit is a value, thus v = unit;
– ⊢B e :: (), which holds by the typing rule BTCon; and

– (x ==() unit)[e/x] ↪→
∗ true, which holds because

(x ==() unit)[e/x] = unit ==() unit
↪→ (==(unit,())) unit
↪→ unit = unit
= true

• ==b∈ [|x :b → y:b → {z:Bool | z ==Bool (x ==b y)}|]. By the definition of interpretation of

function types, we fix ex , ey ∈ [|b |] andwe need to prove that e ≡ ex ==b ey ∈
[��({z:Bool | z ==Bool (x ==b y)})[ex/x][ey/y]

��]
.

We prove the below three requirements of membership in the interpretation of basic types:

– e ↪→∗ v , which holds because

e = ex ==b ey
↪→∗ vx ==b ey because ex ∈ [|b |]
↪→∗ vx ==b vy because ey ∈ [|b |]
↪→ (==(vx ,b)) vy
↪→ vx = vy
= v with v = true or v = false

– ⊢B e :: Bool, which holds by the typing rule BTCon and because ex , ey ∈ [|b |] thus
⊢B ex :: b and ⊢B ey :: b; and
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– (z ==Bool (x ==b y))[e/z][ex/x][ey/y] ↪→
∗ true. Since ex , ey ∈ [|b |] both expressions

evaluate to values, say ex ↪→
∗ vx and ey ↪→

∗ vy which holds because

(z ==Bool (x ==b y))[e/z][ex/x][ey/y] = e ==Bool (ex ==b ey )
= (ex ==b ey ) ==Bool (ex ==b ey )
↪→∗ (vx ==b ey ) ==Bool (ex ==b ey ) since ex ↪→

∗ vx
↪→∗ (vx ==b vy ) ==Bool (ex ==b ey ) since ey ↪→

∗ vy
↪→ ((==(vx ,b)) vy ) ==Bool (ex ==b ey )
↪→ (vx = vy ) ==Bool (ex ==b ey )
↪→∗ (vx = vy ) ==Bool (vx ==b ey ) since ex ↪→

∗ vx
↪→∗ (vx = vy ) ==Bool (vx ==b vy ) since ey ↪→

∗ vy
↪→ (vx = vy ) ==Bool ((==(vx ,b)) vy )
↪→ (vx = vy ) ==Bool (vx = vy )
↪→ (vx = vy ) ==Bool (vx = vy )
↪→ ((==((vx=vy ),Bool)) (vx = vy )
↪→ (vx = vy ) = (vx = vy )
= true

□

B.3 Type Soundness
Theorem B.2 (Semantic soundness). If Γ ⊢ e :: τ then Γ |= e ∈ τ .

Proof. By induction on the typing derivation.

TSub By inversion of the rule we have

(1) Γ ⊢ e :: τ ′

(2) Γ ⊢ τ ′ ⪯ τ
By IH on (1) we have

(3) Γ |= e ∈ τ ′

By Theorem B.6 and (2) we have

(4) Γ ⊢ τ ′ ⊆ τ
By (3), (4), and the definition of subsets we directly get Γ |= e ∈ τ .

TSelf Assume Γ ⊢ e :: {z:b | z ==b e}. By inversion we have

(1) Γ ⊢ e :: {z:b | r }
By IH we have

(2) Γ |= e ∈ {z:b | r }
We fix θ ∈ [|Γ |]. By the definition of semantic typing we get

(3) θ · e ∈ [|θ · {z:b | r }|]
By the definition of denotations on basic types we have

(4) θ · e ↪→∗ v
(5) ⊢B θ · e :: b
(6) θ · r [θ · e/z] ↪→∗ true
Since θ contains values, by the definition of ==b we have

(7) θ · e ==b θ · e ↪→∗ true
Thus

(8) θ · (z ==b e)[θ · e/z] ↪→∗ true
By (4), (5), and (8) we have

(9) θ · e ∈ [|θ · {z:b | z ==b e}|]
Thus, Γ |= e ∈ {z:b | z ==b e}.
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TCon This case holds exactly because of Property B.1.

TVar This case holds by the definition of closing substitutions.

TLam Assume Γ ⊢ λx :τx . e :: x :τx → τ . By inversion of the rule we have Γ,x : τx ⊢ e :: τ . By IH we

get Γ,x : τx |= e ∈ τ .
We need to show that Γ |= λx :τx . e ∈ x :τx → τ . Which, for some θ ∈ [|Γ |] is equivalent to
λx :θ · τx . θ · e ∈ [|x :θ · τx → θ · τ |].
We pick a random ex ∈ [|θ · τx |] thus we need to show that θ · e[ex/x] ∈ [|θ · τ [ex/x]|]. By
Lemma B.3, there exists vx so that ex ↪→

∗ vx and vx ∈ [|τx |]. By the inductive hypothesis,

θ · e[vx/x] ∈ [|θ · τ [vx/x]|]. By Lemma B.4, θ · e[ex/x] ∈ [|θ · τ [ex/x]|], which concludes our

proof.

TApp Assume Γ ⊢ e ex :: τ [ex/x]. By inversion we have

(1) Γ ⊢ e :: x :τx → τ
(2) Γ ⊢ ex :: τx
By IH we get

(3) Γ |= e ∈ x :τx → τ
(4) Γ |= ex ∈ τx
We fix θ ∈ [|Γ |]. By the definition of semantic types

(5) θ · e ∈ [|θ · x :τx → τ |]
(6) θ · ex ∈ [|θ · τx |]
By (5), (6), and the definition of semantic typing on functions:

(7) θ · e ex ∈ [|θ · τ [ex/x]|]
Which directly leads to the required Γ |= e ex ∈ τ [ex/x]

TEqBase Assume Γ ⊢ bEqb el er e :: PEqb {el } {er }. By inversion we get:

(1) Γ ⊢ el :: τl
(2) Γ ⊢ er :: τr
(3) Γ ⊢ τl ⪯ {x :b | true}
(4) Γ ⊢ τr ⪯ {x :b | true}
(5) Γ, r : τr , l : τl ⊢ e :: {x :() | l ==b r }
By IH we get

(4) Γ |= el ∈ τl
(5) Γ |= er ∈ τr
(6) Γ, r : τr , l : τl |= e ∈ {x :() | l ==b r }
We fix θ ∈ [|Γ |]. Then (4) and (5) become

(7) θ · el ∈ [|θ · τl |]
(8) θ · er ∈ [|θ · τr |]
(9) Γ |= er ∈ τr
(10) Γ, r : τr , l : τl |= e ∈ {x :() | l ==b r }

Assume

(11) θ · el ↪→
∗ vl

(12) θ · er ↪→
∗ vr

By (7), (8), (11), (12), and Lemma B.3 we get

(13) vl ∈ [|θ · τl |]
(14) vr ∈ [|θ · τr |]

By (10), (11), and (12) we get

(15) vl ==b vr ↪→
∗ true

By (11), (12), (15), ane Lemma B.5 we have

(16) θ · el ==b θ · er ↪→
∗ true

By (1-5) we get:



Functional Extensionality for Refinement Types 35

(17) ⊢B θ · bEqb el er e :: PBEqb
Trivially, with zero evaluation steps we have:

(18) θ · bEqb el er e ↪→
∗ bEqb (θ · el ) (θ · el ) (θ · e)

By (16), (17), (18) and the definition of semantic types on basic equality types we have

(19) θ · bEqb el er e ∈ [|θ · PEqb {el } {er }|]
Which leads to the required Γ |= bEqb el er e ∈ PEqb {el } {er }.

TEqFun Assume Γ ⊢ xEqx :τx→τ el er e :: PEqx :τx→τ {el } {er }. By inversion we have

(1) Γ ⊢ el :: τl
(2) Γ ⊢ er :: τr
(3) Γ ⊢ τl ⪯ x :τx → τ
(4) Γ ⊢ τr ⪯ x :τx → τ
(5) Γ, r : τr , l : τl ⊢ e :: (x :τx → PEqτ {l x} {r x})
(6) Γ ⊢ x :τx → τ
By IH and Theorem B.6 we get

(7) Γ |= el ∈ τl
(8) Γ |= er ∈ τr
(9) Γ ⊢ τl ⊆ x :τx → τ
(10) Γ ⊢ τr ⊆ x :τx → τ
(11) Γ, r : τr , l : τl |= e ∈ (x :τx → PEqτ {l x} {r x})

By (1-5) we get

(12) ⊢B θ · xEqx :τx→τ el er e :: PBEq ⌊θ ·(x :τx→τ )⌋
Trivially, by zero evaluation steps, we get

(13) θ · xEqx :τx→τ el er e ↪→
∗ xEqx :θ ·τx→θ ·τ (θ · el ) (θ · er ) (θ · e)

By (7-10) we get

(14) θ · el ,θ · er ∈ [|θ · x :τx → τ |]
By (7), (8), (11), the definition of semantic types on functions, and Lemmata B.3 and B.4

(similar to the previous case) we have

– ∀ex ∈ [|τx |] .e ex ∈
[��PEqτ [ex /x ] {el ex } {er ex }��]

By (12), (13), (14), and (15) we get

(19) θ · xEqx :τx→τ el er e ∈
[��θ · PEqx :τx→τ {el } {er }

��]
Which leads to the required Γ |= xEqx :τx→τ el er e ∈ PEqx :τx→τ {el } {er }.

□

Lemma B.3. If e ∈ [|τ |], then e ↪→∗ v and v ∈ [|τ |].

Proof. By structural induction of the type τ . □

Lemma B.4. If ex ↪→
∗ vx and e[vx/x] ∈ [|τ [vx/x]|], then e[ex/x] ∈ [|τ [ex/x]|].

Proof. We can use parallel reductions (of §C) to prove that if e1 ⇒ e2, then (1) [|τ [e1/x]|] =
[|τ [e2/x]|] and (2) e1 ∈ [|τ |] iff e2 ∈ [|τ |]. The proof directly follows by these two properties. □

Lemma B.5. If ex ↪→
∗ e ′x and e[e ′x/x] ↪→

∗ c , then e[ex/x] ↪→
∗ c .

Proof. As an instance of Corollary C.17. □

We define semantic subtyping as follows: Γ ⊢ τ ⊆ τ ′ iff ∀θ ∈ [|Γ |] . [|θ · τ |] ⊆ [|θ · τ ′ |].

Theorem B.6 (Subtyping semantic soundness). If Γ ⊢ τ ⪯ τ ′ then Γ ⊢ τ ⊆ τ ′.

Proof. By induction on the derivation tree:
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SBase Assume Γ ⊢ {x :b | r } ⪯ {x ′
:b | r ′}. By inversion ∀θ ∈ [|Γ |] , [|θ · {x :b | r }|] ⊆ [|θ · {x ′

:b | r ′}|],
which exactly leads to the required.

SFun Assume Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′. By inversion

(1) Γ ⊢ τ ′x ⪯ τx
(2) Γ,x : τ ′x ⊢ τ ⪯ τ ′

By IH

(3) Γ ⊢ τ ′x ⊆ τx
(4) Γ,x : τ ′x ⊢ τ ⊆ τ ′

We fix θ ∈ Γ. We pick e . We assume e ∈ [|θ · x :τx → τ |] and we will show that e ∈[��θ · x :τ ′x → τ ′
��]
. By assumption

(5) ∀ex ∈ [|θ · τx |]. e ex ∈ [|θ · τ [ex/x]|]
We need to show ∀ex ∈

[��θ · τ ′x
��] . e ex ∈ [|θ · τ ′[ex/x]|]. We fix ex . By (3), if ex ∈

[��θ · τ ′x
��]
, then

ex ∈ [|θ · τx |] and (5) applies, so e ex ∈ [|θ · τ [ex/x]|], which by (4) gives e ex ∈ [|θ · τ ′[ex/x]|].
Thus, e ∈

[��θ · x :τ ′x → τ ′
��]
. This leads to [|θ · x :τx → τ |] ⊆

[��θ · x :τ ′x → τ ′
��]
, which by defini-

tion gives semantic subtyping: Γ ⊢ x :τx → τ ⊆ x :τ ′x → τ ′.
SEq Assume Γ ⊢ PEqτi {el } {er } ⪯ PEqτ ′i {el } {er }. We split cases on the structure of τi .

– If τi is a basic type, then τi is trivially refined to true. Thus, τi = τ
′
i = b and for each θ ∈ Γ,

[|θ · PEqτ {el } {er }|] = [|θ · PEqτ ′ {el } {er }|], thus set inclusion reduces to equal sets.

– If τi is a function type, thus Γ ⊢ PEqx :τx→τ {el } {er } ⪯ PEqx :τ ′x→τ ′ {el } {er }
By inversion

(1) Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′

(2) Γ ⊢ x :τ ′x → τ ′ ⪯ x :τx → τ
By inversion on (1) and (2) we get

(3) Γ ⊢ τ ′x ⪯ τx
(4) Γ,x : τ ′x ⊢ τ ⪯ τ ′

(5) Γ,x : τx ⊢ τ ′ ⪯ τ
By IH on (1) and (3) we get

(6) Γ ⊢ x :τx → τ ⊆ x :τ ′x → τ ′

(7) Γ ⊢ τ ′x ⊆ τx
We fix θ ∈ Γ and some e . If e ∈

[��θ · PEqx :τx→τ {el } {er }
��]
we need to show that e ∈[��θ · PEqx :τ ′x→τ ′ {el } {er }

��]
. By the assumption we have

(8) ⊢B e :: PBEq ⌊θ ·(x :τx→τ )⌋
(9) e ↪→∗ xEq

_
(θ · el ) (θ · er ) epf

(10) (θ · el ), (θ · er ) ∈ [|θ · (x :τx → τ )|]
(11) ∀ex ∈ [|θ · τx |] .epf ex ∈

[��PEqθ ·(τ [ex /x ]) {(θ · el ) ex } {(θ · er ) ex }
��]

Since (8) only depends on the structure of the type index, we get

(12) ⊢B e :: PBEq ⌊θ ·(x :τ ′x→τ ′)⌋
By (6) and (10) we get

(13) (θ · el ), (θ · er ) ∈
[��θ · (x :τ ′x → τ ′)

��]
By (4), (5), LemmaB.7, the rule SEq and the IH,we get that

[��PEqθ ·(τ [ex /x ]) {(θ · el ) ex } {(θ · er ) ex }
��] ⊆[��PEqθ ·(τ ′[ex /x ]) {(θ · el ) ex } {(θ · er ) ex }

��]
. By which, (11), (7), and reasoning similar to the

SFun case, we get

(14) ∀ex ∈
[��θ · τ ′x

��] .epf ex ∈
[��PEqθ ·(τ ′[ex /x ]) {(θ · el ) ex } {(θ · er ) ex }

��]
By (12), (9), (13), and (14) we conclude that e ∈

[��θ · PEqx :τ ′x→τ ′ {el } {er }
��]
, thus Γ ⊢ PEqx :τx→τ {el } {er } ⊆

PEqx :τ ′x→τ ′ {el } {er }.

□



Functional Extensionality for Refinement Types 37

Lemma B.7 (Strengthening). If Γ1 ⊢ τ1 ⪯ τ2, then:

(1) If Γ1,x : τ2, Γ2 ⊢ e :: τ then Γ1,x : τ1, Γ2 ⊢ e :: τ .
(2) If Γ1,x : τ2, Γ2 ⊢ τ ⪯ τ ′ then Γ1,x : τ1, Γ2 ⊢ τ ⪯ τ ′.
(3) If Γ1,x : τ2, Γ2 ⊢ τ then Γ1,x : τ1, Γ2 ⊢ τ .
(4) If ⊢ Γ1,x : τ2, Γ2 then ⊢ Γ1,x : τ1, Γ2.

Proof. The proofs go by induction. Only the TVar case is insteresting; we use TSub and our

assumption. □

Lemma B.8 (Semantic typing is closed under parallel reduction in expressions). If e1 ⇒∗

e2, then e1 ∈ [|τ |] iff e2 ∈ [|τ |].

Proof. By induction on τ , using parallel reduction as a bisimulation (Lemma C.5 and Corol-

lary C.15). □

Lemma B.9 (Semantic typing is closed under parallel reduction in types). If τ1 ⇒∗ τ2

then [|τ1 |] = [|τ2 |].

Proof. By induction on τ1 (which necessarily has the same shape as τ2). We use parallel reduction

as a bisimulation (Lemma C.5 and Corollary C.15). □

Lemma B.10 (Parallel reducing types are eqal). If Γ ⊢ τ1 and Γ ⊢ τ2 and τ1 ⇒∗ τ2 then

Γ ⊢ τ1 ⪯ τ2 and Γ ⊢ τ1 ⪯ τ2.

Proof. By induction on the parallel reduction sequence; for a single step, by induction on τ1

(which must have the same structure as τ2). We use parallel reduction as a bisimulation (Lemma C.5

and Corollary C.15). □

Lemma B.11 (Regularity). (1) If Γ ⊢ e :: τ then ⊢ Γ and Γ ⊢ τ .
(2) If Γ ⊢ τ then ⊢ Γ.
(3) If Γ ⊢ τ1 ⪯ τ2 then ⊢ Γ and Γ ⊢ τ1 and Γ ⊢ τ2.

Proof. By a big ol’ induction. □

Lemma B.12 (Canonical forms). If Γ ⊢ v :: τ , then:

• If τ = {x :b | e}, then v = c such that TyCon(c) = b and Γ ⊢ TyCon(c) ⪯ {x :b | e}.
• If τ = x :τx → τ ′, then v = TLamxτ ′xe such that Γ ⊢ τx ⪯ τ ′x and Γ,x : τ ′x ⊢ e :: τ ′′ such that

τ ′′ ⊢ τ ′ ⪯ .
• If τ = PEqb {el } {er } then v = bEqb el er vp such that Γ ⊢ el :: τl and Γ ⊢ er :: τr (for some τl
and τr that are refinements of b) and Γ, r : τr , l : τl ⊢ vp :: {x :() | l ==b r }.

• If τ = PEqx :τx→τ ′ {el } {er } then v = xEqx :τ ′x→τ ′′ el er vp such that Γ ⊢ τx ⪯ τ ′x and

Γ,x : τx ⊢ τ ′′ ⪯ τ ′ and Γ ⊢ el :: τl and Γ ⊢ er :: τr (for some τl and τr that are subtypes of
x :τ ′x → τ ′′) and Γ, r : τr , l : τl ⊢ vp :: x :τ ′x → PEqτ ′′ {el x} {er x}.

B.4 The Binary Logical Relation
Theorem B.13 (EqRT soundness). If Γ ⊢ e :: PEqτ {e1} {e2}, then Γ ⊢ e1 ∼ e2 :: τ .

Proof. By Γ ⊢ e :: PEqτ {e1} {e2} and the Fundamental Property B.22 we have Γ ⊢ e ∼ e ::

PEqτ {e1} {e2}. Thus, for a fixed δ ∈ Γ, δ1 · e ∼ δ2 · e :: PEqτ {e1} {e2};δ . By the definition of the

logical relation for EqRT, we have δ1 · e1 ∼ δ2 · e2 :: τ ;δ . So, Γ ⊢ e1 ∼ e2 :: τ . □

Lemma B.14 (LR respects subtyping). If Γ ⊢ e1 ∼ e2 :: τ and Γ ⊢ τ ⪯ τ ′, then Γ ⊢ e1 ∼ e2 :: τ ′.

Proof. By induction on the derivation of the subtyping tree.
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SBase By assumption we have

(1) Γ ⊢ e1 ∼ e2 :: {x :b | r }
(2) Γ ⊢ {x :b | r } ⪯ {x ′

:b | r ′}
By inversion on (2) we get

(3) ∀θ ∈ [|Γ |] , [|θ · {x :b | r }|] ⊆ [|θ · {x ′
:b | r ′}|]

We fix δ ∈ Γ. By (1) we get

(4) δ1 · e1 ∼ δ2 · e2 :: {x :b | r };δ
By the definition of logical relations:

(5) δ1 · e1 ↪→
∗ v1

(6) δ2 · e2 ↪→
∗ v2

(7) v1 ∼ v2 :: {x :b | r };δ
By (7) and the definition of the logical relation on basic types we have

(8) v1 = v2 = c
(9) ⊢B c :: b
(10) δ1 · r [c/x] ↪→

∗ true
(11) δ2 · r [c/x] ↪→

∗ true
By (3), (10) and (11) become

(12) δ1 · r
′[c/x ′] ↪→∗ true

(13) δ2 · r
′[c/x ′] ↪→∗ true

By (8), (9), (12), and (13) we get

(14) v1 ∼ v2 :: {x ′
:b | r ′};δ

By (5), (6), and (14) we have

(15) δ1 · e1 ∼ δ2 · e2 :: {x ′
:b | r ′};δ

Thus, Γ ⊢ e1 ∼ e2 :: {x ′
:b | r ′}.

SFun By assumption:

(1) Γ ⊢ e1 ∼ e2 :: x :τx → τ
(2) Γ ⊢ x :τx → τ ⪯ x :τ ′x → τ ′

By inversion of the rule (2)

(3) Γ ⊢ τ ′x ⪯ τx
(4) Γ,x : τ ′x ⊢ τ ⪯ τ ′

We fix δ ∈ Γ. By (1) and the definition of logical relation

(5) δ1 · e1 ↪→
∗ v1

(6) δ2 · e2 ↪→
∗ v2

(7) v1 ∼ v2 :: x :τx → τ ;δ
We fix v ′

1
and v ′

2
so that

(8) v ′
1
∼ v ′

2
:: τ ′x ;δ

By (8) and the definition of logical relations, since the values are idempotent under substitution,

we have

(9) Γ ⊢ v ′
1
∼ v ′

2
:: τ ′x

By (9) and inductive hypothesis on (3) we have

(10) Γ ⊢ v ′
1
∼ v ′

2
:: τx

By (10), idempotence of values under substitution, and the definition of logical relations, we

have

(11) v ′
1
∼ v ′

2
:: τx ;δ

By (7), (11), and the definition of logical relations on function values:

(12) v1 v
′
1
∼ v2 v

′
2

:: τ ;δ , (v ′
1
,v ′

2
)/x

By (9), (12), and the definition of logical relations we have

(12) Γ,x : τ ′x ⊢ v1 v
′
1
∼ v2 v

′
2

:: τ
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By (12) and inductive hypothesis on (4) we have

(13) Γ,x : τ ′x ⊢ v1 v
′
1
∼ v2 v

′
2

:: τ ′

By (8), (13), and the definition of logical relations, we have

(14) v1 v
′
1
∼ v2 v

′
2

:: τ ′;δ , (v ′
1
,v ′

2
)/x

By (8), (14), and the definition of logical relations, we have

(15) v1 ∼ v2 :: x :τ ′x → τ ′;δ
By (5), (6), and (15), we get

(16) δ1 · e1 ∼ δ2 · e2 :: x :τ ′x → τ ′;δ
So, Γ ⊢ e1 ∼ e2 :: x :τ ′x → τ ′.

SEq By hypothesis:

(1) Γ ⊢ e1 ∼ e2 :: PEqτ {el } {er }
(2) Γ ⊢ PEqτ {el } {er } ⪯ PEqτ ′ {el } {er }
We fix δ ∈ Γ. By (1)

(3) δ1 · e1 ∼ δ2 · e2 :: PEqτ {el } {er };δ
By (3) and the definition of logical relations.

(4) δ1 · e1 ↪→
∗ v1

(5) δ2 · e2 ↪→
∗ v2

(6) v1 ∼ v2 :: PEqτ {el } {er };δ
By (6) and the definition of logical relations

(7) δ1 · el ∼ δ2 · er :: τ ;δ
By (7) and the definition of logical relations.

(8) Γ ⊢ el ∼ er :: τ
By inversion on (2)

(9) Γ ⊢ τ ⪯ τ ′

(10) Γ ⊢ τ ′ ⪯ τ
By (8) and inductive hypothesis on (9)

(11) Γ ⊢ el ∼ er :: τ ′

Thus,

(12) δ1 · el ∼ δ2 · er :: τ ′;δ
By (12), (4), (5), and determinism of operational semantics:

(12) v1 ∼ v2 :: PEqτ ′ {el } {er };δ
By (4), (5), and (13)

(14) δ1 · e1 ∼ δ2 · e2 :: PEqτ ′ {el } {er };δ
So, by definition of logical relations, Γ ⊢ e1 ∼ e2 :: PEqτ ′ {el } {er }.

□

Lemma B.15 (Constant soundness). Γ ⊢ c ∼ c :: TyCon(c)

Proof. The proof follows the same steps as Theorem B.1. □

Lemma B.16 (Selfification of constants). If Γ ⊢ e ∼ e :: {z:b | r } then Γ ⊢ x ∼ x :: {z:b |

z ==b x}.

Proof. We fix δ ∈ Γ. By hypothesis (v1,v2)/x ∈ δ with v1 ∼ v2 :: {z:b | r };δ . We need to show

that δ1 · x ∼ δ2 · x :: {z:b | z ==b x};δ . Which reduces to v1 ∼ v2 :: {z:b | z ==b x};δ . By the

definition on the logical relation on basic values, we know v1 = v2 = c and ⊢B c :: b. Thus, we are
left to prove that δ1 · ((z ==b x)[c/z]) ↪→∗ true and δ2 · ((z ==b x)[c/z]) ↪→∗ true which, both,

trivially hold by the definition of ==b . □

Lemma B.17 (Variable soundness). If x : τ ∈ Γ, then Γ ⊢ x ∼ x :: τ .
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Proof. By the definition of the logical relation it suffices to show that ∀δ ∈ Γ.δ1(x) ∼ δ2(x) :: τ ;δ ;
which is trivially true by the definition of δ ∈ Γ. □

Lemma B.18 (Transitivity of Evaluation). If e ↪→∗ e ′, then e ↪→∗ v iff e ′ ↪→∗ v .

Proof. Assume e ↪→∗ v . Since the ↪→ is by definition deterministic, there exists a unique

sequence e ↪→ e1 ↪→ . . . ↪→ ei ↪→ . . . ↪→ v . By assumption, e ↪→∗ e ′, so there exists a j , so e ′ ≡ ej ,
and e ′ ↪→∗ v following the same sequence.

Assume e ′ ↪→∗ v . Then e ↪→∗ e ′ ↪→∗ v uniquely evaluates e to v . □

Lemma B.19 (LR closed under evaluation). If e1 ↪→
∗ e ′

1
, e2 ↪→

∗ e ′
2
, then e ′

1
∼ e ′

2
:: τ ;δ iff

e1 ∼ e2 :: τ ;δ .

Proof. Assume e ′
1
∼ e ′

2
:: τ ;δ , by the definition of the logical relation on closed terms we have

e ′
1
↪→∗ v1, e

′
2
↪→∗ v2, and v1 ∼ v2 :: τ ;δ . By Lemma B.18 and by assumption, e1 ↪→

∗ e ′
1
and

e2 ↪→
∗ e ′

2
, we have e1 ↪→

∗ v1 and e2 ↪→
∗ v2. By which and v1 ∼ v2 :: τ ;δ we get that e1 ∼ e2 :: τ ;δ .

The other direction is identical. □

Lemma B.20 (LR closed under parallel reduction). If e1 ⇒∗ e ′
1
, e2 ⇒∗ e ′

2
, and e ′

1
∼ e ′

2
:: τ ;δ ,

then e1 ∼ e2 :: τ ;δ .

Proof. By induction on τ , using parallel reduction as a backward simulation (Corollary C.15).

□

Lemma B.21 (LR Compositionality). If δ1 ·ex ↪→
∗ vx1

, δ2 ·ex ↪→
∗ vx2

, e1 ∼ e2 :: τ ;δ , (vx1
,vx2

)/x ,
then e1 ∼ e2 :: τ [ex/x];δ .

Proof. By the assumption we have that

(1) δ1 · ex ↪→
∗ vx1

(2) δ2 · ex ↪→
∗ vx2

(3) e1 ↪→
∗ v1

(4) e2 ↪→
∗ v2

(5) v1 ∼ v2 :: τ ;δ , (vx1,vx2
)/x

and we need to prove that v1 ∼ v2 :: τ [ex/x];δ . The proof goes by structural induction on the type

τ .

• τ � {z:b | r }. For i = 1, 2 we need to show that if δi , [vxi /x] · r [vi/z] ↪→
∗ true then

δi · r [vi/z][ei/x] ↪→
∗ true. We have δi , [vxi /x] · r [vi/z] ⇒

∗ δi · r [vi/z][ei/x] because
substituting parallel reducing terms parallel reduces (Corollary C.3) and parallel reduction

subsumes reduction (Lemma C.4). By cotermination at constants (Corollary C.17), we have

δi · r [vi/z][ei/x] ↪→
∗ true.

• τ � y:τ ′y → τ ′. We need to show that if v1 ∼ v2 :: y:τ ′y → τ ′;δ , (vx1
,vx2

)/x , then v1 ∼ v2 ::

y:τ ′y → τ ′[ex/x];δ .
We fix vy1

and vy2
so that vy1

∼ vy2
:: τ ′y ;δ , (vx1

,vx2
)/x .

Then, we have that v1 vy1
∼ v2 vy2

:: τ ′;δ , (vx1
,vx2

)/x , (vy1
,vy2

)/y.
By inductive hypothesis, we have that v1 vy1

∼ v2 vy2
:: τ ′[ex/x];δ , (vy1

,vy2
)/y.

By inductive hypothesis on the fixed arguments, we also get vy1
∼ vy2

:: τ ′y [ex/x];δ .
Combined, we get v1 ∼ v2 :: y:τ ′y → τ ′[ex/x];δ .

• τ � PEqτ ′ {el } {er }. We need to show that if v1 ∼ v2 :: PEqτ ′ {el } {er };δ , (vx1
,vx2

)/x , then
v1 ∼ v2 :: PEqτ ′ {el } {er }[ex/x];δ .
This reduces to showing that if δ1, [vx1

/x] · el ∼ δ2, [vx2
/x] · er :: τ ′;δ , then δ1 · el [ex/x] ∼

δ2 ·er [ex/x] :: τ ′;δ ; we find δ1 ·el [ex/x]⇒∗ δ1, [vx1
/x] ·el and δ2 ·er [ex/x]⇒∗ δ2, [vx2

/x] ·er
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because substituting multiple parallel reduction is parallel reduction (Corollary C.3). The

logical relation is closed under parallel reduction (Lemma B.20), and so δ1 · el [ex/x] ∼

δ2 · er [ex/x] :: τ ′;δ .

□

Theorem B.22 (LR Fundamental Property). If Γ ⊢ e :: τ , then Γ ⊢ e ∼ e :: τ .

Proof. The proof goes by induction on the derivation tree:

TSub By inversion of the rule we have

(1) Γ ⊢ e :: τ ′

(2) Γ ⊢ τ ′ ⪯ τ
By IH on (1) we have

(3) Γ ⊢ e ∼ e :: τ ′

By (3), (4), and Lemma B.14 we have Γ ⊢ e ∼ e :: τ .
TCon By Lemma B.15.

TSelf By inversion of the rule, we have:

(1) Γ ⊢ e :: {z:b | r }.
(2) By the IH on (1), we have:

Γ ⊢ e ∼ e :: {z:b | r }.
(3) We fix a δ such that:

δ ∈ Γ and

δ1 · e ∼ δ2 · e :: {z:b | r };δ
(4) There must exist v1 and v2 such that:

δ1 · e ↪→
∗ v1

δ2 · e ↪→
∗ v2

v1 ∼ v2 :: {z:b | r };δ
(5) By definition, v1 = v2 = c such that:

⊢B c :: b
δ1 · r [c/x] ↪→

∗ true
δ2 · r [c/x] ↪→

∗ true
(6) We find v1 ∼ v2 :: {z:b | z ==b e};δ , because:

⊢B c :: b by (5)

δ1 · (z ==b e)[c/z] ↪→∗ true because δ1 · e ↪→
∗ v1 = c by (4)

δ2 · (z ==b e)[c/z] ↪→∗ true because δ2 · e ↪→
∗ v2 = c by (4)

TVar By inversion of the rule and Lemma B.17.

TLam By hypothesis:

(1) Γ ⊢ λx :τx . e :: x :τx → τ
By inversion of the rule we have

(2) Γ,x : τx ⊢ e :: τ
(3) Γ ⊢ τx
By inductive hypothesis on (2) we have

(4) Γ,x : τx ⊢ e ∼ e :: τ
We fix a δ , vx1

, and vx2
so that

(5) δ ∈ Γ
(6) vx1

∼ vx2
:: τx ;δ

Let δ ′ � δ , (vx1
,vx2

)/x .
By the definition of the logical relation on open terms, (4), (5), and (6) we have

(7) δ ′
1 · e ∼ δ ′

2 · e :: τ ;δ ′
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By the definition of substitution

(8) δ1 · e[vx1
/x] ∼ δ2 · e[vx2

/x] :: τ ;δ ′

By the definition of the logical relation on closed expressions

(9) δ1 · e[vx1
/x] ↪→∗ v1, δ2 · e[vx2

/x] ↪→∗ v2, and v1 ∼ v2 :: τ ;δ ′

By the definition and determinism of operational semantics

(10) δ1 · (λx :τx . e) vx1
↪→∗ v1, δ2 · (λx :τx . e) vx2

↪→∗ v2, and v1 ∼ v2 :: τ ;δ ′

By (6) and the definition of logical relation on function values,

(11) δ1 · λx :τx . e ∼ δ2 · λx :τx . e :: x :τx → τ ;δ
Thus, by the definition of the logical relation, Γ ⊢ λx :τx . e ∼ λx :τx . e :: x :τx → τ

TApp By hypothesis:

(1) Γ ⊢ e ex :: τ [ex/x]
By inversion we get

(2) Γ ⊢ e :: x :τx → τ
(3) Γ ⊢ ex :: τx
By inductive hypothesis

(3) Γ ⊢ e ∼ e :: x :τx → τ
(4) Γ ⊢ ex ∼ ex :: τx
We fix a δ ∈ Γ. Then, by the definition of the logical relation on open terms

(5) δ1 · e ∼ δ2 · e :: (x :τx → τ );δ
(6) δ1 · ex ∼ δ2 · ex :: τx ;δ
By the definition of the logical relation on open terms:

(7) δ1 · e ↪→
∗ v1

(8) δ2 · e ↪→
∗ v2

(9) v1 ∼ v2 :: x :τx → τ ;δ
(10) δ1 · ex ↪→

∗ vx1

(11) δ2 · ex ↪→
∗ vx2

(12) vx1
∼ vx2

:: τx ;δ
By (7) and (10)

(13) δ1 · e ex ↪→
∗ v1 vx1

By (8) and (11)

(14) δ2 · e ex ↪→
∗ v2 vx2

By (9), (12), and the definition of logical relation on functions:

(15) v1 vx1
∼ v2 vx2

:: τ ;δ , (vx1
,vx2

)/x
By (13), (14), (15), and Lemma B.19

(16) δ1 · e ex ∼ δ2 · e ex :: τ ;δ , (vx1
,vx2

)/x
By (10), (11), (16), and Lemma B.21

(17) δ1 · e ex ∼ δ2 · e ex :: τ [ex/x];δ
So from the definition of logical relations, Γ ⊢ e ex ∼ e ex :: τ [ex/x].

TEqBase By hypothesis:

(1) Γ ⊢ bEqb el er e :: PEqb {el } {er }
By inversion of the rule:

(2) Γ ⊢ el :: τr
(3) Γ ⊢ er :: τl
(4) Γ ⊢ τr ⪯ b
(5) Γ ⊢ τl ⪯ b
(6) Γ, r : τr , l : τl ⊢ e :: {x :() | l ==b r }
By inductive hypothesis on (2), (3), and (6) we have

(7) Γ ⊢ el ∼ el :: τr
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(8) Γ ⊢ er ∼ er :: τl
(9) Γ, r : τr , l : τl ⊢ e ∼ e :: {x :() | l ==b r }
We fix δ ∈ Γ. Then (7) and (8) become

(10) δ1 · el ∼ δ2 · el :: τr ;δ
(11) δ1 · er ∼ δ2 · er :: τl ;δ

By the definition of the logical relation on closed terms:

(12) δ1 · el ↪→
∗ vl1

(13) δ2 · el ↪→
∗ vl2

(14) vl1 ∼ vl2 :: τl ;δ
(15) δ1 · er ↪→

∗ vr1

(16) δ2 · er ↪→
∗ vr2

(17) vr1
∼ vr2

:: τr ;δ
We define δ ′ � δ , (vr1

,vr2
)/r , (vl1 ,vl2 )/l .

By (9), (14), and (17) we have

(18) δ ′
1 · e ∼ δ ′

2 · e :: {x :() | l ==b r };δ ′

By the definition of the logical relation on closed terms:

(19) δ ′ · e ↪→∗ v1

(20) δ ′ · e ↪→∗ v2

(21) v1 ∼ v2 :: {x :() | l ==b r };δ ′

By (21) and the definition of logical relation on basic values:

(19) δ ′
1
· (l ==b r ) ↪→∗ true

(20) δ ′
2
· (l ==b r ) ↪→∗ true

By the definition of ==b
(21) vl1 = vr1

(22) vl2 = vr2

By (14) and (17) and since τl and τr are basic types
(23) vl1 = vl2
(24) vr1

= vr2

By (21) and (24)

(25) vl1 = vr2

By the definition of the logical relation on basic types

(26) vl1 ∼ vr2
:: b;δ

By which, (12), (16), and Lemma B.19

(27) δ1 · el ∼ δ2 · er :: b;δ
By (12), (15), and (19)

(28) δ1 · bEqb el er e ↪→
∗ bEqb vl1 vr1

v1

By (13), (16), and (20)

(29) δ2 · bEqb el er e ↪→
∗ bEqb vl2 vr2

v2

By (27) and the definition of the logical relation on EqRT
(30) bEqb vl1 vr1

v1 ∼ bEqb vl2 vr2
v2 :: PEqb {el } {er };δ .

By (28), (29), and (30)

(31) δ1 · bEqb el er e ∼ δ2 · bEqb el er e :: PEqb {el } {er };δ .
So, by the definition on the logical relation, Γ ⊢ bEqb el er e ∼ bEqb el er e :: PEqb {el } {er }.

TEqFun By hypothesis

(1) Γ ⊢ xEqτx :τ→ el er e :: PEqx :τx→τ {el } {er }
By inversion of the rule

(2) Γ ⊢ el :: τr
(3) Γ ⊢ er :: τl



44 Niki Vazou and Michael Greenberg

(4) Γ ⊢ τr ⪯ x :τx → τ
(5) Γ ⊢ τl ⪯ x :τx → τ
(6) Γ, r : τr , l : τl ⊢ e :: (x :τx → PEqτ {l x} {r x})
(7) Γ ⊢ x :τx → τ
By inductive hypothesis on (2), (3), and (6) we have

(8) Γ ⊢ el ∼ el :: τr
(9) Γ ⊢ er ∼ er :: τl
(10) Γ, r : τr , l : τl ⊢ e ∼ e :: (x :τx → PEqτ {l x} {r x})

By (8), (9), and Lemma B.14

(11) Γ ⊢ el ∼ el :: x :τx → τ
(12) Γ ⊢ er ∼ er :: x :τx → τ

We fix δ ∈ Γ. Then (11), and (12) become

(13) δ1 · el ∼ δ2 · el :: x :τx → τ ;δ
(14) δ1 · er ∼ δ2 · er :: x :τx → τ ;δ

By the definition of the logical relation on closed terms:

(15) δ1 · el ↪→
∗ vl1

(16) δ2 · el ↪→
∗ vl2

(17) vl1 ∼ vl2 :: x :τx → τ ;δ
(18) vl1 ∼ vl2 :: τl ;δ
(19) δ1 · er ↪→

∗ vr1

(20) δ2 · er ↪→
∗ vr2

(21) vr1
∼ vr2

:: x :τx → τ ;δ
(22) vr1

∼ vr2
:: τr ;δ

We fix vx1
and vx2

so that vx1
∼ vx2

:: τx ;δ . Let δx � δ , (vx1
,vx2

)/x .
By the definition on the logical relation on function values, (17) and (21) become

(23) vl1 vx1
∼ vl2 vx2

:: τ ;δx
(24) vr1

vx1
∼ vr2

vx2
:: τ ;δx

Let δlr � δ , (vr1
,vr2

)/r , (vl1 ,vl2 )/l .
By the definition of the logical relation on closed terms, (10) becomes:

(25) δlr · e ↪→
∗ v1

(26) δlr · e ↪→
∗ v2

(27) v1 ∼ v2 :: x :τx → PEqτ {l x} {r x};δlr
By (27) and the definition of logical relation on function values:

(28) v1 vx1
∼ v2 vx2

:: PEqτ {l x} {r x};δlr , (vx1
,vx2

)/x
By the definition of the logical relation on EqRT

(29) vl1 vx1
∼ vr2

vx2
:: τ ;δlr , (vx1

,vx2
)/x

By the definition of logical relations on function values

(30) vl1 ∼ vr2
:: x :τx → τ ;δlr

By (7), l and r do not appear free in the relation, so

(31) vl1 ∼ vr2
:: x :τx → τ ;δ

By which, (15), (20), and Lemma B.19

(32) δ1 · el ∼ δ2 · er :: x :τx → τ ;δ
By (15), (19), and (25)

(33) δ1 · xEqτx :τ→ el er e ↪→
∗ xEqτx :τ→ vl1 vr1

v1

By (16), (20), and (26)

(34) δ2 · xEqτx :τ→ el er e ↪→
∗ xEqτx :τ→ vl2 vr2

v2

By (32) and the definition of the logical relation on EqRT
(35) xEqτx :τ→ vl1 vr1

v1 ∼ xEqτx :τ→ vl2 vr2
v2 :: PEqx :τx→τ {el } {er };δ .
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By (33), (34), and (35)

(36) δ1 · xEqτx :τ→ el er e ∼ δ2 · xEqτx :τ→ el er e :: PEqx :τx→τ {el } {er };δ .
So, by the definition on the logical relation, Γ ⊢ xEqτx :τ→ el er e ∼ xEqτx :τ→ el er e ::

PEqx :τx→τ {el } {er }.

□

B.5 The Logical Relation and the EqRT Type are Equivalence Relations
Theorem B.23 (The logical relation is an eqivalence relation). Γ ⊢ e1 ∼ e2 :: τ is

reflexive, symmetric, and transivite.

• Reflexivity: If Γ ⊢ e :: τ , then Γ ⊢ e ∼ e :: τ .
• Symmetry: If Γ ⊢ e1 ∼ e2 :: τ , then Γ ⊢ e2 ∼ e1 :: τ .
• Transitivity: If Γ ⊢ e2 :: τ and Γ ⊢ e1 ∼ e2 :: τ and Γ ⊢ e2 ∼ e3 :: τ , then Γ ⊢ e1 ∼ e3 :: τ .

Proof. Reflexivity: This is exactly the Fundamental Property B.22.

Symmetry: Let ¯δ be defined such that
¯δ1(x) = δ2(x) and ¯δ2(x) = δ1(x). First, we prove that

v1 ∼ v2 :: τ ;δ implies v2 ∼ v1 :: τ ;
¯δ , by structural induction on τ .

• τ � {z:b | r }. This case is immediate: we have to show that c ∼ c :: {z:b | r }; ¯δ given

c ∼ c :: {z:b | r };δ . But the definition in this case is itself symmetric: the predicate goes to

true under both substitutions.

• τ � x :τ ′x → τ ′. We fix vx1
and vx2

so that

(1) vx1
∼ vx2

:: τ ′x ;δ
By the definition of logical relations on open terms and inductive hypothesis

(2) vx2
∼ vx1

:: τ ′x ;
¯δ

By the definition on logical relations on functions

(3) v1 vx1
∼ v2 vx2

:: τ ′;δ , (vx1
,vx2

)/x
By the definition of logical relations on open terms and since the expressions v1 vx1

and

v2 vx2
are closed, By the inductive hypothesis on τ ′:

(4) v2 vx2
∼ v1 vx1

:: τ ′; ¯δ ,x : τ ′x
By (2) and the definition of logical relations on open terms

(5) v2 vx2
∼ v1 vx1

:: τ ′; ¯δ , (vx2
,vx1

)/x
By the definition of the logical relation on functions, we conclude that v2 ∼ v1 :: x :τ ′x → τ ′; ¯δ

• τ � PEqτ ′ {el } {er }. By assumption,

(1) v1 ∼ v2 :: PEqτ ′ {el } {er };δ
By the definition of the logical relation on EqRT types

(2) δ1 · el ∼ δ2 · er :: τ ′;δ
i.e., δ1 · (el ) ↪→

∗ vl and similarly for vr such that vl ∼ vr :: τ ′;δ .
By the IH on τ ′, we have:

(3) vr ∼ vl :: τ ′; ¯δ
And so, by the definition of the LR on equality proofs:

(4) v2 ∼ v1 :: PEqτ ′ {el } {er }; ¯δ

Next, we show that δ ∈ Γ implies
¯δ ∈ Γ. We go by structural induction on Γ.

• Γ = ·. This case is trivial.

• Γ = Γ′,x : τ . For x : τ , we know that δ1(x) ∼ δ2(x) :: τ ;δ . By the IH on τ , we find

δ2(x) ∼ δ1(x) :: τ ;
¯δ , which is just the same as

¯δ1(x) ∼ ¯δ2(x) :: τ ;
¯δ . By the IH on Γ′, we can

use similar reasoning to find
¯δ1(y) ∼ ¯δ2(y) :: τ ′; ¯δ for all y : τ ′ ∈ Γ′.

Now, suppose Γ ⊢ e1 ∼ e2 :: τ ; we must show Γ ⊢ e2 ∼ e1 :: τ . We fix δ ∈ Γ; we must show

δ1 · e2 ∼ δ2 · e1 :: τ ;δ , i.e., there must exist v1 and v2 such that δ1 · e2 ↪→
∗ v2 and δ2 · e1 ↪→

∗ v1 and
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v2 ∼ v1 :: τ ;δ . We have δ ∈ Γ, and so
¯δ ∈ Γ by our second lemma. But then, by assumption, we

have v1 and v2 such that
¯δ1 · e1 ↪→

∗ v1 and
¯δ2 · e2 ↪→

∗ v2 and v1 ∼ v2 :: τ ;
¯δ . Our first lemma then

yields v2 ∼ v1 :: τ ;δ as desired.

Transitivity: First, we prove an inner property: if δ ∈ Γ and v1 ∼ v2 :: τ ;δ and v2 ∼ v3 :: τ ;δ ,
then v1 ∼ v3 :: τ ;δ . We go by structural induction on the type index τ .

• τ � {z:b | r }. Here all of the values must be the fixed constant c . Furthermore, we must have

δ1 · r [c/x] ↪→
∗ true and δ2 · r [c/x] ↪→

∗ true, so we can immediately find v1 ∼ v3 :: τ ;δ .
• τ � x :τ ′x → τ ′.
Let vl ∼ vr :: τ ′x ;δ be given. We must show that v1 ∼ v3 :: τ ;δ , (vl ,vr )/x . We know by

assumption that: v1 vl ∼ v2 vr :: τ ′;δ , (vl ,vr )/x and v2 vl ∼ v3 vr :: τ ′;δ , (vl ,vr )/x . By the

IH on τ ′, we find v1 vl ∼ v3 vr :: τ ′;δ , (vl ,vr )/x ; which gives v1 ∼ v3 :: τ ;δ , (vl ,vr )/x .
• τ � PEqτ ′ {el } {er }.
To find v1 ∼ v3 :: PEqτ {el } {er };δ , we merely need to find that δ1 · el ∼ δ2 · er :: τ ;δ , which
we have by inversion on v1 ∼ v2 :: PEqτ {el } {er };δ .

With our proof that the value relation is transitive in hand, we turn our attention to the open

relation. Suppose Γ ⊢ e1 ∼ e2 :: τ and Γ ⊢ e2 ∼ e3 :: τ ; we want to see Γ ⊢ e1 ∼ e3 :: τ . Let δ ∈ Γ
be given. We have δ1 · e1 ∼ δ2 · e2 :: τ ;δ and δ1 · e2 ∼ δ2 · e3 :: τ ;δ . By the definition of the logical

relations, we have δ1 · e1 ↪→
∗ v1, δ2 · e2 ↪→

∗ v2, δ1 · e2 ↪→
∗ v ′

2
, δ2 · e3 ↪→

∗ v3, v1 ∼ v2 :: τ ;δ , and
v ′

2
∼ v3 :: τ ;δ .
Moreover, we know that e2 is well typed, so by the fundamental theorem (Theorem B.22), we

know that Γ ⊢ e2 ∼ e2 :: τ , and so v2 ∼ v ′
2

:: τ ;δ .
By our transitivity lemma on the value relation, we can find thatv1 is equivalent tov2 is equivalent

to v ′
2
is equivalent to v3, and so v1 ∼ v3 :: τ ;δ .

□

pf : e → e → τ
pf(l , r ,b) = {x :() | l ==b r }

pf(l , r ,x :τx → τ ) = x :τx → PEqτ {l x} {r x}

Our propositional equality PEqτ {el } {er } is a reflection of the logical relation, so it is unsurprising
that it is also an equivalence relation. We can prove that our propositional equality is treated

as an equivalence relation by the syntactic type system. There are some tiny wrinkles in the

syntactic system: symmetry and transitivity produce normalized proofs, but reflexivity produces

unnormalized ones in order to generate the correct invariant types τl and τr in the base case.

Theorem B.24 (EqRT is an eqivalence relation). PEqτ {e1} {e2} is reflexive, symmetric, and

transitive on equable types. That is, for all τ that contain only refinements and functions:

• Reflexivity: If Γ ⊢ e :: τ , then there exists ep such that Γ ⊢ ep :: PEqτ {e} {e}.
• Symmetry: ∀Γ,τ , e1, e2,v12. if Γ ⊢ v12 :: PEqτ {e1} {e2}, then there exists v21 such that Γ ⊢ v21 ::

PEqτ {e2} {e1}.

• Transitivity: ∀Γ,τ , e1, e2, e3,v12,v23. if Γ ⊢ v12 :: PEqτ {e1} {e2} and Γ ⊢ v23 :: PEqτ {e2} {e3},

then there exists v13 such that Γ ⊢ v13 :: PEqτ {e1} {e3}.

Proof. Reflexivity: We strengthen the IH, simultaneously proving that there exist ep , epf and
Γ ⊢ τl ⪯ τ and Γ ⊢ τr ⪯ τ such that Γ, l : τl , r : τr ⊢ epf :: pf(e, e,τ ) and Γ ⊢ ep :: PEqτ {e} {e} by
induction on τ , leaving e general.

• τ � {x :b | e ′}.
(1) Let epf = ().

(2) Let ep = bEqb e e epf .
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(3) Let τl = τr = {x :b | x ==b e}.
(4) We have Γ ⊢ x ==b e ⪯ τ by SBase and semantic typing.

(5) We find Γ ⊢ ep :: PEqb {e} {e} by TEqBase, with el = er = e . We must show:

(a) Γ ⊢ el :: τl and Γ ⊢ er :: τr , i.e., Γ ⊢ e :: {x :b | x ==b e};
(b) Γ ⊢ τr ⪯ {x :b | true} and Γ ⊢ τl ⪯ {x :b | true}; and
(c) Γ, r : τr , l : τl ⊢ epf :: {x :() | l ==b r }.

(6) We find (5a) by TSelf.

(7) We find (5b) immediately by SBase.

(8) We find (5c) by TVar, using TSub to see that if l , r : {x :b | x ==b e} then unit will be

typeable at the refinement where both l and r are equal to e .
• τ � x :τx → τ ′.
(1) Γ,x : τx ⊢ e x :: τ [x/x] by TApp and TVar, noting that τ [x/x] = τ .
(2) By the IH on Γ,x : τx ⊢ e x :: τ ′[x/x] = τ ′, there exist e ′p , e

′
pf ,τ

′
l , and τ

′
r such that:

(a) x : τx ⊢ τ ′l ⪯ τ and x : τx ⊢ τ ′r ⪯ τ ;
(b) Γ,x : τx , l : τ ′l , r : τ ′r ⊢ e

′
pf :: pf(e x , e x ,τ

′); and

(c) Γ,x : τx ⊢ e ′p :: PEqτ ′ {e x} {e x}.
(3) Ifτ ′ = {x :() | τ ′}e xe x , then pf(e x , ex ,b) = {x :() | ex ==b ex}; otherwise, pf(l , r ,x :τx →

τ ) = x :τx → PEqτ {e x} {e x}.
In the former case, let e ′′pf = bEqb (e x)(e x)e ′pf . In the latter case, let e ′′pf = e ′pf .

Either way, we have Γ,x : τx , l : τ ′l , r : τ ′r ⊢ e
′′
pf :: PEqτ ′ {e x} {e x} by TEqBase or TEqFun,

respectively.

(4) Let epf = x :τx → e ′′pf .

(5) Let ep = xEqx :τx→τ e e epf .
(6) Let el = er = e and τl = x :τx → τ ′l and τr = x :τx → τ ′r .
(7) We find subtyping by SFun and (2a).

(8) By TEqFun. We must show:

(a) Γ ⊢ el :: τl and Γ ⊢ er :: τr ;
(b) Γ ⊢ τl ⪯ x :τx → τ and Γ ⊢ τr ⪯ x :τx → τ ;
(c) Γ, r : τr , l : τl ⊢ epf :: (x :τx → PEqτ {l x} {r x})
(d) Γ ⊢ x :τx → τ

(9) We find (8a) by assumption, TSub, and (7).

(10) We find (8b) by (7).

(11) We find (8c) by TLam and (2b).

• τ � PEqτ ′ {e1} {e2}. These types are not equable, so we ignore them.

Symmetry: By induction on τ .

• τ � {x :b | e}.
(1) We have Γ ⊢ v12 :: PEqb {e1} {e2}.

(2) By canonical forms, v12 = bEqb el er vp such that Γ ⊢ el :: τl and Γ ⊢ er :: τr (for some τl
and τr that are refinements of b) and Γ, r : τr , l : τl ⊢ vp :: {x :() | l ==b r } (Lemma B.12).

(3) Let v21 = bEqb er el vp .
(4) By TEqBase, swapping τl and τr from (2). We already have appropriate typing and subtyp-

ing derivations; we only need to see Γ, l : τl , r : τr ⊢ vp :: {x :() | r ==b l}.
(5) We have Γ, l : τl , r : τr ⊢ {x :() | r ==b l} ⪯ {x :() | l ==b r } by SBase and symmetry of

(==b ).

• τ � x :τx → τ ′.
(1) We have Γ ⊢ v12 :: PEqx :τx→τ ′ {e1} {e2}.
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(2) By canonical forms, v12 = xEqx :τ ′x→τ ′′ el er vp such that τx ⊢ τ ′x ⪯ and τ ′′ ⊢ τ ′ ⪯ and
Γ ⊢ el :: τl and Γ ⊢ er :: τr (for some τl and τr that are subtypes of x :τ ′x → τ ′′) and
Γ, r : τr , l : τl ⊢ vp :: x :τ ′x → PEqτ ′′ {l x} {r x}.

(3) By canonical forms, this time on vp from (2), vp = TLamxτ ′xep such that Γ ⊢ τx ⪯ τ ′x and

Γ, r : τr , l : τl ,x : τ ′x ⊢ e :: τ ′′′ such that Γ, r : τr , l : τl ,x : τ ′x ⊢ τ ′′′ ⪯ PEqτ ′′ {l x} {r x}.
(4) By TSub, (3), and the IH on PEqτ ′′ {l x} {r x}, we know there exists some e ′p such that

Γ, l : τl , r : τr ,x : τ ′x ⊢ e ′p :: PEqτ ′′ {r x} {l x}.
(5) Let v ′

p = x :τ ′x → e ′p .
(6) By (4) and TLam, and TSub (using subtyping from (3) and (2)), Γ, l : τl , r : τr ⊢ v ′

p ::

PEqx :τx→τ ′ {er x} {el x}.
(7) Let v21 = xEqx :τx→τ ′ er el v

′
p .

(8) By TEqBase, with (6) for the proof and (3) and (2) for the rest.

• τ � PEqτ ′ {e1} {e2}. These types are not equable, so we ignore them.

Transitivity: By induction on τ .

• τ � {x :b | e}.
(1) We have Γ ⊢ v12 :: PEqτ {e1} {e2} and Γ ⊢ v23 :: PEqτ {e2} {e3}.

(2) By canonical forms, v12 = bEqb e1 e2 v
′
12
such that Γ ⊢ e1 :: τ1 and Γ ⊢ e2 :: τ2 (for some τ1

and τ2 that are refinements of b) and Γ, r : τ2, l : τ1 ⊢ v
′
12

:: {x :() | l ==b r }. and, similarly,

v23 = bEqb e1 e2 v
′
23

such that Γ ⊢ e2 :: τ ′
2
and Γ ⊢ e3 :: τ3 (for some τ ′

2
and τ3 that are

refinements of b) and Γ, r : τ3, l : τ ′
2
⊢ v ′

23
:: {x :() | l ==b r }.

(3) By canonical forms again, we know that v ′
12
= v ′

23
= unit and we have:

Γ, r : τ2, l : τ1 ⊢ {x :() | x ==() unit} ⪯ {x :b | {x :() | l ==b r }}, and
Γ, r : τ3, l : τ ′

2
⊢ {x :() | x ==() unit} ⪯ {x :b | {x :() | l ==b r }}.

(4) Elaborating on (3), we know that ∀θ ∈ [|Γ, r : τ2, l : τ1 |], we have:[��θ · {x :() | x ==() unit}
��] ⊆ [|θ · {x :() | l ==b r }|]

and ∀θ ∈
[��Γ, r : τ3, l : τ ′

2

��]
, we have:[��θ · {x :() | x ==() unit}

��] ⊆ [|θ · {x :() | l ==b r }|] .

(5) Since {x :() | x ==() unit} contains all computations that terminate with unit in all mod-

els (Theorem B.1), the right-hand sides of the equations must also hold all unit computations.

That is, all choices for l and r2 (resp. l and r ) that are semantically well typed are necessarily

equal.

(6) By (5), we can infer that in any given model, τ1, τ2, τ
′
2
, and τ3 identify just one b-constant.

Why must τ2 and τ
′
2
agree? In particular, e2 has both of those types, but by semantic sound-

ness (Theorem B.2), we know that it will go to a value in the appropriate type interpretation.

By determinism of evaluation, we know it must be the same value. We can therefore con-

clude that ∀θ ∈ [|Γ, r : τ3, l : τ1 |],
[��θ · {x :() | x ==() unit}

��] ⊆ [|θ · {x :() | l ==b r }|].
(7) By TEqBase, using τ1 and τ3 and unit as the proof. We need to show Γ, r : τ3, l : τ1 ⊢

unit :: {x :() | l ==b r }; all other premises follow from (2).

(8) By TSub and SBase, using (6) for the subtyping.

• τ � x :τx → τ ′.
(1) We have Γ ⊢ v12 :: PEqτ {e1} {e2} and Γ ⊢ v23 :: PEqτ {e2} {e3}.

(2) By canonical forms, we have

v12 = xEqx :τx→τ ′ e1 e2 v
′
12

v23 = xEqx :τx→τ ′ e2 e3 v
′
23



Functional Extensionality for Refinement Types 49

where there exist types τ1, τ2, τ
′
2
, and τ3 subtypes of x :τx → τ ′ such that

Γ ⊢ e1 :: τ1 Γ ⊢ e2 :: τ2

Γ ⊢ e2 :: τ
′
2

Γ ⊢ e3 :: τ3

and there exist types τx12
, τx23

, τ ′
12
, and τ ′

23
such that

Γ, r : τ2, l : τ1 ⊢ vp12
:: x :τx12

→ PEqτ ′
12

{l x} {r x},

Γ, r : τ2, l : τ1 ⊢ τx ⪯ τx12
,

Γ, r : τ2, l : τ1,x : τx ⊢ τ ′
12

⪯ τ ′,
Γ, r : τ3, l : τ ′

2
⊢ vp23

:: x :τ ′x → PEqτ ′
23

{l x} {r x},

Γ, r : τ3, l : τ ′
2
⊢ τx ⪯ τx23

, and
Γ, r : τ3, l : τ ′

2
,x : τx ⊢ τ ′

23
⪯ τ ′.

(3) By canonical forms on vp12
and vp23

from (2), we know that:

vp12
= λx :τx12

. e ′
12

vp23
= λx :τx23

. e ′
23

such that:

Γ, r : τ2, l : τ1,x : τx12
⊢ e ′

12
:: τ ′′

12
,

Γ, r : τ2, l : τ1,x : τx12
⊢ τ ′′

12
⪯ τ ′

12
,

Γ, r : τ3, l : τ ′
2
,x : τx23

⊢ e ′
23

:: τ ′′
23
,

Γ, r : τ3, l : τ ′
2
,x : τx23

⊢ τ ′′
23

⪯ τ ′
23
, and

(4) By strengthening (Lemma B.7) using (2), we can replace x ’s type with τx in both proofs, to

find:

Γ, r : τ2, l : τ1,x : τx ⊢ e ′
12

:: τ ′
12
, and

Γ, r : τ3, l : τ ′
2
,x : τx ⊢ e ′

23
:: τ ′

23
.

Then, by TSub, we can relax the type of the proof bodies:

Γ, r : τ2, l : τ1,x : τx ⊢ e ′
12

:: τ ′, and
Γ, r : τ3, l : τ ′

2
,x : τx ⊢ e ′

23
:: τ ′.

(5) By (4, (3), and the IH on PEqτ ′ {l x} {r x}, we know there exists some proof body e ′
13
such

that Γ, r : τ3, l : τ1 ⊢ e
′
13

:: PEqτ ′ {l x} {r x}.
(6) Let vp = x :τx → e ′

13
.

(7) By (5), and TLam.

(8) Let v13 = xEqx :τx→τ ′ e1 e3 vp .
(9) By TEqBase, with (7) for the proof and (2) for the rest.

• τ � PEqτ ′ {e1} {e2}. These types are not equable, so we ignore them. □

C PARALLEL REDUCTION AND COTERMINATION
The conventional application rule for dependent types substitutes a term into a type, finding

e1 e2 : τ [e2/x] when e1 : x :τx → τ . We define two logical relations: a unary interpretation of types

(Figure 8) and a binary logical relation characterizing equivalence (Figure 10). Both of these logical

relations are defined as fixpoints on types. The type index poses a problem: the function case

of these logical relations quantify over values in the relation, but we sometimes need to reason

about expressions, not values. If e ↪→∗ v , are τ [e/x] and τ [v/x] treated the same by our logical

relations? We encounter this problem in particular in proof of logical relation compositionality,

which is precisely about exchanging expressions in types with the values the expressions reduce to

in closing substitutions: for the unary logical relation and binary logical relation (Lemma B.21).

The key technical device to prove these compositionality lemmas is parallel reduction (Figure 13).

Parallel reduction generalizes our call-by-value relation to allowmultiple steps at once, throughout a
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term—even under a lambda. Parallel reduction is a bisimulation (Lemma C.5 for forward simulation;

Corollary C.15 for backward simulation). That is, expressions that parallel reduce to each other go

to identical constants or expressions that themselves parallel reduce, and the logical relations put

terms that parallel reduce in the same equivalence class.

To prove the compositionality lemmas, we first show that (a) the logical relations are closed

under parallel reduction ( for the unary relation and Lemma B.20 for the binary relation) and (b) use

the backward simulation to change values in the closing substitution to a substituted expression in

the type.

Our proof comes in three steps. First, we establish some basic properties of parallel reduction

(§C.1). Next, proving the forward simulation is straightforward (§C.2): if e1 ⇒ e2 and e1 ↪→ e ′
1
,

then either parallel reduction contracted the redex for us and e ′
1
⇒ e2 immediately, or the redex is

preserved and e2 ↪→ e ′
2
such that e ′

1
⇒ e ′

2
. Proving the backward simulation is more challenging

(§C.3). If e1 ⇒ e2 and e2 ↪→ e ′
2
, the redex contracted in e2 may not yet be exposed. The trick

is to show a tighter bisimulation, where the outermost constructors are always the same, with

the subparts parallel reducing. We call this relation congruence (Figure 14); it’s a straightforward

restriction of parallel reduction, eliminating β , eq1, and eq2 as outermost constructors (but allowing

them deeper inside). The key lemma shows that if e1 ⇒ e2, then there exists e ′
1
e1 ↪→

∗ e ′
1
such

that e ′
1

⇝⇝ e2 (Lemma C.11). Once we know that parallel reduction implies reduction to congruent

terms, proving that congruence is a backward simulation allows us to reason “up to congruence”.

In particular, congruence is a sub-relation of parallel reduction, so we find that parallel reduction is

a backward simulation. Finally, we can show that e1 ⇒ e2 implies observational equivalence (§C.4);

for our purposes, it suffices to find cotermination at constants (Corollary C.17).

One might think, in light of Takahashi’s explanation of parallel reduction [Takahashi 1989],

that the simulation techniques we use are too powerful for our needs: why not simply rely on the

Church-Rosser property and confluence, which she proves quite simply? Her approach works well

when relating parallel reduction to full β-reduction (and/or η-reduction): the transitive closure
of her parallel reduction relation is equal to the transitive closure of plain β-reduction (resp. η-
and βη-reduction). But we’re interested in programming languages, so our underlying reduction

relation isn’t full β : we use call-by-value, and we will never reduce under lambdas. But even if we

were call-by-name, we would have the same issue. Parallel reduction implies reduction, but not to

the same value, as in her setting. Parallel reduction yields values that are equivalent, up to parallel

reduction and congruence (see, e.g., Corollary C.13).

C.1 Basic Properties
Lemma C.1 (Parallel reduction is reflexive). For all e and τ , e ⇒ e and τ ⇒ τ .

Proof. By mutual induction on e and τ .

Expressions.

• e � x . By var.

• e � c . By const.

• e � λx :τ . e ′. By the IHs on τ and e ′ and lam.

• e � e1 e2. By the IH on e1 and e2 and app.

• e � bEqb el er e
′
. By the IHs on el , er , and e

′
and beq.

• e � xEqx :τx→τ el er e
′
. By the IHs on τx , τ , el , er , and e

′
and xeq.

Types.

• τ � {x :b | r }. By the IH on r (an expression) and ref.

• τ � x :τx → τ ′. By the IHs on τx and τ ′ and fun.
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e ⇒ e

x ⇒ x
var

c ⇒ c
const

τ ⇒ τ ′ e ⇒ e ′

λx :τ . e ⇒ λx :τ ′. e ′
lam

e1 ⇒ e ′
1

e2 ⇒ e ′
2

e1 e2 ⇒ e ′
1
e ′

2

app

e ⇒ e ′ v ⇒ v ′

(λx :τ . e) v ⇒ e ′[v ′/x]
β

(==b ) c1 ⇒ (==(c1,b))
eq1

(==(c1,b)) c2 ⇒ c1 = c2

eq2

el ⇒ e ′l er ⇒ e ′r e ⇒ e ′

bEqb el er e ⇒ bEqb e
′
l e

′
r e

′
beq

τx ⇒ τ ′x τ ⇒ τ ′ el ⇒ e ′l er ⇒ e ′r e ⇒ e ′

xEqx :τx→τ el er e ⇒ xEqx :τ ′x→τ ′ e
′
l e

′
r e

′
xeq

τ ⇒ τ

r ⇒ r ′

{x :b | r } ⇒ {x :b | r ′}
ref

τx ⇒ τ ′x τ ⇒ τ ′

x :τx → τ ⇒ x :τ ′x → τ ′
fun

τ ⇒ τ ′ el ⇒ e ′l er ⇒ e ′r

PEqτ {el } {er } ⇒ PEqτ ′ {e
′
l } {e

′
r }

eq

Fig. 13. Parallel reduction in terms and types.

• τ � PEqτ ′ {el } {er }. By the IHs on τ ′, el , and er and eq. □

Lemma C.2 (Parallel reduction is substitutive). If e ⇒ e ′, then:

(1) If e1 ⇒ e2, then e1[e/x]⇒ e2[e
′/x].

(2) If τ1 ⇒ τ2, then τ1[e/x]⇒ τ2[e
′/x].

Proof. By mutual induction on e1 and τ1.

Expressions.

var y ⇒ y. If y , x , then the substitution has no effect and the case is trivial. If y = x , then
x[e/x] = e and we have e ⇒ e ′ by assumption. We have e ⇒ e by reflexivity (Lemma C.1).

const c ⇒ c . This case is trivial: the substitution has no effect.

lam λy:τ . e ′ ⇒ λy:τ . e ′′. If y , x , then by the IH on e ′ and lam. If y = x , then the substitution has

no effect and the case is trivial.

app e11 e12 ⇒ e21 e22, where e1i ⇒ e2i for i = 1, 2. By the IHs on e1i and app.

beta (λy:τ . e ′) v ⇒ e ′[v ′/y], where e ′ ⇒ e ′′ and v ⇒ v ′
. If y , x , then (λy:τ . e ′[e/x]) v[e/x]⇒

e ′′[e/x][v ′[e/x]/y] by β . Since y , x , e ′′[e/x][v ′[e/x]/y] = e ′′[v ′/y][e/x] as desired.
If y = x , then the substitution in the lambda has no effect, and we find (λx :τ . e ′) v[e/x]⇒
e ′′[v ′[e/x]/x] by β . We have e ′′[v ′[e/x]/x] = e ′′[v ′/x][e/x] as desired.

eq1 (==b ) c1 ⇒ (==(c1,b)). This case is trivial by eq1, as the substitution has no effect.

eq2 (==(c1,b)) c2 ⇒ c1 = c2. This case is trivial by eq2, as the substitution has no effect.

beq bEqb el er ep ⇒ bEqb e
′
l e

′
r e

′
p , where el ⇒ e ′l and er ⇒ e ′r and ep ⇒ e ′p . By the IHs on el , er ,

and ep and beq.

xeq xEqx :τx→τ el er ep ⇒ xEqx :τx→τ e ′l e
′
r e

′
p , where el ⇒ e ′l and er ⇒ e ′r and ep ⇒ e ′p . By the

IHs on el , er , and ep and xeq.
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Types.

ref {y:b | r } ⇒ {y:b | r ′} where r ⇒ r ′. If y , x , then r [e/x]⇒ r ′[e ′/x] by the IH on r ; we are
done by ref.

If y = x , then the substitution has no effect, and the case is immediate by reflexivity

(Lemma C.1).

fun y:τy → τ ⇒ y:τ ′y → τ ′ where τy ⇒ τ ′y and τ ⇒ τ ′. If y , x , then by the IH on τy and τ and

fun.

If y = x , then the substitution only has effect in the domain. The IH on τy finds τy [e/x]⇒
τ ′y [e

′/x] in the domain; reflexivity covers the codomain (Lemma C.1), and we are done by

fun.

eq PEqτ {el } {er } ⇒ PEqτ ′ {e
′
l } {e

′
r }. By the IHs and eq. □

Corollary C.3 (Substituting multiple parallel reduction is parallel reduction). If

e1 ⇒∗ e2, then e[e1/x]⇒∗ e[e2/x].

Proof. First, notice that e ⇒ e by reflexivity (Lemma C.1). By induction on e1 ⇒∗ e2, using

reflexivity in the base case (Lemma C.1); the inductive step uses substituting parallel reduction

(Lemma C.2) and the IH. □

Lemma C.4 (Parallel reduction subsumes reduction). If e1 ↪→ e2 then e1 ⇒ e2.

Proof. By induction on the evaluation derivation, using reflexivity of parallel reduction to cover

expressions and types that didn’t step (Lemma C.1).

ctx E[e] ↪→ E[e ′], where e ↪→ e ′. By the IH, e ⇒ e ′. By structural induction on E.

– E � •. By the outer IH.

– E � E1 e2. By the inner IH on E1, reflexivity on e2, and app.

– E � v1 E2. By reflexivity on v1, the inner IH on E2, and app.

– E � bEqb el er E
′
. By reflexivity on el and er , the inner IH on and E ′

, and beq.

– E � xEqx :τx→τ el er E
′
. By reflexivity on τx , τ , el and er , the inner IH on and E ′

, and xeq.

β (λx :τ . e) v ↪→ e[v/x]. By reflexivity (Lemma C.1, e ⇒ e and v ⇒ v . By beta, (λx :τ . e) v ⇒
e[v/x].

eq1 By eq1.

eq2 By eq2. □

C.2 Forward Simulation
Lemma C.5 (Parallel reduction is a forward simulation). If e1 ⇒ e2 and e1 ↪→ e ′

1
, then

there exists e ′
2
such that e2 ↪→

∗ e ′
2
and e ′

1
⇒ e ′

2
.

Proof. By induction on the derivation of e1 ↪→ e ′
1
, leaving e2 general.

ctx By structural induction on E, using reflexivity (Lemma C.1) on parts where the IH doesn’t

apply.

– E � •. By the outer IH on the actual step.

– E � E1 e2. By the IH on E1, reflexivity on e2, and app.

– E � v1 E2. By reflexivity on v1, the IH on E2, and app.

– E � bEqb el er E
′
. By reflexivity on el and er , the IH on E ′

, and beq.

– E � xEqx :τx→τ el er E
′
. By reflexivity on τx , τ , el and er , the IH on E ′

, and xeq.

β (λx :τ . e) v ↪→ e[v/x]. One of two rules could have applied to find e1 ⇒ e2: app or β .
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In the app case, we have e2 = (λx :τ ′. e ′) v ′
where τ ⇒ τ ′ and e ⇒ e ′ and v ⇒ v ′

. Let

e ′
2
= e ′[v ′/x]. We find e2 ↪→

∗ e ′
2
in one step by β . We find e[v/x]⇒ e ′[v ′/x] by substitutivity

of parallel reduction (Lemma C.2).

In the β case, we have e2 = e ′[v ′/x] such that e ⇒ e ′ and v ⇒ v ′
. Let e ′

2
= e2. We find

e2 ↪→
∗ e ′

2
in no steps at all; we find e ′

1
⇒ e ′

2
by substitutivity of parallel reduction (Lemma C.2).

eq1 (==b ) c1 ↪→ (==(c1,b)). One of two rules could have applied to find (==b ) c1 ⇒ e2: app or

eq1.

In the app case, we must have e2 = e1 = (==b ) c1, because there are no reductions available

in these constants. Let e ′
2
= (==(c1,b)). We find e2 ↪→

∗ e ′
2
in a single step by our assumption

(or eq1). We find parallel reduction by reflexivity (Lemma C.1).

In the eq2 case, we have e2 = e ′
1
= (==(c1,b)). Let e

′
2
= e2. We find e2 ↪→

∗ e ′
2
in no steps at all.

We find parallel reduction by reflexivity (Lemma C.1).

eq2 (==(c1,b)) c2 ↪→ c1 = c2. One of two rules could have applied to find (==(c1,b)) c2 ⇒ e2: app

or eq2.

In the app case, we have e2 = e1 = (==(c1,b)) c2, because there are no reductions available

in these constants. Let e ′
2
� c1 = c2, i.e. true when c1 = c2 and false otherwise. We find

e2 ↪→
∗ e ′

2
in a single step by our assumption (or eq2). We find parallel reduction by reflexivity

(Lemma C.1).

In the eq2 case, we have e2 = e ′
1
� c1 = c2, i.e. true when c1 = c2 and false otherwise.

Let e ′
2
= e2. We find e2 ↪→

∗ e ′
2
in no steps at all. We find parallel reduction by reflexivity

(Lemma C.1). □

C.3 Backward Simulation
Lemma C.6 (Reduction is substitutive). If e1 ↪→ e2, then e1[e/x] ↪→ e2[e/x].

Proof. By induction on the derivation of e1 ↪→ e2.

ctx By structural induction on E.

– E � •. By the outer IH.

– E � E1 e2. By the IH on E1 and ctx.

– E � v1 E2. By the IH on E2 and ctx.

– E � bEqb el er E
′
. By the IH on E ′

and ctx.

– E � xEqx :τx→τ el er E
′
. By the IH on E ′

and ctx.

β (λy:τ . e ′) v ↪→ e ′[v/y]. We must show (λy:τ . e ′)[e/x] v[e/x] ↪→ e ′[v/y][e/x].
The exact result depends on whether y = x . If y , x , the substitution goes through,

and we have (λy:τ . e ′)[e/x] = λy:τ [e/x]. e ′[e/x]. By β , (λy:τ [e/x]. e ′[e/x]) v[e/x] ↪→
e ′[e/x][v[e/x]/y]. But e ′[e/x][v[e/x]/y] = e ′[v/y][e/x], and we are done.

If, on the other hand, y = x , then the substitution has no effect in the body of the lambda, and

(λy:τ . e ′)[e/x] = λy:τ [e/x]. e ′. By β again, we find (λy:τ [e/x]. e ′) v[e/x] ↪→ e ′[v[e/x]/y].
Since y = x , we really have e ′[v[e/x]/x] which is the same as e ′[v/x][e/x] = e ′[v/y][e/x],
as desired.

eq1 The substitution has no effect; immediate, by eq1.

eq2 The substitution has no effect; immediate, by eq2. □

Corollary C.7 (Multi-step reduction is substitutive). If e1 ↪→
∗ e2, then e1[e/x] ↪→

∗ e2[e/x].

Proof. By induction on the derivation of e1 ↪→
∗ e2. The base case is immediate (e1 = e2, and we

take no steps). The inductive case follows by the IH and single-step substitutivity (Lemma C.6). □
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x ⇝⇝ x
var

c ⇝⇝ c
const

τ ⇒ τ ′ e ⇒ e ′

λx :τ . e ⇝⇝ λx :τ ′. e ′
lam

e1 ⇒ e ′
1

e2 ⇒ e ′
2

e1 e2
⇝⇝ e ′

1
e ′

2

app

el ⇒ e ′l er ⇒ e ′r e ⇒ e ′

bEqb el er e ⇝⇝ bEqb e
′
l e

′
r e

′
beq

τx ⇒ τ ′x τ ⇒ τ ′ el ⇒ e ′l er ⇒ e ′r e ⇒ e ′

xEqx :τx→τ el er e ⇝⇝ xEqx :τ ′x→τ ′ e
′
l e

′
r e

′
xeq

Fig. 14. Term congruence.

We say terms are congruent when they (a) have the same outermost constructor and (b) their

subparts parallel reduce to each other.
4
That is,

⇝⇝⊆⇒, where the outermost rule must be one of

var, const, lam, app, beq, or xeq and cannot be a real reduction like β , eq1, or eq2.
Congruence is a key tool in proving that parallel reduction is a backward simulation. Parallel

reductions under a lambda prevent us from having an “on-the-nose” relation, but reduction can

keep up enough with parallel reduction to maintain congruence.

Lemma C.8 (Congruence implies parallel reduction). If e1
⇝⇝ e2 then e1 ⇒ e2.

Proof. By induction on the derivation of e1
⇝⇝ e2.

var x ⇝⇝ x . By var.

const c ⇝⇝ c . By const.

lam λx :τ . e ⇝⇝ λx :τ ′. e ′, with τ ⇒ τ ′ and e ⇒ e ′. By lam.

app e1 e2
⇝⇝ e ′

1
e ′

2
, with e1 ⇒ e ′

1
and e2 ⇒ e ′

2
. By app.

beq bEqb el er e ⇝⇝ bEqb e
′
l e

′
r e , with el ⇒ e ′l and er ⇒ e ′r and e ⇒ e ′. By beq.

xeq By xeq. xEqx :τx→τ el er e ⇝⇝ xEqx :τx→τ e ′l e
′
r e , with τx ⇒ τ ′x and τ ⇒ τ ′ and el ⇒ e ′l and

er ⇒ e ′r and e ⇒ e ′. By xeq. □

We need to strengthen substitutivity (Lemma C.2) to show that it preserves congruence.

Corollary C.9 (Congruence is substitutive). If e1
⇝⇝ e ′

1
and e2

⇝⇝ e ′
2
, then e1[e2/x] ⇝⇝

e2[e
′
2
/x].

Proof. By cases on e1.

• e1 = y. It must be that e2 = y as well, since only var could have applied. If y , x , then
the substitution has no effect and we have y ⇝⇝ y by assumption (or var). If x = y, then
e1[e2/x] = e2 and we have e2

⇝⇝ e ′
2
by assumption.

• e1 = c . It must be that e2 = c as well. The substitution has no effect; immediate by var.

• e1 = λy:τ . e . It must be that e2 = λy:τ ′. e ′ such that τ ⇒ τ ′ and e ⇒ e ′. Ify , x , then we must

show λy:τ [e2/x]. e[e2/x] ⇝⇝ λy:τ ′[e ′
2
/x]. e ′[e ′

2
/x], which we have immediately by lam and

Lemma C.2 on our two subparts. If y = x , then we must show λy:τ [e2/x]. e ⇝⇝ λy:τ ′[e ′
2
/x]. e ′,

which we have immediately by lam, Lemma C.2 on our τ ⇒ τ ′, and the fact that e ⇒ e ′.
• e1 = e11 e12. It must be that e2 = e21 e22, such that e11 ⇒ e21 and e12 ⇒ e22. By app and

Lemma C.2 on the subparts.

• e1 = bEqb el er e . It must be the case that e2 = bEqb e
′
l e

′
r e

′
where el ⇒ e ′l and er ⇒ e ′r . By

beq and Lemma C.2 on the subparts.

• e1 = xEqx :τx→τ el er e . It must be the case that e2 = xEqx :τ ′x→τ ′ e
′
l e

′
r e

′
where el ⇒ e ′l (and

similarly for τx , τ , er , and e). By xeq and Lemma C.2 on the subparts. □

4
Congruent terms are related to Takahashi’s M̃ operator: in that they characterize parallel reductions that preserve structure.

They are not the same, though: Takahashi’s M̃ will do βη-reductions on outermost redexes.
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Lemma C.10 (Parallel reduction of values implies congruence). If v1 ⇒ v2 then v1
⇝⇝ v2.

Proof. By induction on the derivation of v1 ⇒ v2.

var Contradictory: variables aren’t values.

const Immediate, by const.

lam Immediate, by lam.

app Contradictory: applications aren’t values.

beq Immediate, by beq.

xeq Immediate, by xeq.

β Contradictory: applications aren’t values.

eq1 Contradictory: applications aren’t values.

eq2 Contradictory: applications aren’t values. □

Lemma C.11 (Parallel reduction implies reduction to congruent forms). If e1 ⇒ e2, then

there exists e ′
1
e1 ↪→

∗ e ′
1
such that e ′

1

⇝⇝ e2.

Proof. By induction on e1 ⇒ e2.

Structural rules.

var x ⇒ x . We have e1 = e2 = x by var.

const c ⇒ c . We have e1 = e2 = c by const.

lam λx :τ . e ⇒ λx :τ ′. e ′, where τ ⇒ τ ′ and e ⇒ e ′. Immediate, by lam.

app e11 e12 ⇒ e21 e22, where e11 ⇒ e21 and e12 ⇒ e22. Immediate, by app.

beq bEqb el er e ⇒ bEqb e
′
l e

′
r e

′
where el ⇒ e ′l and er ⇒ e ′r and e ⇒ e ′. Immediate, by beq.

xeq xEqx :τx→τ el er e ⇒ xEqx :τ ′x→τ ′ e
′
l e

′
r e

′
where τx ⇒ τ ′x and τ ⇒ τ ′ and el ⇒ e ′l and er ⇒ e ′r

and e ⇒ e ′. Immediate, by xeq.

Reduction rules. These are the more interesting cases, where the parallel reduction does a reduc-

tion step—ordinary reduction has to do more work to catch up.

β (λx :τ . e) v ⇒ e ′[v ′/x], where e ⇒ e ′′ and v ⇒ v ′′
.

We have (λx :τ . e) v ↪→ e[v/x] by β . By the IH on e ⇒ e ′′, there exists e ′ such that e ↪→∗ e ′

such that e ′ ⇝⇝ e ′′. We ignore the IH onv ⇒ v ′′
, noticing instead that parallel reducing values

are congruent (Lemma C.10) and so v ⇝⇝ v ′′
. Since reduction is substitutive (Corollary C.7),

we can find that e[v/x] ↪→∗ e ′[v/x]. Since congruence is substitutive (Lemma C.9), we have

e ′[v/x]⇝⇝ e ′′[v ′′/x], as desired.
eq1 (==b ) c1 ⇒ (==(c1,b)). We have (==b ) c1 ↪→ (==(c1,b)) in a single step; we find congruence

by const.

eq2 (==(c1,b)) c2 ⇒ c1 = c2. We have (==(c1,b)) c2 ↪→ c1 = c2 in a single step; we find congruence

by const. □

Lemma C.12 (Congruence to a value implies reduction to a value). If e ⇝⇝ v ′
then e ↪→∗ v

such that v ⇝⇝ v ′
.

Proof. By induction on v ′
.

• v ′ � c . It must be the case that e = c . Let v = c . By const.

• v ′ � λx :τ ′. e ′′. It must be the case that e = λx :τ . e ′ such that τ ⇒ τ ′ and e ⇒ e ′′. By lam.

• v � bEqb e
′
l e

′
r v

′
p . It must be the case that e = bEqb el er ep where el ⇒ e ′l and er ⇒ e ′r and

ep ⇒ v ′
p . Since parallel reduction implies reduction to congruent forms (Lemma C.11), we

have ep ↪→
∗ e ′p and e ′p ⇝⇝ v ′

p . By the IH on v ′
p , we know that e ′p ↪→

∗ vp such that vp ⇝⇝ v ′
p .
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By repeated use of ctx, we find bEqb el er ep ↪→
∗ bEqb el er vp . Since its proof part is a value,

this term is a value. We find bEqb el er vp ⇝⇝ bEqb e
′
l e

′
r v

′
p by ebeq.

• v � xEqx :τ ′x→τ e ′l e
′
r v

′
p . It must be the case that e = xEqx :τx→τ el er ep where τx ⇒ τ ′x

and τ ⇒ τ ′ and el ⇒ e ′l and er ⇒ e ′r and ep ⇒ v ′
p . Since parallel reduction implies

reduction to congruent forms (Lemma C.11), we have ep ↪→
∗ e ′p and e ′p ⇝⇝ v ′

p . By the IH

on v ′
p , we know that e ′p ↪→

∗ vp such that vp ⇝⇝ v ′
p . By repeated application of ctx, we find

xEqx :τx→τ el er ep ↪→
∗ xEqx :τx→τ el er vp . Since its proof part is a value, this term is a value.

We find xEqτx :τ→ el er vp ⇝⇝ xEqx :τ ′x→τ ′ e
′
l e

′
r v

′
p by exeq. □

Corollary C.13 (Parallel reduction to a value implies reduction to a related value). If

e ⇒ v ′
then there exists v such that e ↪→∗ v and v ⇝⇝ v ′

.

Proof. Since parallel reduction implies reduction to congruent forms (Lemma C.11), we have

e ↪→∗ e ′ such that e ′ ⇝⇝ v ′
. But congruence to a value implies reduction to a value (Lemma C.12),

so e ′ ↪→∗ v such that v ⇝⇝ v ′
. By transitivity of reduction, e ↪→∗ v . □

Lemma C.14 (Congruence is a backward simulation). If e1
⇝⇝ e2 and e2 ↪→ e ′

2
then there exists

e ′
1
where e1 ↪→

∗ e ′
1
such that e ′

1

⇝⇝ e ′
2
.

Proof. By induction on the derivation of e2 ↪→ e ′
2
.

ctx E[e] ↪→ E[e ′], where e ↪→ e ′.
– E � •. By the outer IH.

– E � E1 e2. It must be that e1 = e11 e12, where e11 ⇒ E1[e] and e12 ⇒ e2. By the IH on E1,

finding evaluation with ctx and congruence with app.

– E � v ′
1
E2. It must be that e1 = e11 e12, where e11 ⇒ v ′

1
and e12 ⇒ E2[e2]. We find that

e11 ↪→
∗ v1 such that v1

⇝⇝ v ′
1
by Corollary C.13. By the IH on E2 and evaluation with ctx

and congruence with app.

– E � bEqb e
′
l e

′
r E

′
. It must be the case that e1 = bEqb el er ep where el ⇒ e ′l and er ⇒ e ′r .

By the IH on E ′
; we find the evaluation with ctx and congruence with beq.

– E � xEqx :τ ′x→τ ′ e
′
l e

′
r E

′
. It must be the case that e1 = xEqx :τx→τ el er ep such that τx ⇒ τ ′x

and τ ⇒ τ ′ and el ⇒ e ′l and er ⇒ e ′r . By the IH on E ′
; we find the evaluation with ctx and

congruence with xeq.

β (λx :τ ′. e ′) v ′ ↪→ e ′[v ′/x]. Congruence implies that e1 = e11 e12 such that e11 ⇒ λx :τ ′. e ′ and
e12 ⇒ v ′

. Parallel reduction to a value implies reduction to a congruent value (Corollary C.13),

e11 ↪→
∗ v11 such thatv

′
11

⇝⇝ λx :τ ′. e ′, i.e.,v11 = λx :τ . e such that τ ⇒ τ ′ and e ⇒ e ′. Similarly,

e12 ↪→
∗ v such that v ⇝⇝ v ′

.

By β , we find (λx :τ . e) v ↪→∗ e ′[v/x]; by transitivity of reduction, we have e1 = e11 e12 ↪→
∗

e ′[v/x]. Since congruence is substitutive (Corollary C.9), we have e[v/x]⇝⇝ e ′[v ′/x].
eq1 (==b ) c1 ↪→ (==(c1,b)). Congruence implies that e1 = e11 e12 such that e11 ⇒ (==b ) and

e12 ⇒ c1. Parallel reduction to a value implies reduction to a related value (Corollary C.13),

e11 ↪→
∗ v11 such that v11

⇝⇝ (==b ) (and similarly for e12 and c1). But the each constant is

congruent only to itself, so v11 = (==b ) and v12 = c1. We have (==b ) c1 ↪→ (==(c1,b)) by

assumption. So e1 = e11 e12 ↪→
∗ (==(c1,b)) by transitivity, and we have congruence by const.

eq2 (==(c1,b)) c2 ↪→ c1 = c2. Congruence implies that e1 = e11 e12 such that e11 ⇒ (==(c1,b)) c2 and

e12 ⇒ c2. Parallel reduction to a value implies reduction to a related value (Corollary C.13),

e11 ↪→
∗ v11 such that v11 ⇒ (==(c1,b)) c2 (and similarly for e12 and c2). But the each constant

is congruent only to itself, sov11 = (==(c1,b)) c2 andv12 = c2. We have (==(c1,b)) c2 ↪→ c1 = c2

already, by assumption. So e1 = e11 e12 ↪→
∗ c1 = c2 by transitivity, and we have congruence

by const. □
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Corollary C.15 (Parallel reduction is a backward simulation). If e1 ⇒ e2 and e2 ↪→ e ′
2
,

then there exists e ′
1
such that e1 ↪→

∗ e ′
1
and e ′

1
⇒ e ′

2
.

Proof. Parallel reduction implies reduction to congruent forms, so e1 ↪→
∗ e ′

1
such that e ′

1

⇝⇝ e2.

But congruence is a backward simulation (Lemma C.14), so e ′
1
↪→∗ e ′′

1
such that e ′′

1

⇝⇝ e ′
2
. By

transitivity of evaluation, e1 ↪→
∗ e ′′

1
. Finally, congruence implies parallel reduction (Lemma C.8),

so e ′′
1
⇒ e ′

2
, as desired. □

C.4 Cotermination
Theorem C.16 (Cotermination at constants). If e1 ⇒ e2 then e1 ↪→

∗ c iff e2 ↪→
∗ c .

Proof. By induction on the evaluation steps taken, using direct reduction in the base case

(Corollary C.13) and using parallel reduction as a forward and backward simulation (Lemmas C.5

and Corollary C.15) in the inductive case. □

Corollary C.17 (Cotermination at constants (multiple parallel steps)). If e1 ⇒∗ e2 then

e1 ↪→
∗ c iff e2 ↪→

∗ c .

Proof. By induction on the parallel reduction derivation. The base case is immediate (e1 = e2);

the inductive case follows from cotermination at constants (Theorem C.16) and the IH. □
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