
CS131 Typed Lambda Calculus Worksheet
Due Thursday, April 19th

Name:

CAS ID (e.g., abc01234@pomona.edu):

I encourage you to collaborate. Please record your
collaborations below.

Each question is worth one point, except problems
marked with a (C) are “challenge” problems—go
ahead and test your mettle, but these are longer or
harder than anything I’d put on an exam and worth
no course credit.

Please turn in your work as a printout of this sheet,
not on separate paper. If you would rather typeset
your work, I can give you the LATEX... but you’ll learn
more by writing it by hand.

Collaborators:

1 Lambda calculus with booleans

t ::= bool | t1→t2
e ::= x | e1 e2 | λx:t. e | true | false | if e1 then e2 else e3
Γ ::= · | Γ, x:t

Γ(x) = t

Γ ` x : t

Γ ` e1 : t1→t2 Γ ` e2 : t1

Γ ` e1 e2 : t2

Γ, x:t1 ` e : t2

Γ ` λx:t1. e : t1→t2

Γ ` true : bool Γ ` false : bool

Γ ` e1 : bool Γ ` e2 : t Γ ` e3 : t

Γ ` if e1 then e2 else e3 : t

1.1 Type hunting

For each term e, find a context Γ and type t that makes that term well typed, i.e., Γ ` e : t.

1. Γ ` if x then x else y : t Γ = t =

2. Γ ` x y : t Γ = t =

3. Γ ` λx:bool. x : t Γ = t =

4. Γ ` λx:bool→bool. y x true : t Γ = t =

5. Γ ` λx:bool→bool. y (x true) : t Γ = t =

6. Γ ` λx:t1. if y then x else y : t Γ = t =

t1 =

7. Γ ` λx:t1 y:t2 z:bool. if z then x else y : t Γ = t =

t1 = t2 =

1.2 Term hunting

For each type t, find a closed term e that has that type, i.e., · ` e : t.

1. · ` e : bool→bool

2. · ` e : bool→bool→bool

3. · ` e : (bool→bool)→bool

4. · ` e : (bool→bool→bool)→bool

1.3 A failed hunt

Explain why there are no t1, t2, and t3 such that · ` (λx:t1. x x) (λx:t2. x x) : t3.

1.4 A type you can count on

How many semantically different closed values are there of type bool? That is, we can write an infinite
number of closed programs with type bool, but how many different values can we get out? List them as
lambda calculus terms.

How many semantically different values are there of type bool→bool? There are infinitely many syntactically
different values of type bool→bool, but many of them behave the same. How many different behaviors can
a value typed at bool→bool exhibit? List them as (typed) lambda calculus terms.

1.5 We make our own rules, here

Suppose we extended our grammar with a forms e1∧e2 (conjunction, read “e1 and e2”), e1∨e2 (disjunction,
read “e1 or e2”), and ¬e (negation, read “not e”).

Write typing rules for these forms.

1.6 Conditional love (C)

Suppose we extend our grammar with a multi-branch conditional, of the form:

cond {e11 ⇒ e12; e21 ⇒ e22; . . . ; ⇒ ed}

Here are small-step evaluation rules for it:

e11 −→ e′11
cond {e11 ⇒ e12; e21 ⇒ e22; . . . ; ⇒ ed} −→ cond {e′11 ⇒ e12; e21 ⇒ e22; . . . ; ⇒ ed}

cond {true⇒ e12; e21 ⇒ e22; . . . ; ⇒ ed} −→ e12

cond {false⇒ e12; e21 ⇒ e22; . . . ; ⇒ ed} −→ cond {e21 ⇒ e22; . . . ; ⇒ ed}

cond { ⇒ ed} −→ ed

In English, a multi-branch conditional evaluates each of its branches ei1 ⇒ ei2 in turn; if ei1 yields true,
then it executes ei2; otherwise, it keeps checking other branches. If none of the branches match, it runs the
default branch ed.

Write a typing rule for cond.

2 Tuples

2.1 Two’s company

Write the typing rules for a lambda calculus extended with pair types (t1, t2), pairs (e1, e2) and projections
fst e and snd e.

2.2 The trouble with triples

Write the typing rules for a lambda calculus extended with triples, i.e., the type (t1, t2, t3) and the terms
(e1, e2, e3), first e, second e, and third e.

2.3 It’s a twofer (C)

Devise a syntactic sugar for encoding triples in terms of pairs. That is, write down four pieces of syntactic
sugar that take the triple type and expression syntax of Problem 2.2 to a program in the pair syntax of
Problem 2.1. Make sure you syntactic sugar: (a) has the right behavior; and (b) preserves types appropriately,
i.e., if (e1, e2, e3) is well typed per your rules in Problem 2.2, its encoding should be well typed per your
rules in Problem 2.1.

2.4 No limits (C)

Write typing rules for tuples of arbitrary length, i.e., types (t1, . . . , tn), tuples (e1, . . . , en), and projections
πi e which get the ith element of a tuple. Be sure to allow n to be 0.

3 Other extensions

3.1 List of demands

Suppose we have integers (type int) in the lambda calculus. Add lists of integers to the simply typed lambda
calculus, i.e., a type intlist and terms nil, cons e1 e2, and case e1 of {nil⇒ e2; cons x1 x2 ⇒ e3}. Here are
evaluation rules for case:

e1 −→ e′1
case e1 of {nil⇒ e2; cons x y ⇒ e3} −→ case e′1 of {nil⇒ e2; cons x y ⇒ e3}

case nil of {nil⇒ e2; cons x y ⇒ e3} −→ e2

case (cons v1 v2) of {nil⇒ e2; cons x1 x2 ⇒ e3} −→ e3[v1/x1][v2/x2]

Write typing rules for nil, cons e1 e2, and case e1 of {nil⇒ e2; cons x1 x2 ⇒ e3}.

This problem’s title was inspired by the inimitable Saul Williams (see https://www.youtube.com/watch?v=zDMtaIcrfQ0).

3.2 Sum more than others

Add the Haskell Either datatype to the simply typed lambda calculus. That is, extend the rules of the
simply typed lambda calculus to include so-called sum types t1 + t2 and terms left e, right e, and a pattern
matching form like case e1 of {left x1 ⇒ e2; right x2 ⇒ e3}. You’ll need to write typing rules for each of
these new syntactic forms.

What changes would you make, if any, to implement these rules in a type checker?

Fun fact: pairs are also called product types, and are sometimes written t1 × t2 or t1 ∗ t2 to emphasize this
fact. The sum/product analogies are why datatypes are sometimes called algebraic datatypes.

3.3 Get your fix

In HW07, we introduced recursion by adding let rec. We could have instead added recursive functions
directly. Suppose we extend the simply typed lambda calculus with an expression form fix f(x:t1) : t2 = e
Here f is the name of the function, x is its argument and t1 is the argument’s type, t2 is the return type,
and e is the body. It evaluates as follows:

(fix f(x:t1) : t2 = e) v −→ e[v/x][fix f(x:t1) : t2 = e/f]

For example,
(fix fact(n:int) : int = if n = 0 then 1 else n ∗ fact (n− 1)) 5→∗ 120

Write a typing rule for fix.

3.4 That’s an order (C)

Suppose we have a simply typed lambda calculus with let x = e1 in e2. Let e1; e2 be syntactic sugar for
let = e1 in e2, i.e., it runs e1, throws away the result, and then runs e2.

Let’s extend the simply typed lambda calculus with state, i.e., a type ref t and terms new e (which allocates
a new reference with e as its initial value), read e1 (which looks up the current value of the reference in e1),
and write e1 e2 (which sets the reference in e1 to have a new value in e2. For example, we have:

let x = new true in read x −→∗ true

let x = new true in write x false −→∗ ()

let x = new true in write x(¬(read x)); read x −→∗ false

Write typing rules for new, read, and write. Don’t allow “strong updates”, which change the type of a
variable. That is, let x = new true in write x (λx:bool. x) should be ill typed. You can assume that there is
a rule saying Γ ` () : ().

Write small-step reduction rules for these features. Note that you’ll need to add something to the step
relation to keep track of the values of each reference. (How did we handle mutation for the While language?)
You might need another page.

