Lecture 24 — 2017-11-28
Pi calculus
This lecture is written in literate Haskell; you can download the raw source.
c is a channel name
x is a variable
Types
t ::= Chan t
| t1 * ... * tn
Expressions
e ::= x | c | (e1, ..., en)
Values
v ::= c | (v1, ..., vn)
Patterns
pat ::= x | _ | (pat1, ..., patn)
Pi calculus processes
p, q ::= 0 | p|q | new x:t. p | send e1(e2) | rec e(pat). p | rec! e(pat). p
Channels (set)
C ::= {c1, ..., cn}
Running processes (list)
R ::= [p1, ..., pm]
Machine state
M ::= <C; R>
Substitutions
Θ ::= - | Θ[x |-> v]
Pattern matching
----------
v ~ _ |> -
-------------------
v ~ x |> -[x |-> v]
v1 ~ pat1 |> Θ1 ... vn ~ patn |> Θn
-------------------------------------------- where each Θ has a disjoint domain
(v1, ..., vn) ~ (pat1, ..., patn) |> Θ1...Θn
Operational semantics
---------------------------------------------------------------------------
<C; [p1, ..., pi-1, 0, pi+1, ..., pn]> --> <C; [p1, ..., pi, pi+1 ..., pn]>
------------------------------------------------------------------------------------
<C; [p1, ..., pi-1, (p|q), pi+1, ..., pn]> --> <C; [p1, ..., pi, p, q pi+1 ..., pn]>
q = new x:t. p q in R c not in C
-------------------------------------------
<C; R> --> <C U {c}; (R \ [q]) ++ [p[c/x]]>
q = send c(v) p = rec c(pat). p' q, p in R v ~ pat |> Θ
----------------------------------------------------------------
<C; R> --> <C; (R \ [q, p]) ++ [Θp']>
q = send c(v) p = rec! c(pat). p' q, p in R v ~ pat |> Θ
-----------------------------------------------------------------
<C; R> --> <C; (R \ [q]) ++ [Θp']>