
CS054: Relations

The goal of this worksheet is to give you practice with relations, functions, and their properties. It’s not for
a grade—no need to turn it in! I’ll post solutions, but you’ll get the most out of it if you don’t peek.

1. What’s a descriptive name for the following relation T ⊆ bool× bool?

T = {(>,>), (>,⊥), (⊥,⊥)}

Answer:

Solution: a T b when a is “at least as true as” b.

2. Construct a relation that is reflexive but not symmetric. It can be on any pair of sets you like.

Answer:

Solution: There’s an infinity of possibilities here! The T relation above is one.

3. Construct a relation that is reflexive but not transitive. It can be on any pair of sets you like.

Answer:

Solution: Again, there are lots of ways to go here. On RPS, we might say

U = {(rock, rock), (paper, paper), (scissors, scissors), (rock, paper), (paper, scissors)}.

Note that U is reflexive, but we don’t have rock U scissors as transitivity would demand.
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4. Prove that the symmetric closure of a relation R ⊆ A×A is symmetric.

Proof:

Solution: We have:

R ∪R−1 = {(a, b) | (a, b) ∈ R ∨ (a, b) ∈ R−1}
= {(a, b) | (a, b) ∈ R ∨ (b, a) ∈ R}

Let (a, b) ∈ R ∪R−1 be given. Either (a, b) ∈ R—in which case (b, a) ∈ R−1—or vice versa. QED

5. Write a relation R ⊆ N× N that is total but not deterministic.

Answer:

Solution: One example is less than or equal to: every natural number is less than or equal to some
other natural number (total), but also to many others (not deterministic).

6. Write a relation R ⊆ N× N that is deterministic but not total.

Answer:

Solution: One example is true predecessor: every natural number has a unique predecessor... except
for 0.
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7. Prove that map(f, map(g, l)) = map(f ◦ g, l).
Proof:

Solution: By induction on l.

(l = []) Both sides yield [] immediately.
(l = x :: l′) We must show that map(f, map(g, x :: l′)) = map(f ◦ g, x :: l′); we have as our IH that
map(f, map(g, l′)) = map(f ◦ g, l′). We compute:

map(f, map(g, x :: l′)) = map(f, g(x) :: map(g, l′))
= f(g(x)) :: map(f, map(g, l′))
= (f ◦ g)(x) :: map(f, map(g, l′))
= (f ◦ g)(x) :: map(f ◦ g, l′)) (IH)
= map(f ◦ g, x :: l′))

8. Prove that if f : A→ B is a bijection, then f−1 : B → A and is also a bijection. (Some theorems from
the book will help, but you’ll learn the most if you do it all by hand.)

Proof:

Solution: Let bijective f : A→ B be given. We have, by definition, f−1 = {(b, a) | f(a) = b}.
We must first show that f−1 is indeed a function; then we must show that it is injective and
surjective, i.e., bijective.

First f−1 is total because f is surjective: ∀b ∈ B, ∃a ∈ A, f(a) = b, and so (b, a) ∈ f−1. We can find
at least one a for each b.

Next, f−1 is deterministic because f is injective: ∀a1, a2 ∈ A, f(a1) = f(a2) ⇒ a1 = a2. Since
(b, a1) ∈ f−1 iff (a1, b) ∈ f (and similarly for a2), we know that (b, a1), (b, a2) ∈ f−1 implies that
a1 = a2. So f−1 is deterministic.

Having concluded that f−1 is a function, we need to show that it’s injective and surjective.

To see that f−1 is injective, recall that f is deterministic: ∀a ∈ A, b1, b2 ∈ B, (a, b1) ∈ f ∧ (a, b2) ∈
f ⇒ b1 = b2. So if (b1, a) and (b2, a) ∈ f−1, then b1 = b2—i.e., ∀b1, b2 ∈ B, f−1(b1) = f−1(b2) ⇒
b1 = b2.

Finally, we find that f−1 is surjective from the fact that f is total: ∀a ∈ A,∃b ∈ B, (a, b) ∈ f , i.e.,
for any a, we can find a b ∈ B. Since (a, b) ∈ f implies (b, a)inf−1, we know that ∀a ∈ A,∃b ∈
B, f−1(b) = a, i.e., f−1 is surjective. QED
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