
3 Type Problems in Object-Oriented

Languages

We begin our study of the type systems of object-oriented programming lan-

guages by first providing a critique of the type systems of existing statically

typed object-oriented programming languages. The reason for providing

such a critique is that our goal is not only to describe existing programming

languages, but also to use a deep understanding of the object-oriented con-

cepts in order to design better object-oriented languages. While the next few

chapters will mainly focus on describing the types and semantics of exist-

ing languages, we hope this chapter will give the reader a better insight into

the overall goals of this work and provide motivation for the later work on

extending the expressiveness of object-oriented languages.

3.1 Type checking object-oriented languages is difficult

The features of object-oriented languages that provide added flexibility, like

subtyping and inheritance, also create difficulties in type checking these lan-

guages. We provide here a brief overview of some of the typing difficulties

that arise from them.

While subtyping is trivial for simple types, defining a correct notion of

subtype for more complex types like record, function, and object types can

be tricky. In particular, there has been great confusion over what is the proper

subtyping rule for functions. Later we explain why the so-called “contravari-

ant” subtyping rule for the types of parameters in function types is correct

and why the “covariant” rule may lead to typing errors.

Adding new instance variables and methods to a subclass does not cause

typing difficulties, but modifying existing methods may create problems. If

the types of parameters or the return type of the modified method differ



34 3 Type Problems in Object-Oriented Languages

from those in the corresponding method of the superclass, it might cause

type problems.

If the method m being modified was used in a second method n of the

superclass, then changes in types in m may destroy the type correctness of

n when it is inherited in the subclass. We will see later that considerations

involving subtyping can be used to determine which changes in types are

guaranteed to preserve type safety.

Another important type-related question that arises with subclasses is de-

termining whether the type of an object generated from a subclass is always

a subtype of the type of an object generated from the superclass. While most

current object-oriented languages have type systems that ensure this is the

case, we will see that it need not hold if the language contains certain fea-

tures that provide for more flexible constructions of subclasses.

These and other features of object-oriented languages have made it diffi-

cult to create statically typed object-oriented programming languages that

are both very expressive and type safe. The following enumerates some of

the strengths and weaknesses of the type-checking systems of some of the

more popular object-oriented languages (or the object-oriented portions of

hybrid languages1).

• Some show little or no regard for static typing (e.g., Smalltalk).

• Some have relatively inflexible static type systems, requiring type casts

to overcome deficiencies of the type system. These type casts may be

unchecked, as in C++ and Object Pascal [Tes85], or checked at run time,

as in Java.

• Some provide mechanisms like “typecase” statements to allow the pro-

grammer to instruct the system to check for more refined types than can

be determined by the type system (e.g., Modula-3 [CDG+88], Simula 67

[BDMN73], and Beta [KMMPN87]).

• Some allow “reverse” assignments from superclasses to subclasses, which

require run-time checks (e.g., Beta, Eiffel [Mey92]).

• Some require that parameters of methods overridden in subclasses have

exactly the same types as in the superclasses (e.g., C++, Java, Object Pascal,

and Modula-3), resulting in less flexibility than would be desirable, while

1. We consider a hybrid language to be one that attempts to support multiple paradigms. C++

and Object Pascal are examples of languages that attempt to support both procedural and object-

oriented styles of programming.



3.2 Simple type systems are lacking in flexibility 35

others allow too much flexibility in changing the types of parameters or

instance variables, requiring extra run-time or link-time checks to catch

the remaining type errors (e.g., Eiffel and Beta).

Thus all of these languages either require programmers to program around

deficiencies of the type system, require run-time type checking, or allow

run-time type errors to occur. Thus, there appears to be a lot of room for

improvement in moving toward a combination of better security and greater

expressiveness in the type systems. In the next section we provide several

examples showing problems with current static type systems.

3.2 Simple type systems are lacking in flexibility

Languages like Object Pascal, Modula-3, and C++ arose as object-oriented

extensions of imperative programming languages. These languages, as well

as Java, have relatively simple and straightforward type systems whose fea-

tures are similar to those of the procedural languages from which they were

derived. In these simple type systems, the programmer has little flexibility

in redefining methods in subclasses. They require that a redefined method

have exactly the same type as the original method in the superclass. Simi-

larly the types of instance variables may not be changed in subclasses. We

refer to type systems that restrict the types of methods and instance variables

in subclasses to be identical to those in superclasses as invariant type systems.INVARIANT TYPE

SYSTEM Interestingly, in these invariant systems, when a method is inherited or re-

defined in the subclass, the programmer is often able to deduce more refined

types for methods than the language allows to be written. For example the

programmer may know that a certain method always returns an object of

type DType even though the type system of the program restricts the pro-

grammer from writing that type as the return type because it does not allow

changes to method types in subclasses. We present examples illustrating this

below.

As mentioned earlier, we will find it helpful to keep the notions of class and

type separate. The type represents only the public interface of the object (in

our case the names and types of all of the methods, but not the instance vari-

ables), while the class includes names, types, and initial values for instance

variables and names, types, and code for methods.

We will often use the convention in this book of writing CType for the type

of objects generated by a class named C or CClass. In Chapter 2, we fol-



36 3 Type Problems in Object-Oriented Languages

lowed that convention in using CellType as the name of the type of objects

generated by class CellClass.

3.2.1 The need to change return types in subclasses

In our first examples we show that it is useful to be able to modify the re-

turn types of methods when the methods are redefined in subclasses (and

sometimes even when they are not).

In most pure object-oriented languages (e.g., Eiffel, Java, and Smalltalk, as

well as the languages we introduce later in this text), all objects are repre-

sented as references (i.e., implicit pointers). Thus assignment results in shar-

ing, rather than copying. In these languages, it is useful to have an operation

that makes a new copy or clone of an object. A common way of supporting

this is to provide a built-in clone method in the top-most class of the ob-CLONE

ject hierarchy (called Object in Java), so that all other classes automatically

inherit it. For the rest of this chapter we assume that our language has a

top-most class named Object, and its type is ObjectType.

A shallow copy is made by copying the values of instance variables and

taking the same suite of methods as the original. If the instance variables

hold references to other objects, only the references are copied, not the objects

being referred to. Thus if this shallow clone method is applied to the head of

a linked list, only the head node is copied while the rest of the list is shared

between the new and old lists.

What should be the type of clone? When defined in the class Object, it

seems apparent that it should return a value of type ObjectType. However,

when this is inherited by a class CellClass, we would like it to return a

value of type CellType. In the invariant type systems, the return type of

clone remains ObjectType, even though the method actually returns a

value that is a cell! That is, the semantics of the language does the correct

thing, but the type system is not expressive enough to capture that. Instead

the programmer must perform a type cast or other operation after the clone
method has returned in order to allow the system to treat the value as having

the proper type!

Often it is desirable to write a deepClonemethod that is based on clone.

This is typically done by first writing code to send the clone message to

self to make the shallow copy, and then writing code to clone all objects

held in the instance variables of the original object.

Suppose we have a class C that includes a method deepClone, which re-

turns an object of type CType. See Figure 3.1. Suppose we now define a sub-



3.2 Simple type systems are lacking in flexibility 37

class SC of C that includes a new method, newMeth, as well as a new instance

variable, newVar, holding an object with type newObjType. We assume for

simplicity that newObjType also supports a deepClone method.

We would like to redefine deepClone to clone the contents of this new in-

stance variable after all of the code in the original deepClone method from

C has been executed. (This is a quite common desire in real object-oriented

languages as subclass methods cannot obtain access to private instance vari-

ables from the superclass.)

Unfortunately, the rules of the simple type systems require that deep-
Clone for SC also return a CType, just as in C, even though it is obvious that

it actually returns an object of type SCType. While this is not type-unsafe, it

represents an unnecessary loss of information in the type system.

Suppose anSC is a variable of type SCType. If we write (anSC ⇐ deep-
Clone()) ⇐ newMeth(), the type checker will complain, even though

the object resulting from anSC ⇐ deepClone() has the method newMeth.

The problem is that the type system is not aware of this!

In these circumstances, Object Pascal, C++, and Java programmers would

normally be forced to perform a type cast to tell the compiler that the cloned

object has the type SCType. In the case of Object Pascal and C++, the type

cast is unchecked. In Java, it would be checked at run time. Modula-3 pro-

grammers would typically use a typecase statement that also performs a

run-time check to get the same effect.

One could attempt working around these deficiencies in the static type

system by making up a new name for the revised deepClone method (e.g.,

SCdeepClone). Unfortunately this would mean that inherited methods that

included a message send of deepClone would call the old deepClone for

C rather than the updated method from SC actually desired.

For example, suppose C includes a method m invoking deepClone as fol-

lows

function m(): Void is
{ ...

self ⇐ deepClone()
...

}

Also suppose class SC is defined as a subclass of C as in Figure 3.1, except

that it adds a new method SCdeepClone that returns a value of type SC-
Type. If sc has type SCType, then sc ⇐ SCdeepClone() will certainly

result in the newly defined clone method being called. However the execu-



38 3 Type Problems in Object-Oriented Languages

class C {
...

function deepClone(): CType is
{ self ⇐ clone(); ... }

}

class SC inherits C modifies deepClone {
newVar:newObjType := nil;

function newMeth(): Void is
{ ... }

function setNewVar(newVarVal:newObjType): Void is
{ self.newVar := newVarVal }

function deepClone(): SCType is
// illegal return type change!
// Must return CType instead

var // local variable declaration
newClone:SCType := nil;

{
newClone := super ⇐ deepClone();

// (*) another problem
newClone ⇐ setNewVar(newVar ⇐ deepClone());
return newClone

}
}

Figure 3.1 Typing deepClone methods in subclasses.

tion of sc⇐ m() will result in the execution of the method deepClone from

the superclass rather than the newly defined SCdeepClone that was likely

intended. As a result of calling only the old method, the value in the new in-

stance variable, newVar, will not be cloned, possibly causing problems later

in the program.

Thus the restriction on changing types of methods in subclasses gets in



3.2 Simple type systems are lacking in flexibility 39

the way of the programmer, even though the run-time system does the right

thing. Not surprisingly, we have similar problems even writing down the

type of the built-in (shallow) clone. In Java, clone is simply given a type

indicating that it returns an element of the top class, Object. The result

must then be cast to the appropriate type before anything substantial may be

done with it.

In newer versions of C++, it is possible to specialize the return type of

methods in subclasses. Thus method deepClone in SC could be specified to

return a value of type SCType rather than CType. Unfortunately this does

not solve all of our problems. First note that the right side of the assignment

on line (*) of Figure 3.1 returns a value of type CType. Because the type of the

variable on the left side is a subtype of CType, the assignment is illegal. (A

value of the subtype can masquerade as a supertype, not the reverse!) Thus

a type cast would have to be inserted to make the assignment legal.

Moreover, suppose class SC has a subclass SSC that adds new methods,

but no new instance variables. As a result, there is no need to override

method deepClone. However, if it is not overridden then it will continue

to return type SCType rather than the desired SSCType. To get the types

right, the programmer would have to override deepClone solely to cast the

return type of the call of the superclass to the new type.

Thus, allowing covariant changes to the types of methods in subclasses

would be helpful, but it would be even more helpful if some way could be

found to have them change automatically. In the next section we show that

it would also be convenient to be able to change the types of method param-

eters in subclasses.

3.2.2 Problems with binary methods

Our next class of examples is one that arises surprisingly frequently in prac-

tice. The particular typing problem arises in connection with what are of-

ten called binary methods. Binary methods are methods that have a param-BINARY METHODS

eter whose type is intended to be the same as the receiver of the message.

Methods involving comparisons, such as eq, lt, and gt, or other famil-

iar binary operations or relations are common examples of such methods

(e.g., someElt ⇐ lt(otherElt)). In procedural languages, these meth-

ods would be written as functions that take two parameters (hence the “bi-

nary”). However, they are written with single parameters in object-oriented

languages because the receiver of the message plays the role of the other pa-



40 3 Type Problems in Object-Oriented Languages

rameter. Other compelling examples arise in constructing linked structures

(e.g., node⇐ setNext(newNext)).

While it is not difficult to define binary methods when specifying classes

from scratch, it is much more problematic for subclasses. Suppose we define

class C below with method equals:

class C {
...
function equals(other:CType): Boolean is
{ ... }
...

}

In the example we use our convention that CType is the type of objects gen-

erated from class C. If o is generated from class C, the signature of equals
requires that the parameter o’ in o.equals(o’) have type CType for the

message send to be well-typed.

However, we have problems when we define a subclass SC:

class SC inherits C modifies equals {
...
function equals(other:CType): Boolean is

// Want parameter type to be SCType instead!
{ super ⇐ equals(other);

... // Can’t access SC-only features in other
}

...
}

Because we are not allowed to change the type of parameters in subclasses,

we cannot change the type of CType to SCType, even though that may be

what is desired here.

Similarly to our previous example with SCdeepClone, changing the name

of the method to newEquals does not help. If there are occurrences of

equals in the inherited methods of the superclass, we would like the new

method body to be called, but instead the old would be invoked. Overload-

ing the name equals does not help either. Overloading is resolved statically

rather than at run time, so the problem of calling the wrong method is no

different than using the new name above.



3.2 Simple type systems are lacking in flexibility 41

Programmers using languages with invariant type systems sometimes use

the following trick of overriding equals in the subclass with a body that casts

the argument to the desired type before it is used.

class SC’ inherits C modifies equals {
...
function equals(other:CType): Boolean is
var

otherSC:SCType := nil;
{ otherSC := (SCType)other; // type cast!

...
return super ⇐ equals(other) & ... }

...
}

The expression (SCType)other represents casting the expression other to

type SCType. However, these casts can fail at run time. This technique re-

quires the programmer to be quite disciplined in adding casts to all overrid-

den versions of binary methods. It also suffers from the twin disadvantages

of adding run-time checks to each execution of a method, as well as requiring

the programmer to handle the situation where the cast would fail. Clearly it

would be a significant advantage both in programming and execution time

to be able to check such calls statically.

A second example of the problems with binary methods arises from linked

structures. Figure 3.2 contains a definition of the class, Node, which gener-

ates objects of type NodeType that form nodes for a singly linked list of

integers. In the class there is one instance variable, value, for the value

stored in the node, and another, next, to indicate the successor node. There

are methods getValue and setValue to get and set the values stored in

the node, and methods getNext and setNext to get and set the successor

of the node.

Notice that method getNext returns a value of type NodeType, the type

of object generated by class Node, while the setNext method takes a pa-

rameter of type NodeType. Thus the type NodeType is recursively defined.

It is not uncommon to have such recursively-defined types in object-oriented

languages.

Suppose we now wish to define a subclass of Node, DoubleNode, which

implements doubly linked nodes, while reusing as much as possible the code

for methods in Node. Figure 3.3 contains an attempt at defining such a



42 3 Type Problems in Object-Oriented Languages

NodeType = ObjectType {
getValue:Void → Integer;
setValue:Integer → Void;
getNext:Void → NodeType;
setNext:NodeType → Void

}

class Node {
value:Integer := 0;
next:NodeType := nil;

function getValue(): Integer is
{ return self.value }

function setValue(newValue:Integer): Void is
{ self.value := newValue }

function getNext(): NodeType is
{ return self.next }

function setNext(newNext:NodeType): Void is
{ self.next := newNext }

}

Figure 3.2 Node class.

subclass, DoubleNode. DoubleNode adds to Node an additional instance

variable, previous, as well as new methods to retrieve and set the pre-
vious node. If DoubleNodeType is the type of objects generated from the

class, then we will want both the next and previous instance variables

to have type DoubleNodeType. Similarly, the methods that get and set

next or previous nodes should take parameters or return values of type

DoubleNodeType rather than NodeType. This is particularly important be-

cause we do not want to allow the attachment of a singly linked node to a

doubly linked node.2

2. The method setPrev is not really intended for public use because it only sets one of the two

links. Normally it would be given a designation that would indicate this. Because we have not



3.2 Simple type systems are lacking in flexibility 43

DoubleNodeType = ObjectType {
getValue:Void → Integer;
setValue:Integer → Void;
getNext:Void → NodeType;
setNext:DoubleNodeType → Void;
getPrev:Void → DoubleNodeType;
setPrev:DoubleNodeType → Void

}

class DoubleNode inherits Node modifies setNext {
previous:DoubleNodeType := nil;

function getPrev(): DoubleNodeType is
{ return self.previous }

function setPrev(newPrev:DoubleNodeType): Void is
{ self.previous := newPrev }

function setNext(newNext:DoubleNodeType): Void is
// error - illegal change to parameter type

{ super ⇐ setNext(newNext);
newNext ⇐ setPrev(self) }

}

Figure 3.3 Doubly linked node class — with errors.

Unfortunately, in the simple type system described here, we have no way

of changing these types, either automatically or manually, in the subclass.

The class DoubleNode defined in the figure illegally changes the parame-

ter type of method setNext in a covariant way. It is also troublesome that

method getNext returns type NodeType, while setNext takes a parameter

of type DoubleNodeType.

Suppose we create LglDbleNode as a legal subclass of Node. We might

write it as shown in Figure 3.4. Problems become apparent when overrid-

ing the setNext method. We cannot send a setPrev message to the bare

parameter newNext, since its declared type is NodeType rather than LglD-

yet introduced such features, we will ignore that minor point here.



44 3 Type Problems in Object-Oriented Languages

bleNodeType. As a result the programmer must insert a cast to tell the type

checker to treat it as though it has type LglDbleNodeType.

However, if a programmer sends setNext to an object generated from

LglDbleNode with a parameter that is generated from Node, it will not be

picked up statically as an error. Instead the cast will fail at run time.

Even if a variable dn has type LglDbleNodeType, the evaluation of

(dn ⇐ getNext()) ⇐ getPrev()

will generate a static type error, because the type checker can only predict

that the results of dn ⇐ getNext() will be of type NodeType, not the

more accurate LglDbleNodeType. Thus, even if the programmer has cre-

ated a list, all of whose nodes are of type LglDbleNodeType, the program-

mer will still be required to write type casts to get the type checker to accept

the program.

To get the desired types for the instance variable next and the methods

getNext and setNext, we would instead have to define DoubleNode in-

dependently of Node, even though much of the code is identical. This is

clearly undesirable.

We do not bother to show the code for an independently defined class, In-
dDoubleNode, with the same behavior as DoubleNode. We leave it as an

exercise for the reader to write it and notice how similar the code is to that of

Node. However, we show the corresponding object type, IndDoubleNode-
Type, in Figure 3.5. Even such an independent definition has problems.

While we have not yet discussed the rules for determining when object types

are in the subtype relation, the code in Figure 3.5 can be used to show that the

resulting type, IndDoubleNodeType, cannot be a subtype of NodeType.

The function breakit in the figure is well-typed, as setNext takes a

parameter of type NodeType, and the expression new Node as the actual

parameter creates a value of type NodeType.

Suppose IndDoubleNodeType were a subtype of NodeType. If so, and

if dn was a value generated from IndDoubleNode, then breakit(dn)
would be well-typed, as values of type IndDoubleNodeType could mas-

querade as elements of type NodeType. However, that is not the case!

The execution of node ⇐ setNext(newNode) in the body of breakit
would result in the message send of setPrev to the parameter newNext.

But newNext holds a value that is generated from Node. This would result

in a run-time type error as elements generated from Node have no setPrev
method. This shows that object type IndDoubleNodeType could not be



3.2 Simple type systems are lacking in flexibility 45

LglDbleNodeType = ObjectType {
getValue:Void → Integer;
setValue:Integer → Void;
getNext:Void → NodeType;
setNext:NodeType → Void;
getPrev:Void → LglDbleNodeType;
setPrev:LglDbleNodeType → Void

}

class LglDbleNode inherits Node modifies setNext {
previous:LglDbleNodeType := nil;

function getPrev(): LglDbleNodeType is
{ return self.previous }

function setPrev(newPrev:LglDbleNodeType): Void is
{ self.previous := newPrev }

function setNext(newNext:NodeType): Void is
{ super ⇐ setNext(newNext);

((LglDbleNodeType)newNext) ⇐ setPrev(self) }
// cast necessary to recognize setPrev

}

Figure 3.4 Legal doubly linked node class — with cast.

a subtype of NodeType, as elements of type IndDoubleNodeType cannot

safely masquerade as elements of type NodeType.

This example is particularly troubling in that it seems to be tailor-made for

the use of inheritance, but it (i) cannot be written correctly with an invariant

type system, and (ii) would result in a type error if the type of objects gener-

ated from the desired subclass were a subtype of the type of objects generated

from the original class. These problems are not special to the Node example,

but arise with all binary methods because of the desire for a covariant change

in the parameter type of binary methods.

We will later find a way to add expressiveness to languages in order to

allow us to write DoubleNode as a subclass of Node. We will then need to



46 3 Type Problems in Object-Oriented Languages

IndDoubleNodeType = ObjectType {
getValue:Void → Integer;
setValue:Integer → Void;
getNext:Void → IndDoubleNodeType;
setNext:IndDoubleNodeType → Void;
getPrev:Void → IndDoubleNodeType;
setPrev:IndDoubleNodeType → Void

}

function breakit(node:NodeType): Void is
{ node ⇐ setNext(new Node) }

var
n:NodeType
dn:IndDoubleNodeType

{
n := new Node;
dn := new IndDoubleNode;
breakit(n); // No problem
breakit(dn) // Run-time error here!

}

Figure 3.5 Example showing why IndDoubleNodeType cannot be a subtype of

NodeType.

ensure that the resulting object types are not subtypes in order to avoid the

second problem.

invariant type systems do have the desirable property that subclasses gen-

erate subtypes, but it may be worth losing subtyping in some circumstances

if it makes it significantly easier to define desirable subclasses. We will eval-

uate these trade-offs when we examine the more flexible type system of Eiffel

in the next chapter.

3.2.3 Other typing problems

In both of the examples above, the difficulties arose from an attempt to keep

return or parameter types the same as those of the object being defined.

While this is an extremely important special case, there are other examples



3.2 Simple type systems are lacking in flexibility 47

class CircleClass {
center:PointType := nil;
...
function getCenter(): PointType is
{ return self.center }
...

}

class ColorCircleClass inherits Circle
modifies getCenter {

color:ColorType := black;
...
function getCenter(): ColorPtType is { ... }

// illegal type change in subclass!
...

}

Figure 3.6 Circle and color circle classes.

where it is desirable to change a type in a subclass in a covariant way. In these

examples, the type to be changed may have no relation to the type of objects

generated by the classes being defined. Many examples of this phenomenon

arise when we have objects with other objects as components.

Figure 3.6 contains the definition of a class, CircleClass, with a get-
Centermethod that returns a point. If we define a subclass that represents a

color circle, it would be reasonable to wish to redefine getCenter to return

a color point, as in the code in the figure. This would be illegal by the rules

on method types in these invariant object-oriented languages. We would like

to have a typing system that allows such changes, as long as they are type

safe.

Again, however, even if we allowed a change in the return type of get-
Center in the subclass, we still have the problem that we cannot change

the type of the instance variable center. If center is still of type Point-
Type, we will either need to add a type cast (which may fail) to the body of

getCenter or we may have to change the body to build a new color point

from the color and center instance variables. The latter involves a lot

of work each time getCenter is called, and is probably not worth the ef-



48 3 Type Problems in Object-Oriented Languages

fort compared to separately returning the values of center (as a point) and

color.

Finally, there likely will be a method setCenter in CircleClass that

takes a parameter of type PointType. Even C++ will not allow changing

the types of parameters of methods in subclasses, so setCenter in Color-
CircleClassmust accept parameters of type PointType. Thus if we wish

center to have type ColorPtType in the subclass, we will have to add a

dynamic check before assigning the value or live with the possibility that the

value could fail to be a color point.

3.3 Summary of typing problems

In this chapter we illustrated several problems with invariant type systems.

In each case the difficulty arose from a desire to change the types of methods

that are modified in subclasses. However no changes to the types of methods

are allowed in invariant type systems.

In order to help alleviate the rigidity in these simple systems, C++ allows

changes to the return types of methods in subclasses. This provided some

help with overriding deepClone and getCenter methods, but as we saw

above, we are still left with significant problems to be overcome. Moreover,

it provides no help in taking care of problems arising in examples involving

binary methods, in particular those involved with redefining the type of the

instance variable next and the parameter type of the method setNext in

the DoubleNode subclass. In Chapter 16 we present a detailed design for

an extension to invariant type systems that, when combined with parametric

polymorphism, provides one possible solution to all of these problems.

Given these examples, readers may be wondering why statically typed

object-oriented languages are so restrictive in not allowing covariant changes

to the types of instance variables or the parameters of methods in subclasses.

We put off this discussion until after we have discussed the rules for sub-

typing in chapter 5. For now we content ourselves with the explanation that

we are simply examining the restrictions in the most popular existing stati-

cally typed object-oriented languages. In the next chapter we examine some

more expressive type systems for object-oriented languages that will help

overcome these difficulties.


