
7

Type Classes

A symbol is overloaded if it has two (or more) meanings, distinguished by type, that

are resolved at compile time. For example, in Haskell, as in many other languages,

the operator + has (at least) two distinct implementations associated with it, one

of type Int -> Int -> Int, the other of type Float -> Float -> Float. The

reason that both of these operations are given the name + is that both compute

numeric addition. However, at the implementation level, the two operations are re-

ally very different. Because integers are represented in one way (as binary numbers)

and floating point numbers in another (as exponent and mantissa, following scien-

tific notation), the way that integer addition combines the bits of its arguments to

produce the bits of its result is very different from the way this is done in floating

point addition.

A characteristic of overloading is that overloading is resolved at compile time.

If a function is overloaded, then the compiler must choose between the possible

algorithms at compile time. The process of choosing one algorithm from among

the possible algorithms associated with an overloaded function is called overload

resolution. In many languages, if a function is overloaded, then only the function

arguments are used to resolve overloading. For example, consider the following two

expressions:

3 + 2 {- add two integers -}
3.0 + 2.0 {- add two floating point numbers -}

Here is how the compiler will produce code for evaluating each expression:

� 3 + 2: The parsing phase of the compiler will build the parse tree of this ex-

pression, and the type-checking phase will compute a type for each symbol.

Because the type-checking phase will determine that + must have type Int ->

Int -> Int, the code-generation phase of the compiler will produce machine

instructions that perform integer addition.

� 3.0 + 2.0: The parsing phase of the compiler will build the parse tree of this

153

154 Type Classes

expression, and the type-checking phase will compute a type for each symbol.

Because the type-checking phase will determine that + must have type Float

-> Float -> Float, the code-generation phase of the compiler will produce

machine instructions that perform floating point addition.

Automatic conversion is a separate mechanism that may be combined with

overloading. However, it is possible for a language to have overloading and not to

have automatic conversion. Haskell, for example, does not do automatic conversion.

7.1 OVERLOADING VERSUS POLYMORPHISM

Parametric polymorphism can be contrasted with overloading. In an influential his-

torical paper, Christopher Strachey referred to Haskell-style polymorphism as para-

metric polymorphism (although Haskell had not been invented yet) and overloading

as ad hoc polymorphism. The key difference between parametric polymorphism and

overloading is that parameteric polymorphic functions use one algorithm to oper-

ate on arguments of many different types, whereas overloaded functions may use a

different algorithm for each type of argument.

Overloading is an important language feature because many useful functions

are not polymorphic: they work only for types that support certain operations. For

example, the member function

member :: [t] -> t -> Bool

does not work for all possible types t, but only for types t that support equality.

This restriction arises from the fact that when applied to a list and an item, the

member function has to check if the item is equal to any of the elements on the list.

Similarly, the sort function sort :: [t] -> [t] works only for types t that have

an ordering. Math computations such as sumOfSquares :: [t] -> t work only

for types that support numeric operations.

7.2 CHALLENGES IN DESIGNING OVERLOADING MECHANISMS

Many overloading mechanisms focus primarily on overloading for simple mathemat-

ical operations and equality, probably because the alternative of having to provide

separate symbols to denote equality, addition, subtraction, and other similar opera-

tions for different types of arguments seemed unpalatable. We will use these special

cases to illustrate some of the challenges in designing a mechanism to support

overloading.

Suppose we have a language that overloads addition + and multiplication *,

providing versions that work over values of type Int and type Float. Now, consider

the double function, written in terms of the overloaded addition operation:

double x = x + x

7.2 Challenges in Designing Overloading Mechanisms 155

What does this definition mean? A naive interpretation would be to say that

double is also overloaded, defining one function of type Int -> Int -> Int and

a second of type Float -> Float -> Float. All seems fine, until we consider the

function

doubles (x,y,z) = (double x, double y, double z)

Under the proposed scheme, this definition would give rise to eight different versions!

This approach has not been widely used because of the exponential growth in the

number of versions.

To avoid this blow-up, language designers have sometimes restricted the defini-

tion of overloaded functions. In this approach, which was adopted in Standard ML,

basic operations can be overloaded, but not functions defined in terms of them.

Instead, the language design specifies one of the possible versions as the meaning of

the function. For example, Standard ML give preference to the type int over real,

so the type (and implementation) of the function double would be int -> int. If

the programmer wanted to define a double function over floating point numbers,

she would have to explicitly write the type of the function in its definition and give

the function a name distinct from the double function on integers. This approach

is not particularly satisfying, because it violates a general principle of language

design: giving the compiler the ability to define features that programmers cannot.

Overloading support for equality is even more critical than that for arith-

metic operations. If it is unpleasant to be required to have two versions of double,

doubleInt and doubleFloat, imagine how much more irritating it would be to be

required to have a different symbol to denote equality for every type that supports

the comparison! The first version of Standard ML treated equality in the same

way it treated overloading for arithmetic operators: equality was overloaded but

not functions defined in terms of equality. This design means that functions like

member do not work in general:

member [] y = False

member (x:xs) y = (x == y) || member xs y

member [1,2,3] 2 -- okay if default is integer

member [’a’, ’b’, ’c’] ’b’ -- illegal

To avoid this limitation, the designers of Miranda adopted a different approach.

They made equality fully polymorphic:

(==) :: t -> t -> Bool

With this design, the member function is also fully polymorphic, with type [t] ->

t -> Bool. However, some types do not have a meaningful notion of equality, for

156 Type Classes

example, functions (for which true equality is undecidable) and abstract types that

do not provide a definition of equality. In Miranda, equality applied to a function

produced a runtime error, while equality applied to a value with abstract type

compared the underlying representation, which violates principles of abstraction.

A third approach, which is what Standard ML uses today, is to make equality

polymorphic in a limited way. In this design, the type of equality is:

(==) :: ’’t -> ’’t -> Bool

The double ticks before the type variable t indicate that t is an eqtype variable,

which means a type variable that ranges only over types that admit equality. With

this notion, we can give a precise type to the member function:

member :: [’’t] -> ’’t -> Bool

Applying this member function to either integers and characters is legal since both

types support equality, but applying member to a list of functions or abstract types

produces a static error.

This discussion highlights some of the goals for a mechanism to support over-

loading, namely, the need to avoid a version explosion while allowing users to define

new overloaded functions. In addition, a general principle of language design is to

avoid special cases, so designs that treat equality and arithmetic operators spe-

cially are considered less good than designs that allow any kind of operation to be

overloaded.

7.3 TYPE CLASSES

Type Classes are a language mechanism in Haskell designed to support general
overloading in a principled way. They address each of the concerns raised above.

They provide concise types to describe overloaded functions, so there is no expo-

nential blow-up in the number of versions of an overloaded function. They allow

users to define functions using overloaded operations, such as the double function

we discussed earlier. They allow users to introduce new collections of overloaded

functions, so equality and arithmetic operators are not privileged. A key idea in the

design is to generalize Standard ML’s eqtypes to user-defined collections of types,

called a type class. Just as all eqtypes support equality, all members of a Haskell

type class support some family of operations. We will describe the mechanism in

more detail in the following sections. A final benefit of the type class design is that

it fits smoothly in a type inference framework.

7.3.1 Intuition

To develop an intuition for how type classes work, consider a typical implementation

of a simple quicksort function:

7.3 Type Classes 157

qsort :: (a -> a -> Bool) -> [a] -> [a]

qsort cmp [] = []

qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs)

++ [x] ++

qsort cmp (filter (not.cmp x) xs)

This function works by recursively sorting the elements less than x, recursively

sorting the elements greater than x, and then concatenating the resulting lists

with x in the middle. Notice that qsort is parameterized by the function cmp

that indicates how to compare elements of the list. It is this extra argument to

qsort that allows the function to be parametric rather than overloaded. To see

this point, imagine qsort did not take cmp as an argument but instead referred

to an overloaded < operator. In this case, qsort would be overloaded rather than

polymorphic. We can use this idea of passing functions as arguments to convert

overloaded functions into parametric ones.

Consider the function poly, which is overloaded because of the overloaded arith-

metic operators * and +.

poly x = x * (x + x)

To convert poly to a non-overloaded function, we can rewrite it to take the over-

loaded operators as arguments, just as qsort takes the cmp function as an argument:

poly1 (times, plus) x = times x (plus x x)

We can view this extra argument as a dictionary that provides the relevant imple-

mentations for overloaded operations. Of course, we now have to rewrite all the call

sites to pass appropriate definitions for times and plus:

anInt = poly1 (int times, int plus) 10

aFloat = poly1 (float times, float plus) 2.71

To better document the fact that these extra arguments comprise a dictionary

for numeric operations, we can introduce a type for the dictionary and accessor

functions to extract the particular overloaded operations. For example:

-- Dictionary type

data NumDict a = MkNumDict (a->a->a) (a->a->a)

-- Accessor functions

get times :: NumDict a -> (a->a->a)

158 Type Classes

get times (MkNumDict times plus) = times

get plus :: NumDict a -> (a->a->a)

get plus (MkNumDict times plus) = plus

We can then rewrite the poly function to work with this dictionary type and use

the accessor functions.

-- Dictionary-passing style

poly2 :: NumDict a -> a -> a

poly2 dict x = let times = get times dict

plus = get plus dict

in times x (plus x x)

This code follows a very precise structure. It uses the accessor functions to create

local bindings for the overloaded functions by extracting the corresponding bindings

from the dictionary.

Next, we create a dictionary for each type supporting numeric operations, for

example, Int and Float:

-- Dictionary creation

intDict = MkNumDict int times int plus

floatDict = MkNumDict float times float plus

Finally, we can rewrite each call to the overloaded poly function to take the ap-

propriate dictionary as an argument:

-- Passing dictionaries

y = poly2 intDict 10

z = poly2 floatDict 2.71

The function poly2 is a polymorphic function that provides the desired behavior

of the overloaded function poly.

Of course, this series of transformations would be tedious for a programmer

to carry out. To avoid this tedium, Haskell’s type class mechanism automates the

rewriting process, as we will see in the following sections.

7.3.2 Type Class Declarations

The Haskell type class mechanism is comprised of three components: type class

declarations, type class instance declarations, and qualified types. We will describe

each of these in turn. Type classes are quite different from classes in object-oriented

7.3 Type Classes 159

languages, so don’t be confused by the similarity in the name while reading the rest

of this chapter!

A type class declaration defines a set of operations and their types and gives the

set a name. For example, the following type class declaration introduces the type

class Eq, which provides equality and inequality operations:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

This declaration can be read: “Any type a that belongs to the Eq type class has

two defined operators, == and /=, both of which return a Bool when applied to

two values of type a.” Intuitively, these two operations should define equality and

inequality, respectively, but nothing in the language enforces this intuition.

As another example, the poly function from the previous section would use the

Num type class, whose declaration looks like the following:

class Num a where

(*) :: a -> a -> a

(+) :: a -> a -> a

negate :: a -> a

... <other numeric operations> ...

7.3.3 Instance Declarations

A type class instance declaration makes a type an instance of a type class by defining

the operations of the type class for the given type. For example, the following

instance declaration makes the type Int an instance of the Eq type class, assuming

int eq is the primitive equality operation for values of type Int.

instance Eq Int where

i == j = int eq i j

i /= j = not (int eq i j)

As another example, the instance declaration for Num Int looks like:

instance Num Int where

(*) = int times

(+) = int plus

negate x = int negate x

... <other numeric operations> ...

160 Type Classes

where int times, int plus, and int negate are primitive arithmetic operations

on values with type Int.

When processing an instance declaration, the compiler ensures that the types

of the given definitions match the declared types in the associated type class after

replacing the type variable in the class declaration with the type given in the in-

stance declaration. For example, the compiler checks that the type of int times is

equal to the type a -> a -> a when a is replaced by Int.

7.3.4 Qualified Types

Qualified types concisely express the operations required to convert an overloaded

function into a polymorphic one. For example, the type of the member function is

a qualified type:

member :: Eq t => t -> [t] -> Bool

This declaration can be read “For all types t that belong to the Eq type class, the

function member takes a value of type t and a list of t values, and returns a Bool.

The “Eq t =>” prefix of this type is what makes it qualified. The qualification

restricts the member function to arguments that belong to the Eq type class and

hence support the == operation.

Similarly, the functions double and poly have qualified types:

double :: Num t => t -> t

poly :: Num t => t -> t

indicating that they can be applied to a value of any type t as long as t belongs to

the Num class.

Besides the Eq and Num type classes, other standard type classes include the Ord

class for types that support ordering, the Show class for types that can be converted

to strings, the Read class for types whose values can be constructed from strings,

the Arbitrary class for types for which random values can be generated, the Enum

class for types whose members can be enumerated, and the Bounded class for types

that have lower and upper bounds. Every type class declaration introduces a new

class name that can be used in qualified types. Examples that use these type classes

are:

sort :: Ord t => [t] -> [t]

serialize :: Show t => t -> String

Each of these types precisely documents the operations that must be supported

by the type variables. For sort, the type t must support comparison, while for

serialize, the type t must support conversion to strings. If a function is not

7.4 Compiling Type Classes 161

qualified, then it must be purely polymorphic and work for any type whatsoever.

Note that qualified types give a concise way to represent overloading. Consider

the doubles function, which we saw earlier, that conceptually has eight different

types. All eight of these types can be expressed with a single qualified type:

doubles :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)

Note also that this qualified type shows that a single type can have multiple type

variables constrained by type classes. In this case, all three are constrained by the

Num type class, but in the general case, each type variable can be constrained by

a different type class. In addition, a single type variable can be constrained by

multiple type classes. For example, a function that serialized all values in a list that

were greater than a particular value would have to belong to both the Ord and Show

type classes:

serializeGreater :: (Ord a, Show a) => [a] -> a -> [String]

7.4 COMPILING TYPE CLASSES

Using the information provided by type class declarations, instance declarations,

and qualified types, the Haskell compiler automates the rewriting process we went

through by hand in 7.3.1. From a type class declaration, the Haskell compiler gener-

ates a new dictionary type and corresponding accessor functions. From a type class

instance declaration, the Haskell compiler generates a dictionary value. For each

function definition with a qualified type, the Haskell compiler rewrites the function

definition to take a dictionary parameter following the same pattern as we saw in

the definition of poly2. For each call to a function with a qualified type, the Haskell
compiler inserts the appropriate dictionary as an extra argument.

We will consider each of these translations in more detail using examples, start-

ing with the translation for type class declarations. Given the Num type class dec-

laration, the Haskell compiler will generate a data type declaration for the Num

dictionary and a selector function for each operator in the dictionary. A value of

type Num t is a dictionary of the numeric operations appropriate for values of type

t.

data Num n = MkNum (n -> n -> n)

(n -> n -> n)

(n -> n)

...types of other numeric operators...

(+) :: (Num n) -> n -> n -> n

(+) (MkNum plus ...) = plus

162 Type Classes

The bottom two lines are defining the + operator to extract the plus function from

the Num dictionary.

From an instance declaration, the compiler generates a dictionary definition. For

example, for the Int instance declaration for the Num class, the compiler generates

dNumInt :: Num Int

dNumInt = MkNum int times

int plus

int negate

... other numeric operators ...

The value dNumInt is the Num dictionary for the Int type.

For functions with qualified types, the compiler rewrites the function definition

to replace the qualified type with a parameter having the type of the corresponding

dictionary. For example, the compiler will replace the qualified double function

double :: Num t => t -> t

double x = x + x

with the corresponding double function written in dictionary-passing style:

double :: Num t -> t -> t

double d x = (+) d x x

Note that the qualified type Num t => prefix is replaced by an extra argument d of

type Num t. During the translation, the compiler also rewrote the call to + so that

it uses prefix rather than infix syntax. The body of the rewritten double function

applies the (+) accessor function to extract the appropriate definition of addition

from the dictionary d and then applies this function to the argument x twice.

For calls to functions with qualified types, the compiler rewrites the call to

insert the appropriate dictionary as an extra argument. The compiler uses the

inferred static type of the call site to decide which dictionary to insert. This practice

is different from dynamic dispatch in object-oriented languages, which uses the

dynamic type of objects to determine which method to invoke. For example, given

the call

let x :: Int = double 1

the compiler infers based on the static type of x that the rewritten double function

should be called with the integer dictionary dNumInt rather than the other possible

Num dictionaries.

Functions that are qualified over multiple type classes are rewritten to take

7.5 Compositionality 163

multiple dictionaries as arguments. For example, the doubles function would be

rewritten to take three Num dictionaries as arguments, while the serializeGreater

function would take a Show dictionary and an Ord dictionary as arguments.

doubles :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c)

doubles (da,db,dc) (x, y, z) =

(double da x, double db y, double dc z)

serializeGreater :: (Ord a, Show a) -> [a] -> a -> [String]

serializeGreater (da ord, da show) items pivot = ...

7.5 COMPOSITIONALITY

Composability is a desirable feature in language design because it means program-

mers can build more complex structures out of simpler ones. Haskell’s type class

mechanism supports composability in two dimensions. First, it allows users to de-

fine overloaded functions from other overloaded functions, and second, it allows

compound instances to be defined from simpler instances. We will discuss each of

these in turn.

We saw at the beginning of this chapter that a hallmark of a good design for

overloading is allowing users to define their own overloaded functions from existing

ones. Haskell’s type class mechanism supports overloaded functions calling other

overloaded functions by threading the appropriate dictionaries through the calls.

For example, consider the function prodDouble that calls the overloaded function

double

prodDouble :: Num t => t -> t -> t

prodDouble x y = (double x) * (double y)

The Haskell compiler will translate this code to

prodDouble :: Num t -> t -> t -> t

prodDouble d x y = (*) d (double d x) (double d y)

adding the Num dictionary d as a parameter and using the accessor (*) to extract

the multiplication operation from this dictionary. It will also pass the dictionary

on to the two calls to double, so each of these functions will be able to extract the

necessary addition function.

The second form of composability allows programmers to declare complex in-

stance declarations from simpler ones. To see the utility of such a capability, consider

defining an equality operation on lists. If a type t supports equality, we can define

an equality for type [t] without knowing the details of the type t. Such a function

would take two lists of type [t] and compare the elements using the definition of

164 Type Classes

equality for values of type t. Given this fact, it would be annoying to have to define

equality for lists of Ints and then again for lists of Floats, and so on! Haskell’s

instance declarations support a form that allows such generic definitions. The fol-

lowing instance declaration defines list equality in terms of an equality function for

the list element type:

instance Eq t => Eq [t] where

(==) [] [] = True

(==) (x:xs) (y:ys) = x==y && xs == ys

(==) = False

This instance declaration says that if t belongs to the Eq class (“Eq t =>”), then

the type [t] also belongs to the Eq class. Just like the instance declarations we

saw before, this instance declaration defines the methods of the class. In this case,

the instance declaration defines the == operation using pattern matching. The first

clause says that two empty lists are always equal. The second clause says that two

lists are equal if the heads of the lists are equal (x and y) and if the tails are equal

(xs and ys). Note that the heads have type t and so it is t’s version of equality

that is used to compare these elements, while the tails have type [t], and so it is

the operation we are currently defining that is being used recursively to determine

if the tails are equal. Finally, if neither of the first two patterns match, then the

lists cannot be equal.

Instance declarations translate to dictionary value declarations, so this instance

declaration for Eq [t] must also generate a dictionary declaration. However, to

construct a list dictionary, we need the dictionary for the element type so we can

compare head elements. Hence the instance declaration for lists translates to a

function from the dictionary for the element type to the dictionary for the list.

Given an element Eq dictionary, we can construct a list Eq dictionary:

dEqList :: Eq a -> Eq [a] -- List Dictionary

dEqList d = MkEq eqlist

where

eqlist [] [] = True

eqlist (x:xs) (y:ys) = (==) d x y && eqlist xs ys

eqlist = False

data Eq = MkEq (a->a->Bool) -- Dictionary type

(==) (MkEq eq) = eq -- Accessor function

In this code, if d is the dictionary for the element type, then dEqList d is the list

dictionary. The function dEqList applies the Eq dictionary constructor MkEq to the

value eqlist, which is the raw dictionary for lists, constructed from the operator

definitions in the list instance declaration. Notice how the d dictionary is used to

find the equality function with which to compare the list head elements while the

7.6 Fleshing Out the Design 165

list dictionary eqlist is used to compare the tails.

7.6 FLESHING OUT THE DESIGN

So far, we have looked at the core elements of Haskell’s type class mechanism. In

this section, we will look at various additional features of the design that make

using it more convenient for programmers.

7.6.1 Subclasses

Sometimes membership in one type class logically implies membership in another.

For example, we could treat the Eq and Num type classes separately, listing each in

the qualified type if we need operations from either:

mem double :: (Eq t, Num t) => t -> [t] -> Bool

mem double x xs = member (double x) xs

However, any type providing the operations of the Num class would also want to

provide the operations in the Eq type class. The subclass declaration form expresses

this relationship.

class Eq t => Num t where

(+) :: t -> t -> t

(*) :: t -> t -> t

...

This declaration says that a type t that belongs to the Eq type class “Eq t =>”

can also belong to the Num type class if it defines the numeric operations (+), (*),

and so on. In other words, a type t can belong to the Num type class only if it also

belongs to the Eq type class.

Given this subclass declaration for the Num type class, we do not have to list

both the Eq and Num type classes in the type of the mem double function:

mem double :: (Num t) => t -> [t] -> Bool

mem double x xs = member (double x) xs

Instead, the code can simply list the Num class.

Just as for simple class declarations, the Haskell compiler generates a dictionary

and a collection of accessor functions from subclass declarations. The compiler adds

the methods of the superclass to the dictionary for the new class and generates

corresponding accessor functions.

166 Type Classes

7.6.2 Default Methods

Sometimes in defining a type class, there is a sensible default version of some (or

all) of the methods in the class, often in terms of the other methods of the class.

For example, the Eq class contains two methods, equality (==) and inequality (/=).

Once one of these methods is defined, it is trivial to define the second in terms of

the first. The type class mechanism supports this scenario by allowing programmers

to declare default methods in type class declarations. Such defaults are overridden

for a type T if there is type class instance declaration for T that gives a more specific

implementation.

For example, the Eq class has the following default methods:

-- Minimal complete definition: (==) or (/=)

class Eq t where

(==) :: t -> t -> Bool

x == y = not (x /= y)

(/=) :: t -> t -> Bool

x /= y = not (x == y)

This code specifies that two values x and y are equal if they are not unequal,

and two values are unequal if they are not equal. In defining an instance of the

Eq class, a programmer need only define one of the two methods, the default will

suffice for the second. Note that the programmer must define at least one of the

methods; otherwise invoking either equal or unequal will cause an infinite loop.

This expectation is recorded in the comment above the Eq class declaration, but

the compiler does not check that the program satisfies the expectation.

7.6.3 Deriving

When defining a new datatype, it is often desirable to make the new type an

instance of a number of type classes, such as the Eq or Show type classes. Obvious

implementations for the required methods of these type classes exist, but it can

be tedious for the programmer to write them down. To avoid this tedium, the

Haskell compiler supports automatic deriving for certain type classes, including the

Read, Show, Bounded, Enum, Eq, and Enum classes. For example, given the following

datatype declaration for the type Color,

data Color = Red | Green | Blue

deriving (Show, Read, Eq, Ord)

the compiler generates code to serialize colors to strings (Show), to convert such

serialized strings back to values of type Color (Read), to compare colors for equality

(Eq), and to order colors, using the order that the colors were written in the type

declaration (Ord).

The compiler supports the deriving mechanism for only a fixed collection of

7.6 Fleshing Out the Design 167

type classes, because it is only these classes that it knows how to generalize to any

datatype declaration. It is not obvious, for example, how to add two values of an

arbitrary datatype, so the compiler has no way to make an arbitrary datatype an

instance of the Num type class.

This design is not fully satisfactory from a programming-language design point

of view. Why should deriving be restricted to a fixed collection of type classes? Why

shouldn’t the programmer be able to declare new type classes and have the compiler

derive instances for these type classes? Furthermore, why shouldn’t programmers

be able to specify what code the compiler should generate for new datatypes and

new type classes? Providing better support for deriving is an active area of research.

7.6.4 Numeric Literals

One challenge for any programming language is how to handle numeric literals.

In mathematical notation, the symbol 1 can denote an integer, a real number, a

fraction, a complex number, and so on. In a programming language, however, each

of these different kinds of things is represented differently, and so the compiler needs

to be able to distinguish which kind of thing the programmer meant when writing

down the number 1. This need leads many programming languages to require that

the various usages be syntactically distinct, for example, writing 1 only for the

integer one and 1.0 for the real version.

Haskell leverages the type class mechanism to allow the programmer to use the

numeric literal 1 as any kind of numeric type. To enable this flexibility, the Num

type class has an additional member, fromInteger, that converts any value of type

Integer to the numeric type t:

class Eq t => Num t where

(+) :: t -> t -> t

(*) :: t -> t -> t

fromInteger :: Integer -> t

Note that the type of numInteger is Num t => Integer -> t. Consequently, fol-

lowing the normal procedure for compiling overloaded functions, the compiler will

convert each occurrence of fromInteger in the program text to code that looks up

the type-specific definition of fromInteger in the appropriate numeric dictionary.

The compiler uses the static type of the context in which the fromInteger function

is used to determine which dictionary is “appropriate.”

With this mechanism in place, all that is needed to support overloaded numeric

literals is to have the parser convert occurrences of integer literals in the program to

calls to the fromInteger overloaded function. For example, if the literal 1 appears

in the program, then the parser returns a parse tree for the code fromInteger 1,

making it look to the rest of the compiler like the programmer had written the

more verbose form. Thus if a literal 1 appears in a context expecting a Float,

then the normal type class compilation process results in calling the fromInteger

function defined in the Float instance of the Num type class, yielding a value of type

Float. If it appears in a context expecting an Integer, then the integer version of

168 Type Classes

fromInteger is called, yielding a value of type Integer, and so on.

This ability to overload numeric literals extends to user-defined types. For ex-

ample, we can define a type Cpx of complex numbers. Making Cpx an instance of

the Num type class allows us to write 1 to denote a complex number as well as an

Integer or a Float.

data Cpx a = Cpx a a

deriving (Eq, Show)

instance Num a => Num (Cpx a) where

(Cpx r1 i1) + (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)

fromInteger n = Cpx (fromInteger n) 0

...

The definition of the fromInteger function in this instance declaration uses the

fromInteger function defined for the type of n to produce a representation for the

real portion of the complex number. It sets the imaginary portion to be the value

0. With this instance declaration, we can use values of type Cpx in any context

requiring a type from the Num class.

c1 = 1 :: Cpx Int

c2 = 2 :: Cpx Int

c3 = c1 + c2

c4 = prodDouble c3

In this example, c1 is bound to the complex number denoted by the literal 1 and c2

is bound to the complex number denoted by the literal 2. Such complex numbers

can be added just like integers and can be passed to user-defined functions such as

prodDouble, which work for any type belonging to the Num class.

7.7 TYPE INFERENCE

The type inference algorithm described in the previous chapter can be extended to

include the overloaded types introduced using type classes. In this richer setting,

the type inference algorithm infers a qualified type, of the form Q => T. The type

T is a purely polymorphic type of the kind from Chapter 6, inferred using the same

procedure as before. The constraint Q is a set of type class predicates that the types

mentioned in T must belong to. For example, consider the function example:

example z xs =

case xs of

[] -> False

(y:ys) -> y > z || (y==z && ys == [z])

7.7 Type Inference 169

Running simple type inference on this example produces a polymorphic type t ->

[t] -> Bool. Examining the body of the example function for uses of overloaded

functions, we can collect the required constraints. In particular, we get the con-

straint Ord t from the comparison y > z, the constraint Eq t from the equality

check y == z, and the constraint Eq [t] from the equality check ys == [z]. Com-

bining this information results in the inferred type (Ord t, Eq t, Eq [t]) => t

-> [t] -> Bool for the example function. However, as we will see, the constraint

(Ord t, Eq t, Eq [t]) is more complicated than necessary.

There are a number of ways to simplify constraint sets. First, we can eliminate

duplicate constraints. If the constraint set is {Eq t, Eq t}, we can simplify the

set to be just {Eq t}. Second, we can use information from compound instance

declarations. For example, the instance declaration for Eq [t] describes how to

construct an instance of Eq [t] from an instance of Eq t. Hence given Eq t, we

know that Eq [t] holds as well. In other words, given that we know Eq t, we also

know Eq [t]. Hence we can simplify the constraint set {Eq [t], Eq t} to be just

{Eq t}. Third, we can use information from a subclass declaration. For example,

the class declaration for the Ord class has the form:

class Eq t => Ord t where

(<) :: t -> t -> Bool

...

This declaration indicates that any instance of the class Ord must also be an instance

of the class Eq. Hence, we may simplify the constraint {Ord t, Eq t } to {Ord t}.

Applying these rules to the constraint set (Ord t, Eq t, Eq [t]) produces the

simpler set {Ord t}. The inferred type for the example function is thus

example :: (Ord t) => t -> [t] -> Bool

In this setting, type errors are reported when a predicate that is required to

hold for a particular type is known not to do so. For example, the type checker

knows that the type Char does not belong to the Num type class, and so attempting

to add 1 to the character ‘a’ produces an error message:

Prelude> ‘a’ + 1

No instance for (Num Char)

arising from a use of ‘+’ at <interactive>:1:0-6

Possible fix: add an instance declaration for (Num Char)

In the expression: ’a’ + 1

In the definition of ‘it’: it = ‘a’ + 1

170 Type Classes

The error message explains exactly this point. To add one to ‘a’, the type Char

must be an instance of class Num. Because it is not, the type checker reports a type

error.

7.8 CONSTRUCTOR CLASSES

So far, we have seen how to make types instances of type classes. Haskell also sup-

ports making type constructors instances of type classes, where a type constructor

is a function at the type level. A type constructor takes a type as an argument and

returns a type as a result. For example, [-] is a type constructor in Haskell. If T is

a type, then [T] is the corresponding list type.

We will first motivate type constructor classes by showing a family of functions

involving different type constructors that all share the same structure. In particular,

we will focus on various data structures for which it is useful to have a map function.

First, consider the map function for lists, which we will write as mapList for now

to distinguish it from other versions of the map function.

mapList:: (a -> b) -> [a] -> [b]

mapList f [] = []

mapList f (x:xs) = f x : mapList f xs

result = mapList (\x->x+1) [1,2,4]

The mapList function takes a function f as an argument and a list and returns the

result of applying f to every element in the input list.

Now consider a tree data structure, Tree, and a mapTree function

Data Tree a = Leaf a | Node(Tree a, Tree a)

deriving Show

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Node(l,r)) = Node (mapTree f l, mapTree f r)

t1 = Node(Node(Leaf 3, Leaf 4), Leaf 5)

result = mapTree (\x->x+1) t1

The mapTree function takes a function f as an argument and a tree and returns

the result of applying f to every element in the input tree.

Finally, consider the Opt data structure and the corresponding mapOpt function:

Data Opt a = Some a | None

deriving Show

7.8 Constructor Classes 171

mapOpt :: (a -> b) -> Opt a -> Opt b

mapOpt f None = None

mapOpt f (Some x) = Some (f x)

o1 = Some 10

result = mapOpt (\x->x+1) o1

The mapOpt function takes a function f as an argument and a tree and returns the

result of applying f to every element in the input option.

Note that all of these map functions share the same structure:

mapList :: (a -> b) -> [a] -> [b]

mapTree :: (a -> b) -> Tree a -> Tree b

mapOpt :: (a -> b) -> Opt a -> Opt b

They can all be written as

map :: (a -> b) -> g a -> g b

where g is [-] for lists, Tree for trees, and Opt for options. Note that g, [-], Tree,

and Opt are all examples of type constructors, functions from types to types.

We can capture this pattern in a constructor class, which is a type class where

the predicate ranges over type constructors instead of over simple types:

class HasMap g where

map :: (a -> b) -> g a -> g b

This declaration introduces the constructor class HasMap. For a type constructor g

to belong to the class HasMap, there must be a function map which takes a function

a -> b and a value of type g a and returns a value of type g b.

We can then make lists, trees, and options instances of this type constructor

class

instance HasMap [] where

map = mapList

instance HasMap Tree where

map = mapTree

instance HasMap Opt where

map = mapOpt

172 Type Classes

With these declarations in place, we can use the overloaded symbol map to map

over all three kinds of data structures:

Main> map (\x->x+1) [1,2,3]

[2,3,4]

it :: [Integer]

Main> map (\x->x+1) (Node(Leaf 1, Leaf 2))

Node (Leaf 2,Leaf 3)

it :: Tree Integer

Main> map (\x->x+1) (Some 1)

Some 2

it :: Opt Integer

7.9 TYPE CLASSES VS. OBJECT-ORIENTED CLASSES

Given the terminology associated with type classes, it is natural to ask how type

classes are related to object-oriented classes. There are a number of similarities.

A type class defines a collection of method names and associated types. In this

way, type classes are similar to interfaces in Java. A type class can define default

implementations for some methods, rather like abstract classes in C++. Instance

declarations specify the implementations of the methods of a type class, rather like

an object-oriented class that is defined to implement an interface or abstract class.

With type classes, the collection of methods is gathered into a dictionary structure,

which is similar to a method table in an object-oriented language. When a method

is invoked, the type class code looks up the appropriate method in a dictionary,

while the object-oriented program looks up the method in a method suite.

Despite these similarities, however, there are a number of differences. First, the

algorithm that is used to resolve the method invocation in the two cases is different.

With type classes, the static type of the arguments and the expected return type

of the method is used to select the appropriate dictionary at compile time. With

object-oriented programs, the method suite is associated with objects at run-time,

and the appropriate method definition is selected based on the dynamic type of

the receiver object. Hence code selection with type classes is fundamentally static,

while code selection in object-oriented languages is fundamentally dynamic.

Second, in type classes, the appropriate method to invoke is determined by

all the arguments to the method as well as its result type. For example, the

fromInteger function that we discussed in conjunction with overloaded numeric

literals has type Num t => Integer -> t. Hence it is the result type of this function

that determines which dictionary to use. In contrast, main-stream object-oriented

languages use only the receiver object to select the method body to run.

Third, existing types can be made instances of new type classes by adding new

instance declarations. For example, if we define a new type class PrettyPrint, we

can make any previously defined type an instance of PrettyPrint by adding the

appropriate instance declaration. In contrast, object-oriented languages typically

require a class to specify the interfaces it implements and the abstract superclasses

7.10 Chapter Summary 173

from which it inherits when the class is declared.

Finally, type classes are based on parametric polymorphism and do not require

subtyping, while object-oriented languages make heavy use of subtyping but have

only recently started to incorporate parametric polymorphism.

7.10 CHAPTER SUMMARY

Overloading is a form of polymorphism in which the same program identifier is al-

lowed to have multiple implementations. Which implementation a given occurrence

of the identifier refers to is determined by the static type of the identifier. Overload-

ing is particularly important for equality operators and numeric operations. Early

designs for overloading mechanisms restricted the collection of symbols that could

be overloaded and prevented users from defining their own overloaded functions.

Type classes in Haskell are a principled language featured designed to support

overloading. A type class declaration allows the programmer to introduce a named

collection of overloaded function names and specifies the types of these functions.

An instance declaration allows the programmer to specify how a particular type

belongs to a named type class by giving definitions for the functions declared in

the type class. Qualified types described overloaded functions. The qualifier con-

cisely describes the type classes that are used in the function. Type classes are

translated away during compilation. Each type class declaration is converted into

the type of method dictionary associated with the class. Each instance declara-

tion is translated to a dictionary. Functions with qualified types are converted to

ordinary functions that take an extra dictionary parameter as an argument. Refer-

ences to overloaded functions are converted to code that looks up the appropriate

implementation within the method dictionary.

Type classes solve a variety of problems related to overloading. They provide

concise types to describe overloaded functions, so there is no exponential blow-up in

the number of versions of an overloaded function. They allow users to define func-

tions using overloaded operations, such as the double function. They allow users

to introduce new collections of overloaded functions, so equality and arithmetic op-

erators are not privileged. A key idea in the design is to generalize Standard MLs

eqtypes to user-defined collections of types. Just as all eqtypes support equality,

all members of a Haskell type class support some family of operations. Additional

benefits of the type class design is that it fits smoothly in a type inference frame-

work and can be generalized to allow overloading on type constructors as well as

types.

The difference between parametric polymorphism and overloading is that para-

metric polymorphism allows one algorithm to be given many types, whereas over-

loading involves different algorithms. For example, the function + is overloaded in

many languages. In an expression adding two integers, the integer addition algo-

rithm is used. In adding two floating-point numbers, a completely different algo-

rithm is used for computing the sum.

Type classes are differ from classes in object-oriented languages despite the

similarity in terminology. A key difference is in resolving the code to which a method

name refers. In type classes, the code to run is determined statically, while in object-

oriented languages, the code is determined dynamically.

