
Lecture 1: Overview
CSC 131
Fall, 2012

Kim Bruce

1

Do Languages Matter?

• Why choose C vs C++ vs Java vs Python ...

• What criteria to decide?

• Impact on programming practice

• SIGPLAN Education Board documents

2

Why Article

• Learn widely-applicable design &
implementation techniques

• Creating new domain specific languages or
virtual machines

• Learning new computational models and
speeding language learning

• Choosing the right language

3

Provide Abstractions

• Data Abstractions:

- Basic data types: ints, reals, bools, chars, pointers

- Structured: arrays, structs (records), objects

- Units: Support for ADT’s, modules, packages

• Control Abstractions:

- Basic: assignment, goto, sequencing

- Structured: if...then...else, loops, functions

- Parallel: concurrent tasks, threads, message-passing

4

PL’s & Software Development

• Development process:

- requirements

- specification

- implementation

- certification or validation

- maintenance

• Evaluate languages based on goals

5

Goals of Some older PL’s

• Languages & their goals:

- BASIC - quick development of interactive programs

- Pascal - instruction

- C - low-level systems programming

- FORTRAN, Matlab - number-crunching scientific

• What about large-scale programs?

- Ada, Modula-2, object-oriented languages

6

PL Choice

• Languages designed to support specific
software methodologies.

• Language affect way people think about
programming process.

• Hard for people to change languages if requires
different way of thinking about process.

7

Minimum Requirements

• Natural

• Implementable

• Efficient

• Reliable

• Maintainable

8

Paradigms
or whatever you want to ca! them

• Not crisp boundaries

- Procedural

- Functional

- Logic or Constraint-programming

- Object-oriented

9

History of PL’s

• Machine language
 ⇒ Assembly language
 ⇒ High-level language

• Single highly-trained programmer
 ⇒ Teams of programmers

10

History of PLs

11

Course Goals

• Upon completion of course should be able to:

- Quickly learn programming languages, & how to
apply them to effectively solve programming
problems.

- Rigorously specify, analyze, & reason about the
behavior of a software system using a formally
defined model of the system’s behavior.

- Realize a precisely specified model by correctly
implementing it as a program, set of program
components, or a programming language.

12

Administrivia

• Web page at

- http://www.cs.pomona.edu/classes/cs131/

• Text by Mitchell: being revised now

• If needed, get account at

- https://www.dci.pomona.edu/account-bin/
account_request.php

- Do it early!! Currently no systems manager.

13

Administrivia

• Prerequisite:

- CS 81, Computability and Logic
• Use computability extensively, esp. at beginning

• Formal grammars when talk about parsing

• Homework

- Generally due every week on Thursday night.
• Posted on Friday

- All homework must be turned in electronically
• Prefer Tex’ed, but can scan in if want to write up by hand

• ... but must be legible!!

14

On-Line Discussions

• Will be on Piazza

• You will receive an invitation later this week.

- Do not throw it away!

• You can ask and answer questions on-line.

- TA’s and I will monitor and respond.

15

Grace

• New language designed for teaching novices

- Under development at Pomona, Portland State, and
Victoria University, Wellington, NZ

- Several published papers, partial implementations

• Goal: Integrate current ideas in programming
languages into a simple, general-purpose
language aimed at novices.

16

Why New Language for
Novices?

• Most popular languages too complex & low-level.

• Complexity necessary for professionals, but ...

• “Accidental complexity” of language can
overwhelm “inherent complexity”.

• Minimize language complexity so can focus on
programming/design complexity.

17

Existing Languages Woefully
Out-of-date

• C (1972), C++ (1983), Python (1989), Java (1994)

• History of pedagogical languages:

- Basic, Logo, Pascal

- ... but not recently!

- Miniworlds different: Alice, Karel the Robot, Greenfoot

18

Java Problems

• public static void main(String [] args)

• Primitives versus objects, “==” versus
“equals”

• Flawed implementation of generics

• Static versus instance – on variables &
methods

• float versus double versus int versus long

19
19

>>> class aClass:
 """A simple example class"""
 val = 47
 def f(self):
 return 'hello world'

>>> x = aClass()
>>> x.value = 17
>>> x.val
47
>>> x.f()
'hello world'

Python Problems

disappearing self?

no information hiding

uncaught typos

20

Fine for scripting, but not large-scale so$ware development

20

What if we could have:

• Low syntactic overhead of Python, but
with
• information hiding
• consistent method declaration & use
• required variable declarations
• optional (& gradual) type-checking
• direct definition of objects
• first-class functions

21
21

Hello World in Grace:

print "hello world"

22
22

 Objects
def mySquare = object {
 var side := 10
 method area {
 side * side
 }
 method stretchBy(n) {
 side := side + n
 }
}

Defaults: %instance variables and constants are
confidential (protected), methods are public

Annotations can override the defaults

23

Consistent
indenting is

required!
But no

semicolons.

23

Objects contain declarations
• definitions:

- def x:Number = 17

• variables:

- var y: String := “hello”

• methods:

- method m(w:Number,z:String) -> Done {...}

• types:

- type Point = {x -> Number
 y -> Number ...}

24

Typed Objects
type Square = {
 area -> Number
 stretchBy(n:Number) -> Done
}

def mySquare:Square = object {
 var side:Number := 10
 method area -> Number {
 side * side
 }
 method stretchBy(n:Number) -> Done {
 side := side + n
 }
}

25

like Void

25

Classes

class aSquare.withSide(s:Number) -> Square {
 var side:Number := s
 method area -> Number {
 side * side
 }
 method stretchBy(n:Number) -> Done {
 side := side + n
 }
 print "Created square with side {s}"
}

Type annotations can be omitted or included

• Classes take parameters and generate objects

26
26

Or Object w/Factory Method
def aSquare = object {
 method withSide(s:Number) -> Square {
 object{
 var side:Number := s
 method area -> Number {
 side * side
 }
 method stretchBy(n:Number)-> Done {
 side := side + n
 }
 print "Created square with side {side}"
 }
 }
}

27

What is type of aSquare?

27

Blocks

def double = {n -> n * n}
double.apply(7) // returns 49

// block is implicitly object w/apply method

def nums = aList.from(1)to(100)
def squares = nums.map {n -> n * n}

28

• Syntax for anonymous functions
function

multipart
method
names

Blocks can take 0 or more parameters

28

Blocks

while {boolExp} do { someStuff }

squares.forEach {n ->
 if (n.isEven) then {print n}
}

• Blocks make it simple to define new “control
structures” as methods

29

block,
evaluated repeatedly

boolean
expression, evaluated

once

Parentheses can be dropped if argument bounded by {} or “”
No parens needed for parameterless methods

29

Running Grace

• Compilers generating C or Javascript
• Instructions at http://gracelang.org/

applications/minigrace/
• Choose web-based unless you are a systems

hacker.

30

Grace on the Web

• Go to:
• http://www.cs.pomona.edu/~kim/minigrace/
• Either paste in program or (better) use button

“add a file” then “Choose file” to upload
• “Go” button will compile and execute code.
• Error messages not great yet.
• Simple test code in pop-up menu to far right

of “go”

31

