
Concurrency and Parallelism as a
Medium for Computer Science Concepts

Steven Bogaerts Kyle Burke Brian Shelburne Eric Stahlberg
Department of Mathematics and Computer Science

Wittenberg University
Springfield, OH 45501

USA
{sbogaerts, kburke, bshelburne, estahlberg}@wittenberg.edu

Abstract
This paper argues that the integration of concurrency and paral-
lelism topics throughout the computer science curriculum need not
require a significant reduction in coverage of more “standard” top-
ics. This is accomplished by recognizing that concurrency and par-
allelism can be used as a medium for learning about other standard
topics, rather than as an additional topic to cover. This paper argues
this point and describes ongoing work towards it.

Categories and Subject Descriptors K.3.2 [Computers and Edu-
cation]: Computer and Information Science Education – computer
science education, curriculum

Keywords computer science curriculum, concurrency, parallelism

1. Introduction
In considering curricula for concurrency and parallelism,it is useful
to make an analogy. Consider object-oriented programming (OOP).
At its core, OOP is a different paradigm from imperative program-
ming, the primary paradigm in use decades ago. As OOP was de-
veloped, we can imagine posing questions similar to those ofthis
workshop: Should OOP be taught in introductory computer science
courses? Should OOP topics be ”sprinkled” into existing courses?

Of course there are still many variations in curricula, but in gen-
eral we can see how these questions have been answered. While
there is a place for a high-level OOP course, object-oriented con-
cepts are by no means relegated only to such a course. CS1 typ-
ically includes the use of objects and basic class construction. A
data structures course often includes the creation of abstract data
types with classes. Graphics courses can make use of abstraction
through classes as well as through procedures. The inclusion of
these OO topics has necessitated some additional time to learn me-
chanics, but it is fair to say that many of the topics of these courses
are simply being taught through the medium of OO now, rather
than solely through the medium of imperative programming. Fur-
thermore, while perhaps some sacrifices have been made, mostkey
concepts of imperative programming have not been sacrificedto
achieve this OOP coverage.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH ’10 10/17/2010, Reno, NV.
Copyright c© 2010 ACM . . . $10.00

We argue that the same can and will be said for questions of par-
allelism and concurrency education. There will always be a place
for an advanced course in parallelism, but this should not bethe
only place for such topics. Like OOP, parallelism is too broad-
reaching to be limited to a single advanced course. As such, many
computer science educators have recommended the “sprinkling” of
parallelism throughout the curriculum (e.g., [1], [2]). This paper
argues further that the best way to accomplish this while notsac-
rificing traditional content is to recognize parallelism asa comple-
mentarymedium for learning various computer science topics. It
does require some additional background in basic mechanics, but
once these basics are covered, parallelism can be used in combi-
nation with traditional approaches for learning computer science.
The key is that this can be done without significant elimination of
other material; rather, other material is simply learned through the
medium of concurrency and parallelism.

The computer science faculty at Wittenberg University, in co-
operation with colleagues from Clemson University, are working
under a three-year National Science Foundation grant1 with prin-
cipal investigators Eric Stahlberg and Melissa Smith, to put these
ideas into practice in a total redesign of our curriculum. This part-
nership is a direct response to important challenges facingsmaller
institutions and departments. Faced with limited resources in both
personnel and hardware, it became evident that integrationof the
fundamentals was essential to eliminate the need to add and staff
an elective course. Furthermore, as we argue in this paper, we be-
lieve that much traditional course content can be covered through
the medium of parallelism and concurrency.

Thus a key component of our work in this grant has gone to-
wards a redesign of content in existing courses to make use ofthis
medium. This redesign is under development for courses across the
computer science curriculum, as well as for applications courses in
bioinformatics, computational models and methods, and computa-
tional chemistry. To illustrate, the remainder of this position paper
describes our work in CS1 and programming languages courses,
plus some additional thoughts on computer organization courses.

2. Enhancements in CS1
Similar to OOP as discussed above, some background materialis
required before students can use parallelism as a medium forlearn-
ing standard CS1 topics. In this section we describe this back-
ground material, and then discuss how parallel programmingis
used as a medium for learning other CS1 topics.

1 National Science Foundation grant CCF-0915805, SHF:Small:RUI:Col-
laborative Research: Accelerators to Applications – Supercharging the Un-
dergraduate Computer Science Curriculum

2.1 Background Material

The background material comes in two parts: 1) a high-level
overview of parallel computing concepts and technologies,and
2) an introduction to basic required syntax.

The high-level overview includes discussions in:

• How non-technical tasks are often naturally done in parallel.

• Various physical class activities in which the students play the
part of cores, messages, etc, to vividly illustrate basic concepts.
Some of these activities are based on work in [3].

• The terminology of concurrent and parallel computing.

Depending on constraints and preferences, this material can be
covered in one to four hours of in-class time.

Since our CS1 course is taught in Python, the introduction to
syntax portion of the background material covers basic use of the
Pythonmultiprocessing package, which enables the utilization
of multiple cores. This package is quite simple syntactically. Within
one to two hours of lecture time, students should understandthe
basic syntax of process creation, communication, and synchroniza-
tion.

2.2 Parallelism as a Medium for CS1 Material

Once this background material is covered, much remaining instruc-
tion in parallel computation can occur in CS1 with very little ad-
ditional cost, and thus without sacrificing any additional standard
CS1 content.

For example, suppose students are learning how to use mul-
tiple functions with arguments, to split a larger task into logical
chunks. Suppose they are practicing this on a program that com-
putes the roots of a binomial using the quadratic formula. Wecan
imagine breaking this up into amain, computeDiscriminant,
and computeQuad. Then the students can be asked what should
become a common question: what parts of the computation can be
done in parallel? There are many possibilities, but one simple op-
tion is to compute simultaneously the ”plus” and the ”minus”part
of the numerator in the quadratic formula. This requires modifying
computeQuad to take a sign argument.main should then simply
spawn two processes: one callingcomputeQuad with +1, the other
with -1.

Thus in this example we see that students have received good
practice in splitting a task up into functions and passing needed ar-
guments. The only difference here from a typical CS1 lesson is that
students are getting practice in this in both sequential andparallel
programming. The additional practice in parallel programming has
been obtained without sacrificing any coverage of functions, and
without significantly adding to required course time.

To briefly consider another example, a common CS1 exercise is
to find the maximum key in a list. Again, students should be asked:
how could this be done in parallel? A simple answer is to splitthe
list inton segments assigned ton processors. Each process finds the
largest key in its segment, and a master process finds the ”largest
of the largest”, as it were. This simple approach gives students
good practice inif statements and looping through a list, all in
the context of parallel programming. Again, the key is that this
practice in parallel programming is obtained in a manner wholly
integrated in the ordinary CS1 curriculum, while neither sacrificing
the original content nor adding required course time.

3. Enhancements in Programming Languages
A significant component of many programming languages courses
is the exploration of various programming paradigms and howlan-
guages are designed to facilitate particular tasks within aparadigm.
Thus it is a natural fit to integrate high-performance computing

(HPC) languages into the course. In studying HPC languages,stu-
dents can see how new syntax supports multi-threading, alleviates
common concurrency issues, and simplifies vital parallel patterns.
Language features such as these mirror core differences to impera-
tive languages studied via the logic and functional paradigms.

In spring 2010 we integrated discussion of the HPC language
Chapel [4] into our programming languages course. Much of the
syntax is similar to imperative languages, so students wereable to
jump right into the parallel tools. They enjoyed working with the
added language features, such as timers, variable access controls,
and the built-in reduce and scan operations.

The assimilation of HPC languages into the programming lan-
guages course enabled attention to parallel programming while still
remaining focused on a core mission of the course: to learn about
various programming paradigms and language design to support
particular functions. The new HPC languages, such as Chapel, pro-
vide an excellent medium for exploration of these concepts.

4. Enhancements in Computer Organization
It should be noted that computer organization courses implicitly in-
clude parallelism. Parallelism is seen at the digital logiclevel in
combinatorial circuits, at the instructional level in pipelines and
super-scalar architectures, and in the way I/O is done usingin-
terrupts and DMA. Thus integrating parallelism into a computer
organization course is simply a matter of making the inherent par-
allelism more explicit. Additional opportunities for demonstrating
parallelism can be obtained by introducing ”parallel” hardware de-
sign languages such as VHDL (VHSIC (Very-High-Speed Inte-
grated Circuit) Hardware Description Language) [5]. For example,
VHDL can be used to describe complex parallel circuits like acarry
look-ahead adder, with its parallel propagation of ”carrys”. Com-
parisons can also be made to the more serial approach of the ripple
carry adder. Furthermore, earlier exposure to hardware description
langauges like VHDL and Verilog [6] can pave the way for later
courses in architecture and hardware design.

5. Conclusion
In this position paper we have argued that, while some new material
is required, students can become very proficient in concurrency and
parallelism within the context of the standard CS curriculum. With
careful integration of these topics, this can be accomplished without
a significant reduction in material covered in other areas. Rather,
concurrency and parallelism can serve as a medium in which many
standard topics are discussed.

References
[1] Nevison, C. H. 1995. Parallel Computing in the Undergraduate

Curriculum. InComputer, 28(12): p. 51-56. IEEE Computer Society.

[2] Meredith, M. J. 1992. Introducing Parallel Computing into the
Undergraduate Computer Science Curriculum: A Progress Report. In
ACM SIGCSE Bulletin, 24(1): p. 187-191. New York, NY, USA: ACM
Press.

[3] Maxim, B. D.; Bachelis, G.; James, D.; and Stout, Q. 1990.Introducing
Parallel Algorithms in Undergraduate Computer Science Courses. In
Proceedings of the Twenty-First SIGCSE Technical Symposium on
Computer Science Education, p. 255. New York, NY, USA: ACM
Press.

[4] Chamberlain, B. L.; Callahan, D.; Zima, H. P. 2007. Parallel
Programmability and the Chapel Language. InInternational Journal
of High Performance Computing Applications, 21(3): p. 291-312.

[5] Perry, D. L. 1993. VHDL (2nd Ed.). New York, NY, USA: McGraw-
Hill, Inc.

[6] Thomas, D. E.; Moorby, P. R. 1998. The Verilog Hardware Description
Language (4th Ed.). Norwell, MA, USA: Kluwer Academic Publishers.

