
CS 181S Spring 2024

Lecture 26: Machine Learning Security



Background: Machine Learning



Background: ML Stages
Training Inference
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Training-Stage Attacks
Confidentiality

• training data
• model parameters

Integrity

• Model poisoning

Access Control



Model Poisoning Attacks
Label Manipulation Input Manipulation
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Label Manipulation Attacks
• Random Flipping: 40% labels -> Accuracy significantly 

reduced

• Heuristic Flipping: bias sample towards high-confidence 
training values improves effectiveness and robustness



Input Manipulation: Anomaly Detection
• Anomaly Detection: Given a dataset 𝑋, goal is to 

determine whether a new sample 𝑥 is drawn from the 
same distribution as 𝑋

• Centroid Anomaly Detection: use Euclidean distance 
from empirical mean as metric  
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• reject inputs above threshold 𝑟
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Invalid



Input Manipulation: Anomaly Detection
• Online Anomaly Detection: update normality model
• Update mean by adding new valid datapoint
• Remove random old point and add new datapoint
• Remove old point nearest to new datapoint
• Remove one point at old mean and add new datapoint

• Adversarial Input Manipulation:

• Effective at poisoning anomaly detector for HTTP traffic

Valid



Input Manipulation: Malware Clustering 
• Clustering is used to characterize related malware and 

generate network signatures 

• Poisoning attacks can prevent ML from accurately 
identifying clusters



Inference-Stage Attacks
Confidentiality

• Membership inference
• Model inversion
• Model extraction

Integrity



Membership Inference
Goal: Given a ML model and a data record, determine 
whether record was used to train that model 
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1. Train shadow models on same task 

Attack 
Model

2. Using shadow models as training set,
train attack model on classification task:
was x in training set for model M

3. Use attack model to decide whether
record was used to train target model

83-92% accuracy



Model Inversion
• Goal: Learn (private) training data from ML outputs
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Model Extraction
• Goal: Learn model parameters given black-box access

• For logistic regressions w/ confidence values: ask multiple 
queries, solve system of equations

• For decision trees: for each leaf, search for constraints 
that stay on leaf



Inference-Stage Attacks
Confidentiality

• Membership inference
• Training data extraction
• Model extraction

Integrity

• Adversarial Examples



Direct Adversarial Examples
• Consider a linear model:

• want 𝑥⃗′ such that 𝑥⃗ 	− 𝑥⃗′ " < 𝜖, but ℎ! 𝑥⃗  and ℎ! 𝑥⃗′  differ
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Real-World Adversarial Examples
• Goal: Modify 𝑥⃗ s.t. ℎ! 𝑥⃗′ =

• Goal: Defeat facial recognition 
100% 77.3% 66.7% 100% 80%

Brad Pitt



Review: Security Attacks on ML

Confidentiality

• training data
• model parameters

Integrity

• Model poisoning

Inference-Stage Attacks
Confidentiality

• Membership inference
• Training data extraction
• Model extraction

Integrity

• Adversarial Examples

Training-Stage Attacks



Defending against ML Attacks
• Outlier mitigation: detect examples outside normal 

distribution and mitigate their impact on final model

• Differentially-private training: ensure that there is no 
significant difference if datapoint is in training set

• Gradient masking: minimize model sensitivity during 
training

• Explainable AI: justify decisions to (human) auditor

• Active area of research


