Lecture 21: Differential Privacy

CS 181S
Spring 2024

What is Privacy?

Privacy

Privacy concerns information about individuals (people, organizations, etc.)

- Often construed as legal right
- Privacy is not a synonym for confidentiality or for secrecy

Privacy and Freedom (1967)

Privacy is the claim of individuals, groups or institutions to determine for themselves when, how, and to what extent information about them is communicated to others.

- Alan Westin

Privacy Settings

Opt-outs

Opt-outs

Are you sure you don't want to allow these partners?

We and our advertising partners collect personal information (such as the cookies stored on your browser, the advertising identifier on your mobile device, or the IP address of your device) when you visit our site or use our app. We, and our partners, use this information to tailor and deliver ads to you on our site or app, or to help tailor ads to you when you visit others "sites or use others" apps. To tailor ads that may be more relevant to you, we and/or our partners may share the information we collect with third parties.

To learn more about the information we collect and use for advertising purposes, please see our Privacy Policy. If you do not wish for us or our partners to sell your personal information to third parties for advertising purposes, select the applicable control from the "Do Not Sell My Info" link provided. Note that although we will not sell your personal information after you click that button, we will continue to share some personal information with our partners (who will function as our service providers in such instance) to help us perform advertising-related functions such as, but not limited to, measuring the effectiveness of our ads, managing how

Your Choices Regarding Cookies on this Site

Please choose whether this site may use Functional and/or Advertising cookies, as described below:

REQUIRED COOKIES

These cookies are required to enable core site functionality.

- - FUNCTIONAL COOKIES

These cookies allow us to analyze site usage so we can measure and improve performance.

ADVERTISING COOKIES

These cookies are used by advertising companies to serve ads that are relevant to your interests.

Functionality Allowed

- Provide secure log-in
- Remember how far you are through an order
- Remember your log-in details
- Remember what is in your shopping cart
- Make sure the website looks consistent
- Allow you to share pages with social networks
- Allow you to post comments
- Serve ads relevant to your interests

This page transmits information using HTTPS protocol. Some vendors cannot support HTTPS opt-out requests. TrustArc will submit your preferences through HTTP in a pop-up window.

CANCEL
SUBMIT PREFERENCES
ADVANCED SETTINGS

Manipulation of privacy behavior

A few common examples of manipulative design in privacy-related interfaces

- Defaults are not privacy protective
- Buttons have confusing labels
- Framing - including wording that shames users to influence their decisions or makes them feel like they will be missing out
- Highlighting - visually emphasizing opt-in
- Cumbersome privacy choices - more difficult to choose privacy options

Your room is

 private.-Alexia, age 11

Contextual Integrity

- defines privacy relative to appropriate context
- considers information type, time, location, purpose, principals involved (subject, sender, receiver)
- dependent on social norms
- norms can change over time

General Guidelines

The FTC's Fair Information Practice Principals (FIPPs) are the most broadly recognized guidelines for handling private data in information systems

- Seek consent
- Minimize data use
- Limit storage
- Avoid linking

General Data Protection Regulation

Goal: Codify fundamental right to protection of personal data.

- Introduced individual rights

1. The right to transparency
2. The right to access
3. The right to correct
4. The right to delete
5. The right to data portability
6. The right to withdraw consent
7. The right to object

- Additional obligations
- Legal basis for processing
- Purpose limitation
- Data Minimization
- Storage limitation
- Security requirements
- Privacy by design
- Adopted: April 14, 2016
- Effective: May 25, 2018

Deanonymization

Deanonymization

NETFLIX

k-Anonymity

Name	Pronouns	Year	Grade
Alice	she/her	2025	95
Bob	he/him	2025	80
Charlie	they/them	2025	95
David	he/him	2025	60
Edward	he/him	2026	80
Flora	she/her	2026	99
Georgia	she/her	2026	60

- Quasi-identifiers (Qls) are sets of attributes that can be exploited for linking
- A database is k-anonymous if each QI maps to at least k different individuals
- Techniques: suppression and generalization

Exercise 2: k-anonymity

- Modify this dataset to make it 2-anonymous with respect to Race/DOB/Sex

Race	DOB	Sex	Marital Status	Health Issues
asian	$9 / 27 / 00$	female	divorced	hypertension
asian	$9 / 30 / 00$	female	divorced	obesity
asian	$4 / 18 / 00$	male	married	chest pain
asian	$4 / 15 / 00$	male	married	obesity
black	$3 / 13 / 99$	male	married	hypertension
black	$3 / 18 / 99$	male	married	shortness of breath
black	$9 / 13 / 00$	female	married	shortness of breath
black	$9 / 07 / 00$	female	married	obesity
white	$5 / 14 / 01$	male	single	chest pain
white	$4 / 08 / 01$	male	single	obesity
white	$9 / 15 / 01$	female	married	shortness of breath

Database Privacy

Offline Privacy

Online Privacy

Defining Privacy: Try \#1

- You don't know anything more after interacting with the database then you already knew

Differential Privacy

 $\operatorname{Pr}[Q(D)=x] \leq e^{\epsilon} \cdot \operatorname{Pr}[Q(D-r)=x]$

Sensitivity

- The sensitivity Δ of a query Q is the maximum the answer to Q can possibly change between two databases that differ only by one person
- $\mathrm{Q}=$ number of people taller than 6 ft
$\Delta=1$
- $Q=$ maximum height of a person
$\Delta=48$

Exercise 3: Sensitivity

- Assume you have a database containing the heights of 100 users specified in inches. You may assume that all heights are between 48 in and 96in.
-What is the sensitivity of the following queries?

1. The number of people who are $5{ }^{\prime} 4{ }^{\prime \prime}$
2. The median height in the dataset
3. The mean height in the dataset

Exercise 3: Sensitivity

- Assume you have a database containing the heights of 100 users specified in inches. You may assume that all heights are between 48 in and 96in.
-What is the sensitivity of the following queries?

1. The number of people who are $5{ }^{\prime} 4{ }^{\prime \prime}$
2. The median height in the dataset
3. The mean height in the dataset

Laplacian Distribution

- Lap(b) is the probability distribution with the property that
$\operatorname{Pr}[\operatorname{Lap}(b)=x]=\frac{1}{2 b} \cdot e^{-\frac{|x|}{b}}$

Laplacian Mechanism

- Given a query Q on a database D that has sensitivity Δ, respond with $Q(D)+Y$ where Y is drawn from the distribution $\operatorname{Lap}\left(\frac{\Delta}{\epsilon}\right)$
- Theorem: this mechanism satisfies ϵ-differential privacy

$$
\begin{aligned}
\frac{\operatorname{Pr}[Q(D)+Y=x]}{\operatorname{Pr}[Q(D-r)+Y=x]} & =\frac{\operatorname{Pr}[Y=x-Q(D)]}{\operatorname{Pr}[Y=x-Q(D-r)]}=\frac{\frac{1}{2(\Delta / \epsilon)} \cdot e^{-\frac{|x-Q(D)|}{\Delta / \epsilon}}}{\frac{1}{2(\Delta / \epsilon)} \cdot e^{-\frac{|x-Q(D-r)|}{\Delta / \epsilon}}=\frac{e^{-\frac{|x-Q(D)|}{\Delta / \epsilon}}}{e^{-\frac{|x-Q(D-r)|}{\Delta / \epsilon}}}} \begin{aligned}
& =e^{\frac{|x-Q(D-r)|}{\Delta / \epsilon}-\frac{|x-Q(D)|}{\Delta / \epsilon}}=e^{\left(\frac{\epsilon}{\Delta}\right) \cdot(|x-Q(D-r)|-|x-Q(D)|)} \\
& \leq e^{\left(\frac{\epsilon}{\Delta}\right) \cdot(|x-Q(D-r)-x+Q(D)|)}=e^{\left(\frac{\epsilon}{\Delta}\right) \cdot(|Q(D)-Q(D-r)|)} \\
& \leq e^{\left(\frac{\epsilon}{\Delta}\right) \cdot \Delta}=\mathrm{e}^{\epsilon}
\end{aligned} \text { (D)}
\end{aligned}
$$

Randomized Response

Theorem: this mechanism satisfies ϵ-differential privacy

Randomized Response

- Theorem: this mechanism satisfies ϵ-differential privacy

$$
\begin{aligned}
& \frac{\operatorname{Pr}[\langle Y, N, Y, Y, Y, N, \ldots, Y, N\rangle \mid f(\text { Bob })=Y]}{\operatorname{Pr}[\langle Y, N, Y, Y, Y, N, \ldots, Y, N\rangle \mid f(\text { Bob })=N]} \\
& \quad=\frac{\operatorname{Pr}\left[Y \mid f\left(P_{0}\right)\right] \cdot \operatorname{Pr}\left[\mathrm{N} \mid f\left(P_{1}\right)\right] \cdot \operatorname{Pr}[Y \mid f(\text { Bob })=Y] \cdot \ldots \cdot \operatorname{Pr}\left[\mathrm{N} \mid f\left(P_{n-1}\right)\right]}{\operatorname{Pr}\left[Y \mid f\left(P_{0}\right)\right] \cdot \operatorname{Pr}\left[\mathrm{N} \mid f\left(P_{1}\right)\right] \cdot \operatorname{Pr}[Y \mid f(\text { Bob })=N] \cdot \ldots \cdot \operatorname{Pr}\left[\mathrm{N} \mid f\left(P_{n-1}\right)\right]} \\
& \quad=\frac{\operatorname{Pr}[Y \mid f(\text { Bob })=Y]}{\operatorname{Pr}[Y \mid f(\text { Bob })=N]} \\
& \quad=\frac{p \cdot 1+(1-p) \cdot \frac{1}{2}}{p \cdot 0+(1-p) \cdot \frac{1}{2}}=\frac{(1+p) \cdot \frac{1}{2}}{(1-p) \cdot \frac{1}{2}}=\frac{(1+p)}{(1-p)} \\
& \quad=\mathrm{e}^{\ln \left(\frac{1+p}{1-p}\right)}
\end{aligned}
$$

DP in action...

