
CS 181S Spring 2024

Lecture 20: Information Flow Control

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

Information flow policies

Doc

Can flow to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can flow to:
Alice

Can flow to:
Alice

Labels represent policies

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Labels represent policies

Low

High

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
• Changes on H inputs should not cause changes on L outputs.

H

L

H

L

Program
Inputs Outputs

Enforcing Information Flow
• Goal: Enforce that only programs that satisfy

NonInterference can run in our system.

• Goal: Design a type system such that

G ⊢ p ⇒ p satisfies NonInterference

Review: Type Inference (Expressions)
• Type environment Γ maps variables to type

• Goal: Judgement (aka proof that) G ⊢ e : t
 According to mapping Γ, expression e has type t

• Constants: 	
"	⊢ $∷&$'

	
"	⊢	 ()*+∷,--.

	
"	⊢	/0.1+∷,--.

• Variables: " 2 3'"	⊢ 4∷5

• Expressions: "⊢+6∷&$',	"⊢+8∷&$'"	⊢ +69+8∷&$'
"⊢+6∷&$',	"⊢+8∷&$'
"	⊢ +6:+8∷,--. …

int x;
bool y;
Γ 𝑥 = 𝐢𝐧𝐭;
Γ 𝑦 = 𝐛𝐨𝐨𝐥;

Review: Static type system

G ⊢ x=e;
G ⊢ e : t t	⊑ G(x)

G ⊢ if(e) then{ p1 } else{ p2 }

G ⊢ e : bool G ⊢ p1 G ⊢ p2

G ⊢ while(e){ p }
G ⊢ e : bool G ⊢ p

G ⊢ p1 p2
G ⊢ p1 G ⊢ p2

Assignment-Rule:

If-Rule:

While-Rule:

Sequence-Rule:

G ⊢ nop;
Skip-Rule:

Label Inference (Expressions)
• Type environment Γ maps variables to type

• Goal: Judgement (aka proof that) G ⊢ e : ℓ
 According to mapping Γ, expression e has label ℓ

• Constants: 	
"	⊢ $∷&

• Variables: " ' (ℓ
"	⊢ *∷ℓ

• Unary Operations: "⊢+∷ℓ
"	⊢ $,-	+∷ℓ

• Binary Operations:

Γ 𝑥 = 𝑳;
Γ 𝑦 = 𝐇;

label

Lattice of labels
• The set of labels and relation ⊑ define a lattice, with join

operator ⊔.

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

⊑

⊑

⊑

⊑

⊑
⊑ ⊑

⊑

⊒	

⊒	

⊒	

⊒	

⊤

⊥

Join Operator for combining labels
• For each ℓ1 and ℓ2, there exists a label ℓ3, such that:
• ℓ1	⊑ ℓ3
• ℓ2	⊑ ℓ3
• for all ℓ4 such that ℓ	⊑ ℓ4 and ℓ2	⊑ ℓ4, then ℓ3⊑ ℓ4.

• ℓ3 is called the join of ℓ and ℓ2 and denoted ℓ1⊔ℓ2
• Operator ⊔ is associative and commutative.

Lattice of labels
• The set of labels and relation ⊑ define a lattice, with join

operator ⊔.

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

⊑

⊑

⊑

⊑

⊑
⊑ ⊑

⊑

⊒	

⊒	

⊒	

⊒	 ⊔

⊔
⊤

⊥

Exercise: Join
• What are the following labels (H or L)?

1. 𝐻 ⊔ 𝐻
2. 𝐻 ⊔ 𝐿
3. 𝐿 ⊔ 𝐻
4. 𝐿 ⊔ 𝐿

Low

High

Label Inference (Expressions)
• Type environment Γ maps variables to type

• Goal: Judgement (aka proof that) G ⊢ e : ℓ
 According to mapping Γ, expression e has label ℓ

• Constants: 	
"	⊢ $∷&

• Variables: " ' (ℓ
"	⊢ *∷ℓ

• Unary Operations: "⊢+∷ℓ
"	⊢ $,-	+∷ℓ

• Binary Operations: "⊢+.∷ℓ.,	"⊢+0∷ℓ0
"	⊢ +.1+0∷ℓ.⊔ℓ0 …

Γ 𝑥 = 𝑳;
Γ 𝑦 = 𝐇;

label

Example
• Let Γ(x)= L and	Γ(y)= H.
• What is the type of x+y+1?
• Proof tree:

G ⊢ x + y + 1 : H

G ⊢ x : L G ⊢ y : H

G(x) = L G(y) = H
G ⊢ 1 : L

Exercise
• Let Γ(x)= L and	Γ(y)= H.
• What is the type of y>x+5?
• Proof tree:

G ⊢ y > x + 5 : H

G ⊢ y : H

G ⊢ x : LG(y) = H

G(x) = L
G ⊢ 5 : L

G ⊢ x + 5 : L

Exercise: Checking an assignment

x = y;

Γ(x) is L.
Γ(y) is L.
Does this assignment satisfy NI?

Γ(x) is H.
Γ(y) is L.
Does this assignment satisfy NI?

Γ(x) is L.
Γ(y) is H.
Does this assignment satisfy NI?

Γ(x) is H.
Γ(y) is H.
Does this assignment satisfy NI?

To satisfy NI, need Γ(y)	⊑ Γ(x).

Checking an assignment

x = y + z;

It satisfies NI, if Γ(y)	⊑ Γ(x) and Γ(z) ⊑ Γ(x).

It satisfies NI, if Γ ⊢ y + z ∷ ℓ and ℓ ⊑ Γ(x)
It satisfies NI, if Γ(y) ⊔	Γ(z)	⊑ Γ(x).

Exercise: Checking a conditional assignment
if(z > 0){
 x = 1;
}else{
 x = 0;
} Examples for confidentiality

Γ(x) is L.
Γ(z) is L.
Does the assignment satisfy NI?

Γ(x) is H.
Γ(z) is L.
Does the assignment satisfy NI?

Γ(x) is L.
Γ(z) is H.
Does the assignment satisfy NI?

Γ(x) is H.
Γ(z) is H.
Does the assignment satisfy NI?

Checking an if-statement

Conditional commands (e.g., if-statements and
while-statements) cause implicit information flows.

if(z > 0){
 x = 1;
} else {
 x = 0;
}

Context

They reveal
information about
z>0.

if(z > 0){
 x = 1;
} else {
 x = 0;
}

Introduce a context label 𝑐𝑡𝑥

Its 𝑐𝑡𝑥 is the type of the expression z > 0

Context

Introduce a context label 𝑐𝑡𝑥

Its 𝑐𝑡𝑥 is the label of the
expression z > 0.

Check if
𝑐𝑡𝑥 ⊔ Γ(e) ⊑ Γ(x).

Implicit
flow

Explicit
flow

if(z > 0){
 x = 1;
} else {
 x = 0;
}

Static type system

G , 𝑐𝑡𝑥 ⊢ x = e;
G ⊢ e : ℓ ℓ ⊔ 𝑐𝑡𝑥	 ⊑ G(x)

G , 𝑐𝑡𝑥 ⊢ if(e){ p1 } else{ p2 }

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ p1 G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ p2

G , 𝑐𝑡𝑥 ⊢ while(e){ p }
G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ p

G , 𝑐𝑡𝑥 ⊢ p1 p2
G , 𝑐𝑡𝑥 ⊢ p1 G , 𝑐𝑡𝑥 ⊢ p2

Assignment-Rule:

If-Rule:

While-Rule:

Sequence-Rule:

G, 𝑐𝑡𝑥 ⊢ nop;
Skip-Rule:

Soundness of type system

G,𝑐𝑡𝑥 ⊢ c ⇒ c satisfies NI

Exercise: Type Checking
• Assume Γ 𝑥 = 𝐻 and Γ 𝑧 = 𝐻. Prove that the program
if(z>0){x = 1;} else {x = 0;} type checks (in a
L context).

Exercise: Type Checking
• Assume Γ 𝑥 = 𝐿 and Γ 𝑧 = 𝐻. Try to prove that the

program if(z>0){x = 1;} else {x = 0;} type
checks (in a L context).

Languages for Information Flow Control

• Declare variables with
information flow labels
int {Alice→Bob} x;

• FlowCAML
• LMonad (Haskell)
• SPARK dependency
contracts

Figure 5: JFlow method declarations

be omitted from a method declaration, signifying the use of
implicit label polymorphism. For example, the arguments of

and are unlabeled. When an argument label
is omitted, the method is generic with respect to the label of
the argument. The argument label becomes an implicit pa-
rameter of the procedure. For example, the method can
be called with any two integers and , regardless of their
labels. This label polymorphism is important for building
libraries of reusable code. Without it, a math routine like
would have to be reimplemented for every argument label
ever used.
The default label for a return value is the end-label, joined

with the labels of all the arguments. For , the default
return value label is exactly the label written (), so the
return value could be written just as . The default label
on an exception is the end-label, as in the ex-
ample. If the begin-label is omitted, as in , it becomes
an implicit parameter to the method. Such a method can be
called regardless of the caller’s . Because the within the
method contains an implicit parameter, this method is pre-
vented fromcausing real side effects; it may of coursemodify
local variables andmutate objects passed as arguments if they
are appropriately declared, but true side effects would create
static checking errors.
Unlike in Java, themethodmay contain a list of constraints

prefixed by the keyword :

WhereConstraints:
Constraints

Constraint:
Principals

Principals
Principal Principal

There are three different kinds of constraints:

1 This clause lists principals that
themethod is authorized to act for. The static authority at
the beginning of themethod includes the set of principals
listed in this clause. The principals listed may be either
names of global principals, or names of class parameters
of type . Every listed principal must be also
listed in the clause of the method’s class. This
mechanism obeys the principle of least privilege, since
not all the methods of a class need to possess the full
authority of the class.

1 Calling codemay also dynamically
grant authority to a method that has a constraint.
Unlike with the clause, where the authority
devolves from the object itself, authority in this case

Return whether password is correct

Figure 6: A JFlow password file

devolves from the caller. A method with a clause
may be called only if the calling code possesses the
requisite static authority.
The principals named in the clause need not be
constants; they may also be the names of method argu-
ments whose type is . By passing a principal as
the corresponding argument, the caller grants that prin-
cipal’s authority to the code. These dynamic principals
may be used as first-class principals; for example, they
may be used in labels.

1 2 An constraint may be used to
prevent the method from being called unless the spec-
ified acts-for relationship (1 acts for 2) holds at the
call site. When the method body is checked, the static
principal hierarchy is assumed to contain any acts-for
relationships declared in the method header. This con-
straint allows information about the principal hierarchy
to be transmitted to the called method without any dy-
namic checking.

Now that the essentials of the JFlow language are covered,we
are ready to consider some interesting JFlow code. Figure 6
contains a JFlow implementation of a simple password file,
in which the passwords are protected by information flow
controls. Only the method for checking passwords is shown.
This method, , accepts a password and a user name,
and returns a boolean indicating whether the string is the
right password for that user.
The statement is conditional on the elements of

and on the variables and , whose labels
are implicit parameters. Therefore, the body of the state-
ment has , and the variable

6

Figure 5: JFlow method declarations

be omitted from a method declaration, signifying the use of
implicit label polymorphism. For example, the arguments of

and are unlabeled. When an argument label
is omitted, the method is generic with respect to the label of
the argument. The argument label becomes an implicit pa-
rameter of the procedure. For example, the method can
be called with any two integers and , regardless of their
labels. This label polymorphism is important for building
libraries of reusable code. Without it, a math routine like
would have to be reimplemented for every argument label
ever used.
The default label for a return value is the end-label, joined

with the labels of all the arguments. For , the default
return value label is exactly the label written (), so the
return value could be written just as . The default label
on an exception is the end-label, as in the ex-
ample. If the begin-label is omitted, as in , it becomes
an implicit parameter to the method. Such a method can be
called regardless of the caller’s . Because the within the
method contains an implicit parameter, this method is pre-
vented fromcausing real side effects; it may of coursemodify
local variables andmutate objects passed as arguments if they
are appropriately declared, but true side effects would create
static checking errors.
Unlike in Java, themethodmay contain a list of constraints

prefixed by the keyword :

WhereConstraints:
Constraints

Constraint:
Principals

Principals
Principal Principal

There are three different kinds of constraints:

1 This clause lists principals that
themethod is authorized to act for. The static authority at
the beginning of themethod includes the set of principals
listed in this clause. The principals listed may be either
names of global principals, or names of class parameters
of type . Every listed principal must be also
listed in the clause of the method’s class. This
mechanism obeys the principle of least privilege, since
not all the methods of a class need to possess the full
authority of the class.

1 Calling codemay also dynamically
grant authority to a method that has a constraint.
Unlike with the clause, where the authority
devolves from the object itself, authority in this case

Return whether password is correct

Figure 6: A JFlow password file

devolves from the caller. A method with a clause
may be called only if the calling code possesses the
requisite static authority.
The principals named in the clause need not be
constants; they may also be the names of method argu-
ments whose type is . By passing a principal as
the corresponding argument, the caller grants that prin-
cipal’s authority to the code. These dynamic principals
may be used as first-class principals; for example, they
may be used in labels.

1 2 An constraint may be used to
prevent the method from being called unless the spec-
ified acts-for relationship (1 acts for 2) holds at the
call site. When the method body is checked, the static
principal hierarchy is assumed to contain any acts-for
relationships declared in the method header. This con-
straint allows information about the principal hierarchy
to be transmitted to the called method without any dy-
namic checking.

Now that the essentials of the JFlow language are covered,we
are ready to consider some interesting JFlow code. Figure 6
contains a JFlow implementation of a simple password file,
in which the passwords are protected by information flow
controls. Only the method for checking passwords is shown.
This method, , accepts a password and a user name,
and returns a boolean indicating whether the string is the
right password for that user.
The statement is conditional on the elements of

and on the variables and , whose labels
are implicit parameters. Therefore, the body of the state-
ment has , and the variable

6

Security type:
only root may

learn
information in

this field

Figure 5: JFlow method declarations

be omitted from a method declaration, signifying the use of
implicit label polymorphism. For example, the arguments of

and are unlabeled. When an argument label
is omitted, the method is generic with respect to the label of
the argument. The argument label becomes an implicit pa-
rameter of the procedure. For example, the method can
be called with any two integers and , regardless of their
labels. This label polymorphism is important for building
libraries of reusable code. Without it, a math routine like
would have to be reimplemented for every argument label
ever used.
The default label for a return value is the end-label, joined

with the labels of all the arguments. For , the default
return value label is exactly the label written (), so the
return value could be written just as . The default label
on an exception is the end-label, as in the ex-
ample. If the begin-label is omitted, as in , it becomes
an implicit parameter to the method. Such a method can be
called regardless of the caller’s . Because the within the
method contains an implicit parameter, this method is pre-
vented fromcausing real side effects; it may of coursemodify
local variables andmutate objects passed as arguments if they
are appropriately declared, but true side effects would create
static checking errors.
Unlike in Java, themethodmay contain a list of constraints

prefixed by the keyword :

WhereConstraints:
Constraints

Constraint:
Principals

Principals
Principal Principal

There are three different kinds of constraints:

1 This clause lists principals that
themethod is authorized to act for. The static authority at
the beginning of themethod includes the set of principals
listed in this clause. The principals listed may be either
names of global principals, or names of class parameters
of type . Every listed principal must be also
listed in the clause of the method’s class. This
mechanism obeys the principle of least privilege, since
not all the methods of a class need to possess the full
authority of the class.

1 Calling codemay also dynamically
grant authority to a method that has a constraint.
Unlike with the clause, where the authority
devolves from the object itself, authority in this case

Return whether password is correct

Figure 6: A JFlow password file

devolves from the caller. A method with a clause
may be called only if the calling code possesses the
requisite static authority.
The principals named in the clause need not be
constants; they may also be the names of method argu-
ments whose type is . By passing a principal as
the corresponding argument, the caller grants that prin-
cipal’s authority to the code. These dynamic principals
may be used as first-class principals; for example, they
may be used in labels.

1 2 An constraint may be used to
prevent the method from being called unless the spec-
ified acts-for relationship (1 acts for 2) holds at the
call site. When the method body is checked, the static
principal hierarchy is assumed to contain any acts-for
relationships declared in the method header. This con-
straint allows information about the principal hierarchy
to be transmitted to the called method without any dy-
namic checking.

Now that the essentials of the JFlow language are covered,we
are ready to consider some interesting JFlow code. Figure 6
contains a JFlow implementation of a simple password file,
in which the passwords are protected by information flow
controls. Only the method for checking passwords is shown.
This method, , accepts a password and a user name,
and returns a boolean indicating whether the string is the
right password for that user.
The statement is conditional on the elements of

and on the variables and , whose labels
are implicit parameters. Therefore, the body of the state-
ment has , and the variable

6

Declassification:
okay to leak

whether
password
matches

Information Flow Control: fixed 𝚪

𝑎

𝑏

𝑐

𝑑

𝑥

𝑦

𝑧

L

H

L

H
L

L

L

• Γ remains the same during the analysis of the program.
• The mechanism checks that Γ satisfies noninterference.
• The program is rejected, if any flow violates noninterference

Information Flow Control: flow-sensitive 𝚪

𝑎

𝑏

𝑐

𝑑

𝑥

𝑦

𝑧

H

H

L

L
L

H

H

• Γ may change during the analysis of the program.
• The mechanism deduces Γ(x), Γ(y), Γ(z) such that

noninterference is satisfied.
• The program is never rejected.

Enforcing IF policies
• Static mechanism
• Checking and/or deduction of labels before execution.

• Dynamic mechanism
• Checking and/or deduction of labels during execution.

• Hybrid mechanism
• Combination of static and dynamic.

• Also have to deal with declassification…

