Lecture 20: Information Flow Control

CS 181S

Spring 2024

Where we were...

- Authentication: mechanisms that bind principals to actions
- Authorization: mechanisms that govern whether actions are permitted
- Audit: mechanisms that record and review actions

Information flow policies

Labels represent policies

Labels represent policies

Noninterference [Goguen and Meseguer 1982]

An interpretation of noninterference for a program:

• Changes on H inputs should not cause changes on L outputs.

Enforcing Information Flow

- Goal: Enforce that only programs that satisfy NonInterference can run in our system.
- Goal: Design a type system such that

$\Gamma \vdash \mathbf{p} \Rightarrow \mathbf{p}$ satisfies NonInterference

Review: Type Inference (Expressions)

• Type environment Γ maps variables to type

- int x; bool y;
- $\Gamma(x) = \mathbf{int};$
- Goal: Judgement (aka proof that) Γ ⊢ e : t Γ(y) = bool;
 According to mapping Γ, expression e has type t

• Constants:
$$\overline{\Gamma \vdash n::int}$$
 $\overline{\Gamma \vdash True::bool}$ $\overline{\Gamma \vdash False::bool}$
• Variables: $\frac{\Gamma(x)=t}{\Gamma \vdash x::t}$
• Expressions: $\frac{\Gamma \vdash e1::int, \Gamma \vdash e2::int}{\Gamma \vdash e1 + e2::int}$ $\frac{\Gamma \vdash e1::int, \Gamma \vdash e2::int}{\Gamma \vdash e1 < e2::bool}$...

Review: Static type system $\Gamma \vdash \mathbf{e} : \mathbf{t} \qquad \mathbf{t} \sqsubseteq \Gamma (\mathbf{x})$ Assignment-Rule: $\Gamma \vdash \mathbf{x} = \mathbf{e};$ $\Gamma \vdash p1$ $\Gamma \vdash p2$ Sequence-Rule: $\Gamma \vdash p1 p2$ $\Gamma \vdash \mathbf{e}$: bool $\Gamma \vdash \mathbf{p1}$ $\Gamma \vdash \mathbf{p2}$ If-Rule: $\Gamma \vdash if(e)$ then { p1 } else { p2 } $\Gamma \vdash \mathbf{p}$ $\Gamma \vdash \mathbf{e}$: bool While-Rule: $\Gamma \vdash while(e) \{ p \}$

Skip-Rule:

 $\Gamma \vdash \mathsf{nop};$

Label Inference (Expressions)

 $\Gamma(x) = L;$

 $\Gamma(\gamma) = \mathbf{H};$

Type environment Γ maps variables to type

- Goal: Judgement (aka proof that) Γ ⊢ e : ℓ
 According to mapping Γ, expression e has label ℓ
- Constants: $\frac{\Gamma \vdash n :: L}{\Gamma \vdash n :: L}$ • Variables: $\frac{\Gamma(x) = \ell}{\Gamma \vdash r :: \ell}$
- Unary Operations: $\frac{\Gamma \vdash e :: \ell}{\Gamma \vdash not \; e :: \ell}$
- Binary Operations:

Lattice of labels

The set of labels and relation ⊑ define a lattice, with join operator ⊔.

Join Operator for combining labels

- For each *l*1 and *l*2, there exists a label *l*3, such that:
 - ℓ1 ⊑ ℓ3
 - ł2 ⊑ ł3
 - for all l4 such that $l \subseteq l4$ and $l2 \subseteq l4$, then $l3 \subseteq l4$.
- ℓ 3 is called the **join** of ℓ and ℓ 2 and denoted ℓ 1 \sqcup ℓ 2
- Operator ⊔ is associative and commutative.

Lattice of labels

The set of labels and relation ⊑ define a lattice, with join operator ⊔.

Exercise: Join

- What are the following labels (H or L)?
 - $1. \quad H \sqcup H$
 - $2. \quad H \sqcup L$
 - *3. L* ⊔ *H*
 - $4. \quad L \sqcup L$

Label Inference (Expressions)

Type environment Γ maps variables to type

- Goal: Judgement (aka proof that) Γ ⊢ e : ℓ
 According to mapping Γ, expression e has label ℓ
- Constants: Γ ⊢ n::L

 Variables: Γ(x)=ℓ
 Γ ⊢ x::ℓ

 Unary Operations: Γ⊢e::ℓ
 Γ ⊢ not e::ℓ

 Binary Operations: Γ⊢e1::ℓ1, Γ⊢e2::ℓ2
 Γ ⊢ e1+e2::ℓ1⊔ℓ2

 $\Gamma(x) = L;$ $\Gamma(y) = H;$

Example

- Let $\Gamma(\mathbf{x}) = L$ and $\Gamma(\mathbf{y}) = H$.
- What is the type of **x+y+1**?
- Proof tree:

$\Gamma(\mathbf{x}) = L$	$\Gamma(\mathbf{y}) = \mathbf{H}$	
Γ⊢ x : L	Г⊢у:Н	Γ⊢ 1 : L
	$\Gamma \vdash \mathbf{x} + \mathbf{v} + 1 : \mathbf{H}$	

Exercise

- Let $\Gamma(\mathbf{x}) = L$ and $\Gamma(\mathbf{y}) = H$.
- What is the type of **y>x+5**?
- Proof tree:

Exercise: Checking an assignment

$\mathbf{x} = \mathbf{y};$

Γ(x) is L.	Γ(x) is L.
Γ(y) is L.	Γ(y) is H.
Does this assignment satisfy NI?	Does this assignment satisfy NI?
Γ(x) is H.	Γ(x) is H.
Γ(y) is L.	Γ(y) is H.
Does this assignment satisfy NI?	Does this assignment satisfy NI?

Checking an assignment

x = y + z;

It satisfies NI, if $\Gamma(\mathbf{y}) \sqsubseteq \Gamma(\mathbf{x})$ and $\Gamma(\mathbf{z}) \sqsubseteq \Gamma(\mathbf{x})$. It satisfies NI, if $\Gamma(\mathbf{y}) \sqcup \Gamma(\mathbf{z}) \sqsubseteq \Gamma(\mathbf{x})$. It satisfies NI, if $\Gamma \vdash \mathbf{y} + \mathbf{z} :: \ell$ and $\ell \sqsubseteq \Gamma(\mathbf{x})$

Exercise: Checking a conditional assignment if(z > 0) { x = 1; }else{ x = 0; }

Γ(x) is L.	Γ(x) is L.
Γ(z) is L.	Γ(z) is H.
Does the assignment satisfy NI?	Does the assignment satisfy NI?
Γ(x) is H.	Γ(x) is H.
Γ(z) is L.	Γ(z) is H.
Does the assignment satisfy NI?	Does the assignment satisfy NI?

Checking an if-statement

```
if(z > 0) {
    x = 1;
} else {
    x = 0;
}
```

Conditional commands (e.g., if-statements and while-statements) cause **implicit** information flows.

Introduce a context label ctxIts ctx is the type of the expression z > 0

Static t	ype syste	em	
Assignment Dula:	Γ⊢ e ∶ℓ	$\ell \sqcup ctx \sqsubseteq I$	(x)
Assignment-Rule.	Γ , ctx	⊢x = e;	
$\Gamma \vdash \mathbf{e}$:θ Γ,θ	$\mathcal{L} \sqcup ctx \vdash p1$	Г, ℓ ⊔ <i>ctx</i> ⊢ р2
Γ ,	$ctx \vdash if(e)$	{ p1 } els	se{ p2 }
While-Rule: —	Γ⊢ е ∶ℓ	Г , ℓ ⊔ <i>ctx</i>	⊢p
	Γ , $ctx \vdash wh$	<pre>ile(e) { p</pre>	}
Sequence-Rule:	Γ , $ctx \vdash p1$	Γ , $ctx \vdash f$	p2
	Γ , ctx	:⊢p1 p2	
Skip-Rule: -	<u>Г. сtэ</u>	$c \vdash \mathbf{nop}$:	

Soundness of type system

$\Gamma, ctx \vdash c \Rightarrow c$ satisfies NI

Exercise: Type Checking

Assume Γ(x) = H and Γ(z) = H. Prove that the program
if (z>0) {x = 1;} else {x = 0;} type checks (in a L context).

Exercise: Type Checking

Assume Γ(x) = L and Γ(z) = H. Try to prove that the program if (z>0) {x = 1;} else {x = 0;} type checks (in a L context).

Languages for Information Flow Control

 Declare variables with information flow labels int {Alice→Bob} x;

- FlowCAML
- LMonad (Haskell)
- SPARK dependency contracts

```
class passwordFile authority(root) {
  public boolean
    check (String user, String password)
    where authority(root) {
      // Return whether password is correct
     boolean match = false;
     try {
        for (int i = 0; i < names.length; i++) {
           if (names[i] == user \&\&
           passwords[i] == password) \{
              match = true;
              break;
     }
        catch (NullPointerException e) {}
        catch (IndexOutOfBoundsException e) {}
     return declassify(match, {user; password});
  private String [] names;
  private String { root: } [ ] passwords;
```


Information Flow Control: fixed Γ

- Γ remains the same during the analysis of the program.
- The mechanism checks that Γ satisfies noninterference.
- The program is rejected, if any flow violates noninterference

Information Flow Control: flow-sensitive $\boldsymbol{\Gamma}$

- Γ may change during the analysis of the program.
- The mechanism deduces Γ(x), Γ(y), Γ(z) such that noninterference is satisfied.
- The program is never rejected.

Enforcing IF policies

- Static mechanism
 - Checking and/or deduction of labels before execution.
- Dynamic mechanism
 - Checking and/or deduction of labels during execution.
- Hybrid mechanism
 - Combination of static and dynamic.
- Also have to deal with declassification...