Lecture 19: Information Flow

CS 181S

Spring 2024

Where we were...

- Authentication: mechanisms that bind principals to actions
- Authorization: mechanisms that govern whether actions are permitted
- Audit: mechanisms that record and review actions

Who defines Policies?

- Discretionary access control (DAC)
 - Philosophy: users have the *discretion* to speathers
 - Commonly, information belongs to the owner of object
 - Access control lists, privilege lists, capabilities
- Mandatory access control (MAC)
 - Philosophy: central authority mandates policy
 - Information belongs to the authority, not to the indiv
 - MLS and BLP, Chinese wall, Clark-Wilson, etc.

Access control for computed data

Scaling to many pieces of data...

Scaling to many users...

Scaling to many interactions...

Need to assign restrictions in an automatic way.

Information flow policies

Labels represent policies

Labels represent policies

Labels represent policies

Information Flow (IF) Policies

- Focus on information not objects
- An IF policy specifies restrictions on some data, and on all its derived data.
- IF policy for confidentiality:
 - Value v and all its derived values are allowed to be read only by Alice
 - (Different from an access control policy, which would say something like Value v is allowed to be read only by Alice)
- The enforcement mechanism automatically deduces the restrictions for derived data.

Policy Granularity

- Objects can be system principles (files, programs, sockets...)
- Objects can be program variables

Noninterference [Goguen and Meseguer 1982]

An interpretation of noninterference for a program:

• Changes on H inputs should not cause changes on L outputs.

Noninterference: Example

The program satisfies noninterference!

Noninterference: Example

The program does not satisfy noninterference!

Noninterference: Example

The program does not satisfy noninterference!

Noninterference

- Consider a program *P*.
- Consider two memories M_1 and M_2 , such that they agree on values of variables tagged with L: $M_1 =_L M_2$.

(M_1 and M_2 might not agree on values of variables tagged with H)

- *P*(*M_i*) are the observations produced by executing *C* to termination on initial memory *M_i*:
 - final outputs, or
 - intermediate and final outputs.
- Then, observations tagged with L should be the same:
 - $P(M_1) =_{\mathrm{L}} P(M_2).$

Noninterference: $\forall M_1, M_2$: if $M_1 =_L M_2$, then $P(M_1) =_L P(M_2)$.

Exercise 1: Noninterference

Assume P_1 , P_2 each take two inputs: h_I (label H) and l_i (label L)

- 1. P_1 outputs (h_0, l_0) where $h_0 = h_I || l_I$ and $l_0 = l_I$
 - || denotes string concatenation.

2.
$$P_2$$
 outputs l_0 where $l_o = \begin{cases} l_I & \text{if } h_I \text{ is even} \\ l_I || l_I & \text{if } h_I \text{ is odd} \end{cases}$

Enforcement Mechanisms

- Static Information Flow Control:
 - type checking
- Dynamic Information Flow Control:
 - taint-tracking
 - runtime monitoring

A simple programming language

e ::= n | x | e1+e2 | e1 < e2 | ...

```
p ::= x = e;
```

```
| p1 p2
```

- | if(e) then { p1 } else { p2 }
- while(e) { p }

| nop;

Exercise: A programming language

 Using our simple programming language, write a program that takes one input x_I and ends with an output x₀ that is equal to the sum of the odd numbers between 0 and x_I (inclusive)

Type Systems

 A program is well-typed if all operands are the right type for the operator and all variables are the right type for the expression

int x; string y; x = 4 + 5; x = "hello" + 5; y = "hello" + "world"; x = "hello" + "world";

 determining that a program is well-typed requires proving that all expressions and all assignments are the right type

Logical Inference

• Syntax for logical Inference: $\frac{1}{2}$

 $\frac{premise(s)}{conclusion}$

• Examples:

$$\frac{x=4, y=5}{x+y=9} \qquad \frac{x=True, y=False}{x \text{ or } y=True}$$

security is fun!

Type Inference (Expressions)

- Type environment Γ maps variables to type
- Goal: Judgement (aka proof that) Γ ⊢ e : t
 According to mapping Γ, expression e has type t

• Constants:
$$\overline{\Gamma \vdash n::int}$$
 $\overline{\Gamma \vdash True::bool}$ $\overline{\Gamma \vdash False::bool}$
• Variables: $\frac{\Gamma(x)=t}{\Gamma \vdash x::t}$
• Expressions: $\frac{\Gamma \vdash e1::int, \Gamma \vdash e2::int}{\Gamma \vdash e1+e2::int}$ $\frac{\Gamma \vdash e1::int, \Gamma \vdash e2::int}{\Gamma \vdash e1 < e2::bool}$...

int x;

bool y;

 $\Gamma(x) = int;$

 $\Gamma(y) = \mathbf{bool};$

Example: Type Inferences

- Let $\Gamma(\mathbf{x}) = \text{int} \text{ and } \Gamma(\mathbf{y}) = \text{int}.$
- What is the type of x+y+1?
- Proof tree:

$\Gamma(\mathbf{x}) = int$	$\Gamma(\mathbf{y}) = int$	
$\Gamma \vdash \mathbf{x} : int$	$\Gamma \vdash \mathbf{y} : int$	
Γ⊢ x +	·y:int	$\Gamma \vdash 1 : int$

 $\Gamma \vdash \mathbf{x} + \mathbf{y} + \mathbf{1} : int$

Exercise: Type Inference

- Let $\Gamma(\mathbf{x}) = \text{int} \text{ and } \Gamma(\mathbf{y}) = \text{int}.$
- What is the type of **y>x+5**?
- Proof tree:

	$\Gamma(\mathbf{x}) = int$	
$\Gamma(\mathbf{y}) = int$	$\Gamma \vdash \mathbf{x} : int$	$\Gamma \vdash 5 : int$
Γ⊢ y : int	Γ⊢ x + 5	: int
	$\Gamma \vdash \mathbf{y} > \mathbf{x} + 5 : bool$	

Label Inference (Expressions) label • Type environment Γ maps variables to type

- Goal: Judgement (aka proof that) $\Gamma \vdash \mathbf{e} : \ell$ $\Gamma(x) = L$; According to mapping Γ , expression \mathbf{e} has label ℓ $\Gamma(y) = \mathbf{H}$;
- Constants: $\frac{1}{\Gamma \vdash n :: L}$
- Variables: $\frac{\Gamma(\mathbf{x}) = \ell}{\Gamma \vdash \mathbf{x} ::: \ell}$
- Expressions:

Join Operator for combining labels

- For each *l*1 and *l*2, there exists a label *l*3, such that:
 - ℓ1 ⊑ ℓ3

 - for all l4 such that $l \subseteq l4$ and $l2 \subseteq l4$, then $l3 \subseteq l4$.
- ℓ is called the **join** of ℓ and ℓ and denoted ℓ 1 \sqcup ℓ 2
- Operator ⊔ is associative and commutative.

Lattice of labels

The set of labels and relation ⊑ define a lattice, with join operator ⊔.

Exercise: Join

- What are the following labels (H or L)?
 - $1. \quad H \sqcup H$
 - $2. \quad H \sqcup L$
 - *3. L* ⊔ *H*
 - $4. \quad L \sqcup L$

Label Inference (Expressions) label • Type environment Γ maps variables to type

• Goal: Judgement (aka proof that) $\Gamma \vdash \mathbf{e} : \ell$ $\Gamma(x) = L$; According to mapping Γ , expression \mathbf{e} has label ℓ $\Gamma(y) = \mathbf{H}$;

• Constants:
$$\frac{1}{\Gamma \vdash n ::L}$$

• Variables: $\frac{\Gamma(\mathbf{x}) = \ell}{\Gamma \vdash \mathbf{x} ::: \ell}$

• Expressions: $\frac{\Gamma \vdash e1 :: \ell1, \Gamma \vdash e2 :: \ell2}{\Gamma \vdash e1 + e2 :: \ell1 \sqcup \ell2} \qquad \frac{\Gamma \vdash e1 :: \ell1, \Gamma \vdash e2 :: \ell2}{\Gamma \vdash e1 < e2 :: \ell1 \sqcup \ell2}$

Example

- Let $\Gamma(\mathbf{x}) = L$ and $\Gamma(\mathbf{y}) = H$.
- What is the type of **x+y+1**?
- Proof tree:

$\Gamma(\mathbf{x}) = L$	$\Gamma(\mathbf{y}) = \mathbf{H}$	
Γ⊢ x : L	Г⊢у:Н	Γ⊢ 1 : L
	$\Gamma \vdash \mathbf{x} + \mathbf{v} + 1 : \mathbf{H}$	

Exercise

- Let $\Gamma(\mathbf{x}) = L$ and $\Gamma(\mathbf{y}) = H$.
- What is the type of **y>x+5**?
- Proof tree:

$$\Gamma(\mathbf{y}) = H$$

$$\Gamma \vdash \mathbf{y} : H$$

$$\Gamma \vdash \mathbf{y} = \mathbf{x} + \mathbf{5} : L$$

$$\Gamma \vdash \mathbf{y} = \mathbf{x} + \mathbf{5} : L$$

Type Checking (Programs)

• When is a one-line program **x** = **e**; well-typed?

Static type system $\Gamma \vdash \mathbf{e} : \mathbf{t} \qquad \mathbf{t} \sqsubseteq \Gamma (\mathbf{x})$ Assignment-Rule: $\Gamma \vdash \mathbf{x} = \mathbf{e};$ Γ ⊢ p1 Γ ⊢ **p2** Sequence-Rule: Γ , $ctx \vdash p1 p2$ $\Gamma \vdash \mathbf{e}$: bool $\Gamma \vdash \mathbf{p1}$ $\Gamma \vdash \mathbf{p2}$ If-Rule: $\Gamma \vdash if(e)$ then { p1 } else { p2 } $\Gamma \vdash \mathbf{p}$ $\Gamma \vdash \mathbf{e}$: bool While-Rule: $\Gamma \vdash while(e) \{ p \}$

Skip-Rule:

 $\Gamma \vdash \mathsf{nop};$

Enforcing Information Flow

Goal: Design a type system such that

$\Gamma \vdash \mathbf{p} \Rightarrow \mathbf{p}$ satisfies NonInterference