
CS 181S Spring 2024

Lecture 19: Information Flow

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

Who defines Policies?
• Discretionary access control (DAC)
• Philosophy: users have the discretion to specify policy

themselves
• Commonly, information belongs to the owner of object
• Access control lists, privilege lists, capabilities

• Mandatory access control (MAC)
• Philosophy: central authority mandates policy
• Information belongs to the authority, not to the individual users
• MLS and BLP, Chinese wall, Clark-Wilson, etc.

Access control for computed data

Doc

Can read:
Alice
Bob

Doc’ Doc’’

computation

Can read:
Alice
Bob

Can read:
Alice
Bob

Scaling to many pieces of data…

Scaling to many users…

Scaling to many interactions…

? ?

?

? ?

Need to assign
restrictions in an
automatic way.

Information flow policies

Doc

Can read:
Alice

Can flow to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can flow to:
Alice

Can flow to:
Alice

L(Doc) ⊑ L(Alice)
L(Doc) ⋢ L(Bob)

Labels represent policies

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Labels represent policies

Low

High

Labels represent policies

Doc
H

Doc’ Doc’’
HH

L(Alice) = H
L(Bob) = L

L(Doc) ⊑ L(Alice)
L(Doc) ⋢ L(Bob)

Information Flow (IF) Policies
• Focus on information not objects
• An IF policy specifies restrictions on some data, and on

all its derived data.
• IF policy for confidentiality:
• Value 𝑣 and all its derived values are allowed to be read only by

Alice
• (Different from an access control policy, which would say

something like Value 𝑣 is allowed to be read onl y by Alice)

• The enforcement mechanism automatically deduces the
restrictions for derived data.

Policy Granularity
• Objects can be system principles (files, programs, sockets…)
• Objects can be program variables

An interpretation of noninterference for a program:
• Changes on H inputs should not cause changes on L outputs.

H

L

H

L

Program
Inputs Outputs

Noninterference [Goguen and Meseguer 1982]

Noninterference: Example
H

L

H

L

H

L

H

L

1

2

3

3

3

2

5

3

ℎ
ℎ! = ℎ + 𝑙;
𝑙! = 𝑙 + 1;

𝑙

ℎ′

𝑙′

ℎ
ℎ! = ℎ + 𝑙;
𝑙! = 𝑙 + 1;

𝑙

ℎ′

𝑙′

The program satisfies noninterference!

Noninterference: Example
H

L

H

L

H

L

H

L

1

2

3

6

ℎ

𝑙′
𝑙! = ℎ	 ∗ 2;

ℎ

𝑙′
𝑙! = ℎ	 ∗ 2;

The program does not satisfy noninterference!

2

2

Noninterference: Example
H

L

H

L

H

L

H

L

1

1

3

0

ℎ

𝑙′

if(ℎ == 1){
 𝑙! = 1;
} else {
 𝑙! = 0;
}

ℎ

𝑙′

The program does not satisfy noninterference!

2

2

if(ℎ == 1){
 𝑙! = 1;
} else {
 𝑙! = 0;
}

Noninterference
• Consider a program 𝑃.
• Consider two memories 𝑀# and 𝑀$, such that they agree

on values of variables tagged with L: 𝑀# =% 𝑀$.
(𝑀# and 𝑀$ might not agree on values of variables tagged
with H)

• 𝑃(𝑀&) are the observations produced by executing 𝐶 to
termination on initial memory 𝑀&:
• final outputs, or
• intermediate and final outputs.

• Then, observations tagged with L should be the same:
• 𝑃 𝑀" =# 𝑃 𝑀$.

Noninterference: ∀𝑀(, 𝑀): if 𝑀(=* 𝑀), then 𝑃 𝑀(=* 𝑃 𝑀) .

Exercise 1: Noninterference
Assume 𝑃#, 𝑃$ each take two inputs: ℎ' (label H) and 𝑙& (label L)

1. 𝑃# outputs (ℎ(, 𝑙() where ℎ(= ℎ'||𝑙' and 𝑙(= 𝑙'
• || denotes string concatenation.

2. 𝑃$ outputs 𝑙(where 𝑙) = -	 𝑙'	 if	ℎ'	is	even
𝑙'||𝑙'	 if	ℎ'	is	odd

Enforcement Mechanisms
• Static Information Flow Control:
• type checking

• Dynamic Information Flow Control:
• taint-tracking
• runtime monitoring

A simple programming language
e ::= | x | e1+e2 | e1 < e2 | ...

p ::=

| if(e) then { p1 } else { p2 }
 | while(e){ p }

| p1 p2

n

| nop;

x = e;

Exercise: A programming language
• Using our simple programming language, write a program

that takes one input 𝑥' and ends with an output 𝑥(that is
equal to the sum of the odd numbers between 0 and 𝑥'
(inclusive)

e ::= n | x | e1+e2 | e1 < e2 | …

p ::= x = e; | p1 p2
 | if(e) then { p1 } else { p2}
 | while(e){ p } | nop;

xO = 0; i = 0; while(i <= xI){if(i % 2 == 0){xO = xO + i;}}

Type Systems
• A program is well-typed if all operands are the right type

for the operator and all variables are the right type for the
expression

• determining that a program is well-typed requires proving
that all expressions and all assignments are the right type

int x;
string y;

x = 4 + 5;
y = "hello" + "world";

x = "hello" + 5;
x = "hello" + "world";

Logical Inference
• Syntax for logical Inference: *+,-&.,(.)1)2134.&)2

• Examples:
567,	 :6;
5<:6= 56>+4,,	 :6?@3.,

5)+	:	6	>+4, 	
.,14+&A:	&.	B42!

Type Inference (Expressions)
• Type environment Γ maps variables to type

• Goal: Judgement (aka proof that) G ⊢ e : t
 According to mapping Γ, expression e has type t

• Constants: 	
D	⊢ 2∷&2A

	
D	⊢	 >+4,∷G))3

	
D	⊢	?@3.,∷G))3

• Variables: D H 6AD	⊢ 5∷I

• Expressions: D⊢,#∷&2A,	D⊢,$∷&2AD	⊢ ,#<,$∷&2A
D⊢,#∷&2A,	D⊢,$∷&2A
D	⊢ ,#J,$∷G))3 …

int x;
bool y;

Γ 𝑥 = 𝐢𝐧𝐭;
Γ 𝑦 = 𝐛𝐨𝐨𝐥;

Example: Type Inferences
• Let Γ(x)= int and	Γ(y)= int.
• What is the type of x+y+1?
• Proof tree:

G ⊢ x + y + 1 : 𝒊𝒏𝒕

G ⊢ x : 𝒊𝒏𝒕 G ⊢ y : 𝒊𝒏𝒕

G(x) = 𝒊𝒏𝒕 G(y) = 𝒊𝒏𝒕

G ⊢ 1 : 𝒊𝒏𝒕G ⊢ x + y : 𝒊𝒏𝒕

Exercise: Type Inference
• Let Γ(x)= int and	Γ(y)= int.
• What is the type of y>x+5?
• Proof tree:

G ⊢ y > x + 5 : 𝒃𝒐𝒐𝒍

G ⊢ y : 𝒊𝒏𝒕

G ⊢ x : 𝒊𝒏𝒕G(y) = 𝒊𝒏𝒕

G(x) = 𝒊𝒏𝒕
G ⊢ 5 : 𝒊𝒏𝒕

G ⊢ x + 5 : 𝒊𝒏𝒕

Label Inference (Expressions)
• Type environment Γ maps variables to type

• Goal: Judgement (aka proof that) G ⊢ e : ℓ
 According to mapping Γ, expression e has label ℓ

• Constants: 	
D	⊢ 2∷K

• Variables: D H 6ℓD	⊢ 5∷ℓ

• Expressions:

Γ 𝑥 = 𝑳;
Γ 𝑦 = 𝐇;

label

Join Operator for combining labels
• For each ℓ1 and ℓ2, there exists a label ℓ3, such that:
• ℓ1	⊑ ℓ3
• ℓ2	⊑ ℓ3
• for all ℓ4 such that ℓ	⊑ ℓ4 and ℓ2	⊑ ℓ4, then ℓ3⊑ ℓ4.

• ℓ3 is called the join of ℓ and ℓ2 and denoted ℓ1⊔ℓ2
• Operator ⊔ is associative and commutative.

Lattice of labels
• The set of labels and relation ⊑ define a lattice, with join

operator ⊔.

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

⊑

⊑

⊑

⊑

⊑
⊑ ⊑

⊑

⊒	

⊒	

⊒	

⊒	 ⊔

⊔
⊤

⊥

Exercise: Join
• What are the following labels (H or L)?

1. 𝐻 ⊔ 𝐻
2. 𝐻 ⊔ 𝐿
3. 𝐿 ⊔ 𝐻
4. 𝐿 ⊔ 𝐿

Low

High

Label Inference (Expressions)
• Type environment Γ maps variables to type

• Goal: Judgement (aka proof that) G ⊢ e : ℓ
 According to mapping Γ, expression e has label ℓ

• Constants: 	
D	⊢ 2∷K

• Variables: D H 6ℓD	⊢ 5∷ℓ

• Expressions:

Γ 𝑥 = 𝑳;
Γ 𝑦 = 𝐇;

label

D⊢,#∷ℓ#,	D⊢,$∷ℓ$
D	⊢ ,#<,$∷ℓ#⊔ℓ$

D⊢,#∷ℓ#,	D⊢,$∷ℓ$
D	⊢ ,#J,$∷ℓ#⊔ℓ$ …

Example
• Let Γ(x)= L and	Γ(y)= H.
• What is the type of x+y+1?
• Proof tree:

G ⊢ x + y + 1 : H

G ⊢ x : L G ⊢ y : H

G(x) = L G(y) = H
G ⊢ 1 : L

Exercise
• Let Γ(x)= L and	Γ(y)= H.
• What is the type of y>x+5?
• Proof tree:

G ⊢ y > x + 5 : H

G ⊢ y : H

G ⊢ x : LG(y) = H

G(x) = L
G ⊢ 5 : L

G ⊢ x + 5 : L

Type Checking (Programs)
• When is a one-line program x = e; well-typed?

G ⊢ x=e;

G ⊢ e : t t ⊑ G(x)

Static type system

G ⊢ x=e;
G ⊢ e : t t	⊑ G(x)

G ⊢ if(e) then{ p1 } else{ p2 }

G ⊢ e : bool G ⊢ p1 G ⊢ p2

G ⊢ while(e){ p }
G ⊢ e : bool G ⊢ p

G , 𝑐𝑡𝑥 ⊢ p1 p2
G ⊢ p1 G ⊢ p2

Assignment-Rule:

If-Rule:

While-Rule:

Sequence-Rule:

G ⊢ nop;
Skip-Rule:

Enforcing Information Flow
• Goal: Design a type system such that

G ⊢ p ⇒ p satisfies NonInterference

