Lecture 19: Information Flow

CS 181S Spring 2024

Where we were...

Authentication: mechanisms that bind principals e
to actions
&

Authorization: mechanisms that govern whether 3 :,@,

actions are permitted

Audit: mechanisms that record and review actions %
—]

Who defines Policies?

'V Sharing & Permissions:

Discretionary access control (DAC)

Name
2 eleanor (Me)

Philosophy: users have the discretion to spe(=«

themselves
Commonly, information belongs to the owner of obj

Access control lists, privilege lists, capabilities

Mandatory access control (MAC)
Philosophy: central authority mandates policy

Information belongs to the authority, not to the indivjs

MLS and BLP, Chinese wall, Clark-Wilson, etc.

lllll

ication?

|||||||

Access control for computed data

Doc

Computation.@. @_
i @ @\

Can read: Can read:
Alice Alice
Bob Doc’ Doc” Bob

Scaling to many pieces of data...

4
%‘ﬁm

Scaling to many users...

b .
L
L}
vy

X

L

Scaling to many interactions...

..

Need to assign
restrlctlons inan
automatlc way.

Information flow policies

L(Doc) = L(Alice)

Can flow to:
N L(Doc) % L(Bob)

Doc

- deduction é
of policies! :

Can flow to:

Can flow to:

Alice Alice

Labels represent policies

Secret, {nuc, crypto}

Conf, {nuc} Secret, {} Conf, {crypto}

Labels represent policies

?

Low

Labels represent policies

v

Doc

L(
L(
L(D
L(

i

Doc’

Doc”

Alice) = H
Bob) =L

oc) = L(Alice)
Doc) % L(Bob)

Information Flow (IF) Policies

Focus on information not objects

An IF policy specifies restrictions on some data, and on
all its derived data.

IF policy for confidentiality:

Value v and all its derived values are allowed to be read only by
Alice

(Different from an access control policy, which would say
something like Value v is allowed to be read onl y by Alice)

The enforcement mechanism automatically deduces the
restrictions for derived data.

Policy Granularity

Objects can be system principles (files, programs, sockets...)
Objects can be program variables

Noninterference [Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
Changes on H inputs should not cause changes on L outputs.

H H
L:x L
Inputs Outputs

Program

Noninterference: Example

1 Aﬂ: h

hIH 3:
h' =h+1;
2 L, U=+t L 3

The program satisfies noninterference!

Noninterference: Example

1 HJ, H

) _, l"="h *2; lrL 2:
3 H[, H

2 L Tt L6

The program does not satisfy noninterference!

Noninterference: Example

1 H[, == H
> h ' =1;
_ } else {
2 il l, = 0; ll L 1 R
> } >
3 H if(h == 1){ H
» h I =1:
} else {
2 L: l, = 0; ll L O >

}

The program does not satisfy noninterference!

Noninterference

Consider a program P.

Consider two memories M; and M,, such that they agree
on values of variables tagged with L: M; =1 M,.

(M; and M, might not agree on values of variables tagged
with H)

P(M;) are the observations produced by executing C to
termination on initial memory M;:

final outputs, or
intermediate and final outputs.

Then, observations tagged with L should be the same:
P(My1) =, P(M3).

Noninterference: VM, M,: if M; = M,, then P(M,) = P(M,).

Exercise 1: Noninterference

Assume P;, P, each take two inputs: h; (label H) and [; (label L)

P, outputs (hp, lp) where hy = hy||l; and [, =
|| denotes string concatenation.

l; if h; is even

P, outputs [, where [, = { LI if by is odd

Enforcement Mechanisms

Static Information Flow Control:
type checking

Dynamic Information Flow Control:
taint-tracking
runtime monitoring

A simple programming language

e ::= n| x| el+e2 | el < e2 | ...
p ::=x = e;
pl p2

if(e) then { pl } else { p2 }
while(e){ p }
nop;

Exercise: A programming language

Using our simple programming language, write a program
that takes one input x; and ends with an output x, that is
equal to the sum of the odd numbers between 0 and x;
(inclusive)

e ::=n | x| el+e2 | el < e2 | ..

p ::=x=¢e; | pl p2
| if(e) then { pl } else { p2}
| while(e){ p } | nop;

Type Systems

A program is well-typed if all operands are the right type
for the operator and all variables are the right type for the
expression

int x;

string y;

x =4 + 5; X = "hello" + 5;

y = "hello" + "world"; x = "hello" + "world";

determining that a program is well-typed requires proving
that all expressions and all assignments are the right type

Logical Inference

. remise(s
Syntax for logical Inference: 2 ()
conclusion
Examples:
x=4, y=5 x=True, y=False

xX+y=9 xory=True security is fun!

Type Inference (Expressions) ¢ *

bool y;
Type environment I' maps variables to type ['(x) = int;
I'(y) = bool;

Goal: Judgement (aka proof that) I' - e : t
According to mapping I', expression e has type t

Constants: - n:int I' - True::bool I' - False::bool

F'x)=t
' x::t

Variables:

Fel::int, I'ke2::int 'Fel::int, I'ke2::int
'+ el+e2::int '+ el<e2::bool

. r
Expressions:

Example: Type Inferences

Let I'(x)= int and I'(y)= int.
What is the type of x+y+1?

Proof tree:
I'(x) = int I'(y) = int
I' x : int ' y : int
' x +y : int ' 1 : int

' x+y +1 : int

Exercise: Type Inference

Let I'(x)= int and I'(y)= int.
What is the type of y>x+57?

Proof tree:

I'(x) = int
I'(y) = int ' x : int ' 5 : int
' y : int ' x + 5 : int

I'' - y>x+ 5 : bool

Label Inference (Expressions)

label
Type environment I' maps variables to type-

Goal: Judgement (aka proof that) T + e : # ['(x) =L;

According to mapping I', expression e has label £ ['(y) =H;

Constants: ——

'(x)=*¢
' x::f

Variables:

Expressions:

Join Operator for combining labels

For each £1 and £2, there exists a label £3, such that:
£1 = {3
£2 = {3
for all 4 such that £ E {4 and {2 E {4, then {3C {4.

3 is called the join of £ and £2 and denoted {1L1£2
Operator U is associative and commutative.

L attice of labels

The set of labels and relation E define a lattice, with join
operator L.

Secret, {nuc, crypto}

Conf, {nuc} Secret, {} Conf, {crypto}

Ul/

Conf, {} 1

/Y]

Exercise: Join

What are the following labels (H or L)?

HUH
H UL
LUH
LulL

Low

Label Inference (Expressions)

label
Type environment I' maps variables to type-

Goal: Judgement (aka proof that) T + e : # ['(x) =L;

According to mapping I', expression e has label £ ['(y) =H;

Constants: ——

'(x)=*¢
' x::f

Variables:

['Fel::¥1, T'+e2::£2 'el::#1, T'te2::£2

Expressions:
pressions '+ el+e2:P1U¥2 ' el<e2:£1U4L2

Example

Let I'(x)= L and I'(y)= H.
What is the type of x+y+1?

Proof tree:
I'(x) =L I'(y) = H
' x : L ' v : H ' 1 : L

' x+y+1 : H

Exercise

Let I'(x)= L and I'(y)= H.
What is the type of y>x+57?

Proof tree:

I'(x) =L
I'(y) = H ' x : L ' 5 : L
'y : H ' x+5 : L

' y>x+5 : H

Type Checking (Programs)

When is a one-line program x = e; well-typed?

Static type system
I'HFe:t tE 1 (x)
Assignment-Rule:
I - x=e;
I' +Fpl I' +p2

Sequence-Rule:

I',ctx - pl p2
I'e:bool T'Fpl 1T Fp2

If-Rule:
I'Hif (e) then{ pl } else{ p2 }
I' e : bool I'Fp
While-Rule:
I' Hwhile(e){ p }
Skip-Rule:

I' F nop;

Enforcing Information Flow

Goal: Design a type system such that

' Hp = p satisfies Noninterference

