
CS 181S Spring 2024

Lecture 17: Capabilities

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted
• Discretionary Access Control
• Mandatory Access Control

Access Control Policy
• An access control policy specifies which of the

operations associated with any given object each
principal is authorized to perform

• Expressed as a relation 𝐴𝑢𝑡ℎ:

𝑨𝒖𝒕𝒉
Objects

dac.tex dac.pptx

principals
ebirrell r,w r,w
faculty r r
student r

Access Control Lists

Capability
Lists

Protection Domains
• Motivation: users are too coarse-grained to define

privileges
• Protection Domains:
• Each thread of control is associated with a protection domain
• Each protection domain is associated with a different set of

privileges
• We allow transitions from one protection domain to another as

execution of the thread proceeds.

Protection Domains
• Typical implementation: certain system calls cause

protection-domain transitions.
• System calls for invoking a program or changing from user mode to

supervisor mode are obvious candidates.
• Some operating systems provide an explicit domain-

change system call instead
• the application programmer or a compiler’s code generator is then

required to decide when to invoke this domain-change system call
• We use the term attenuation of privilege for a transition

into a protection domain that eliminates privileges.
• We use the term amplification of privilege for a

transition into a protection domain that adds privileges.

Objects
dac.tex dac.pptx

pr
in
ci
pa
ls

ebirrell@sh
ebirrell@edit r,w
ebirrell@powerpoint r,w
drdave@sh
drdave@edit r
drdave@powerpoint r
studenta@sh
studenta@edit
studenta@powerpoint r

Protection Domains
Objects

dac.tex dac.pptx ebirrell
@sh

ebirrell
@edit

ebirrell@
powerpoint

pr
in
ci
pa
ls

ebirrell@sh x x x
ebirrell@edit r,w
ebirrell@powerpoint r,w
drdave@sh
drdave@edit r
drdave@powerpoint r
studenta@sh
studenta@edit
studenta@powerpoint r

Role-Based Access Control
• Particularly in corporate and institutional settings, users

might be granted privileges by virtue of membership in a
group.
• E.g., students who enroll in a class should be given access to that

semester’s class notes and assignments simply due to their new
role

• Without groups, implementing role-based access control
is error prone
• Adding or deleting a member might require updating many access

control lists. That can be error-prone.
• Revocation is subtle. Should permission be removed with principal

is removed from a group?

Exercise 3: RBAC
• What roles might you want to include in a course

management system?

Confused Deputy
Server: operation(f : file)

buffer := FileSys.Read(f)
results := F(buffer)
diff:= calcDiff(results)
FileSys.Write(f , results)
FileSys.Write(log.txt, diff)

Privilege Escalation

Cross-Site Request Forgery (CSRF)

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4 (w/ cookie)

Access Control Policy
• An access control policy specifies which of the

operations associated with any given object each
principal is authorized to perform

• Expressed as a relation 𝐴𝑢𝑡ℎ:

𝑨𝒖𝒕𝒉
Objects

dac.tex dac.pptx

principals
ebirrell r,w r,w
faculty r r
student r

Access Control Lists

Capability
Lists

Capability Lists
• The capability list for a principal 𝑃 is a list

⟨𝑂%, 𝑃𝑟𝑖𝑣𝑠%⟩, ⟨𝑂&, 𝑃𝑟𝑖𝑣𝑠&⟩, …	, ⟨𝑂', 𝑃𝑟𝑖𝑣𝑠'⟩	
• e.g., ⟨dac.tex, {r,w}⟩ ⟨dac.pptx, {r,w}⟩

• Capabilities carry privileges.
1) Authorization: Performing operation 𝑜𝑝 on object 𝑂! requires a

principal 𝑃 to hold a capability 𝐶! = ⟨𝑂!, 𝑃𝑟𝑖𝑣𝑠!⟩ such that 𝑜𝑝 ∈
𝑃𝑟𝑖𝑣𝑠!

2) Unforgeability: Capabilities cannot be counterfeited or
corrupted.

• Note: Capabilities are (typically) transferable

Capabilities
• Advantages:
• Natural approach for user-defined objects
• Eliminates confused deputy problems

• Disadvantages:
• Review of permissions?
• Revocation?
• Delegation?
• Privacy?

Exercise 1: Capabilities
• Consider the following proposal: capabilities will be

represented using a pair ⟨𝑁𝑎𝑚𝑒 𝑂𝑏𝑗 , 𝑃𝑟𝑖𝑣𝑠⟩, where
𝑁𝑎𝑚𝑒 𝑂𝑏𝑗 	is a random 128-bit string and 𝑃𝑟𝑖𝑣𝑠 is the set
of privileges conferred by the capability. The function
𝑁𝑎𝑚𝑒, if it exists at all, is kept secret. What functionality
expected for capabilities does this alternative support and
where (if at all) does it fall short?

Example: OAuth2
• Industry standard

authorization protocol
• Used for single sign-on by

major IDPs
• Facebook, Google

• A bearer token contains a
unique identifier

Authenticity: Tagged Memory

• Example: IBM System 38
• tag = 0: normal memory
• tag = 1: this word + next are a capability
• In user mode, cannot modify tag bit or modify word with

tag = 1
• Exception: can copy capabilities

• pass capabilities in function calls

obj p1p2…pN1 1 type

Authenticity: Protected Address Space

• General idea: store capabilities in region of memory we
know how to protect
• Option 1: protected kernel memory
• Option 2: protected memory segment

• Note: OS must be trusted

• Store list of capabilities in process control block
• Capabilities referenced by index into c-list

Example: File Descriptor Table
• In Unix etc, a file

descriptor is a handle used
to reference files and I/O
resources

• File descriptors have
modes (read, write) and
are stored in per-process
file descriptor table

• File descriptors can be
passed between
processes using
sendmsg()

Cryptographically-protected capabilities
• Object owner creates capabilities using a digital signature

scheme
• Capabilities are triples 𝐶 = ⟨𝑂, 𝑃𝑟𝑖𝑣𝑠, Sig(𝑂, 𝑃𝑟𝑖𝑣𝑠; 𝑘()⟩
• Authorization: P is permitted to perform op on O if P

produces a capability for O with 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠 and a valid
signature

• Unforgeability: digital signatures are unforgeable to
adversaries who don't know private key 𝑘(

• Note: assumes PKI

Restricted Delegation
• 𝐶) = 𝑂, 𝑃𝑟𝑖𝑣𝑠), 𝑝𝑘%, 𝜎)
• where 𝜎" = 	Sig 𝑂, 𝑃𝑟𝑖𝑣𝑠", 𝑝𝑘#; 𝑠𝑘"

• 𝐶% = 𝑂, 𝑃𝑟𝑖𝑣𝑠%, 𝑝𝑘&, (𝑃𝑟𝑖𝑣𝑠), 𝑝𝑘%, 𝜎)), 𝜎%
• Where 𝜎# = 	Sig 𝑂, 𝑃𝑟𝑖𝑣𝑠#, 𝑝𝑘$, (𝑃𝑟𝑖𝑣𝑠%, 𝑝𝑘#, 𝜎"); 𝑘#

To Authorize 𝑜𝑝 with 𝐶!:
1. Verify 𝜎! is a valid signature

of (𝑂, 𝑃𝑟𝑖𝑣𝑠!, 𝑝𝑘")
2. Check that 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠!

To Authorize 𝑜𝑝 with 𝐶#:
1. Verify 𝜎" is a valid signature of

(𝑂, 𝑃𝑟𝑖𝑣𝑠", 𝑝𝑘#)
2. Verify 𝜎# is a valid signature of

(𝑂, 𝑃𝑟𝑖𝑣𝑠#, 𝑝𝑘$, (𝑃𝑟𝑖𝑣𝑠%, 𝑝𝑘#, 𝜎"))
3. Check that 𝑃𝑟𝑖𝑣𝑠# ⊂ 𝑃𝑟𝑖𝑣𝑠"
4. Check that 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠#

Exercise 2: Restricted Delegation
• Assume you have a credential

𝐶" = 𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟, 𝑤}, 𝑝𝑘#, ({𝑟, 𝑤, 𝑥}, 𝑝𝑘", 𝜎!), 𝜎"

1. Generate a credential 𝐶# that would authorized the holder to
read (but not write) dac.pptx
𝐶# = 𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟}, 𝑝𝑘$, 𝑟, 𝑤, 𝑥 , 𝑝𝑘", 𝜎! , 𝑟, 𝑤 , 𝑝𝑘#, 𝜎" , 𝜎#

2. Define the sequence of steps that should be taken to authorize
𝑜𝑝 with 𝐶#

1. Verify 𝜎! is a valid signature of (𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, 𝑟, 𝑤, 𝑥 , 𝑝𝑘")
2. Verify 𝜎" is a valid signature of (𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟, 𝑤}, 𝑝𝑘#, 𝑟, 𝑤, 𝑥 , 𝑝𝑘", 𝜎!)	
3. Verify 𝜎# is a valid signature of

(𝑑𝑎𝑐. 𝑝𝑝𝑡𝑥, {𝑟}, 𝑝𝑘%, 𝑟, 𝑤, 𝑥 , 𝑝𝑘", 𝜎! , 𝑟, 𝑤 , 𝑝𝑘#, 𝜎")
4. Check that 𝑃𝑟𝑖𝑣𝑠" ⊂ 𝑃𝑟𝑖𝑣𝑠!
5. Check that 𝑃𝑟𝑖𝑣𝑠# ⊂ 𝑃𝑟𝑖𝑣𝑠"
6. Check that 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠#

Revocation
• Revocation Tags
• Capabilities are tuples 𝐶 = ⟨𝑂, 𝑃𝑟𝑖𝑣𝑠, 𝑟𝑡&, Sig(𝑂, 𝑃𝑟𝑖𝑣𝑠, 𝑟𝑡'; 𝑘)⟩
• Access to object O is guarded by a reference monitor; monitor

maintains a list of revoked tags 𝑟𝑡&
• Capability Chains
• Objects can be other capabilities!
• 𝑃	is authorized to perform 𝑜𝑝	on 𝑂	if 𝑃 holds a capability 𝐶! and
𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠(holds for every capability 𝐶(in the chain from 𝐶! to 𝐶#

Keys as capabilities
• Encrypt object
• Decryption method functions as reference monitor:
• Authorization: correct key will decrypt object -> allow access
• Unforgeability: incorrect key will not decrypt

• Note: no notion of separate privileges

Example: Mac keychains

• OSX/iOS password
manager

• uses password-based
encryption (AES-256) to
store username/password
credentials

• supports multiple
keychains

What about privacy?

