Lecture 15: Tokens

CS 181S Spring 2024

Review: Authentication of humans

Something you are
fingerprint, retinal scan, hand silhouette, a pulse

Something you know
password, passphrase, PIN, answers to security questions

Something you have
physical key, ticket, {ATM, prox, credit} card, token

Authentication Tokens

What hardware authentication tokens and/or phone apps
have you used in real life?

CARDHOLDER

Threat Model: Eavesdropper

Adversary can read read and
replay messages

Adversary cannot change
messages during protocol
execution (not full Dolev-Yao)

Fixed codes (Keyless Entry)

Token stores a secret value id_T (e.g., key, id,
password)

Reader stores list of authorized ids
Toenter: T->B: id T

Attack: replay: thief sits in car nearby, records serial number,
programs another token with same number, steals car

Attack: brute force: serial numbers were 16 bits, devices
could search through that space in under an hour for a single
car (and in a whole parking lot, could unlock some car in under
a minute)

Attack: insider: serial numbers typically show up on many
forms related to car, so mechanic, DMV, dealer's business
office, etc. must be trusted

ILORIIEICollege

Fixed codes (RFIDs)

Token stores a secret value id T
(e.g., key, id, pgssword) | | Bl 1T .

Reader stores list of authorized ids 123456781 S
Toenter: T->B: id T

Attack: replay: thief sits nearby, records serial number,
programs another token with same number, authenticates

Attack: privacy: adversary tracks token usage across system
and learns user attributes and/or behaviors

“Rolling” codes

There is a root key, rk, for the barrier

Token stores:

serial number T
shared key k, which is H(rk, T)
nonce N, which is a sequence counter

Barrier stores:

serial numbers and current nonces for all authorized tokens
as well as root key rk

To enter: T->B: T, MAC(T, N; k)
And T increments N
So does B if MAC tag verifies

Problem: desynchronization of nonce

Rolling window

Example 1 Example 2

"\!L n—1 O 7 (\!L n—1 O 7

<« 0O

o
\.A
Of %3
A - Value from last valid message C - End of window
B - Accepted counter values D - Rejected counter values

Image source: Atmel

http://www.atmel.com/images/atmel-2600-avr411-secure-rolling-code-algorithm-for-wireless-link_application-note.pdf

One-Time Passwords

OTP may be deemed valid only once (the first time)

Adversary cannot predict future OTPs, even with
complete knowledge of what passwords have already
been used

Unique challenge: MACs

Assume: B stores a MAC key for each token,
i.e., a setoftuples (id T, uid, k T),and T storesk T

. U->B: I want to authenticate with T
. B: invent unique nonce N
. B->T: N
. T: t=MAC(N; k _T)
. T->B: id T, t
. B: lookup (uid, kT) for id T;
U is authenticated as uid if t=MAC(N; k T)

o 0 d W N K

Non-problem: key distribution: already have to physically distribute
tokens

Problem: key storage at B: what if key is stolen?

EPC Gen2v2 RFID Cards

UCODE

R -

ProxCard T

Exercise 2. Digital Signatures

Assume: B stores a MAC Assume: B stores a
key for each token and T verification key for each token
storesk T and T stores signing key k_ T

. U->B: U,T

. B: invent nonce N

. B->T: N

. T: t=MAC(N; k T)

. T->B: 1id T, t

. B: U 1s auth as uid
if t= (N; k T)

o O d WD R

U2F

Remote Authentication

(Usually) No communication from server to token

Usability considerations render challenge-response
impractical

Hypothetical protocol

Assume: S stores a set of tuples (id_T, uid, kT, pin), and T stores kT

L

oo o ot dWDN K

U-

L_
T_
U_
L:
L_
S:

>L: I want to authenticate as uid to S
and S: establish secure channel

>U: Enter PIN and code on my keyboard
>U: code = MAC(time@T, id T; kT)

>L: pin, code

compute h = H(pin, code)
>S: uid, h

lookup (pin, id T, kT) for uid;

id Hu is authenticated

if h=H(pin, MAC(time@S, id T; kT))

Engineering challenge: clock synchronization

Exercise 3. Clock Synchronization

Assume that timestamps have a granularity of 1 second

Assume that T and S last synchronized their clocks 24
hours ago (at noon the previous day)

Assume that the network latency is 1-10 seconds

Assume that the clock drift between the two clocks is at
most .01 seconds per second

If S receives a message at noon, what is the maximum
and minimum timestamp it should accept?

SecurlD

Token: displays code that changes every minute

LCD display

Internal clock (1 minute granularity)

No input ch I)
O Input channe @q

Can compute hashes, MACs
Stores a secret

|deas used:
replace random value with current time
use L to input PIN
server checks +10 minutes to allow for
clock drift

RSA |

SecurlD®)

Hash chains

Let H(x) be i iterations of H applied to x
H®(x)

)

)

Y106 = H(HG0)

Hash chain: H'(x), H%(x), H3(x), ..., H"(x)

OTPs from hash chains

Given a randomly chosen, large, secret seed s...

Bad idea: generate a sequence of OTPs as a hash
chain: H'(s), H%(s), ..., H(s)
Suppose untrusted public machine learns Hi(s)

From then on can compute next OTP H"*'(s) by applying H,
because hashes are easy to compute in forward direction

But hashes are hard to invert...

Good idea [Lamport 1981]: generate a sequence of
OTPs as a reverse hash chain: H"(s), ..., H(s)
Suppose untrusted public machine learns Hi(s)
Next password is H-'(s)
Computing that is hard!

Exercise: Reverse Hash Chains

How could we use a reverse Hash Chain to authenticate
users with tokens?

Solution 1

Assume: S stores a set of tuples (uid, n_u, s _u)

1.
2.

Problem: S has to compute a lot of hashes if authentication is

o U1 i W

U->L->S: uid

S:

lookup (n_u, s u) for uid;
let n = n u;

let otp = H"(s_u);
decrement stored n u

S->L->U: n
U: p = H'(s_u)
U->L->S: p

S:

uid is authenticated if p = otp

frequent

Solution 2
S stores last: last successful OTP forid Hu, where last =
H™(s)
S receives next: next attempted OTP, where if all is well next
= H1(s)

S checks its correctness with a single hash:
H(next) = H(H"(s)) = H™'(s) = last
And if correct S updates last successful OTP: last := next

Next problem: what if Hu and S don't agree on what password
should be used next? i.e., become desynchronized

network drops a message

attacker does some online guessing (impersonating Hu) or
spoofing (impersonating S)

Solution 3

Hu and S independently store index of last used
password from their own perspective, call them m_Hu and
m S

Neither is willing to reuse old passwords (i.e., higher indexes)

But both are willing to skip ahead to newer passwords (i.e., lower

indexes)
To authenticate:

S requests index m_S
Hu computes min(m_S, m_Hu), sends that along with OTP for it
S and Hu adjust their stored index

Next problem: running out of passwords: have to bother
sysadmin periodically

Solution 4

Compute OTP as H"(pass,salt)

Whenever Hu wants to generate new set of OTPs:
find a local machine Hu trusts (could be offline, phone, ...)
request new salt from S
enter pass
generate as many new OTPs as Hu likes by running hash forward
let S know how many were generated and what the last one was

S/KEY

[REC 1760]:

Instantiation of that protocol for particular hash algorithms
and sizes

But same idea works for newer hashes and larger sizes

https://tools.ietf.org/html/rfc1760

