Lecture 14: Passwords

CS 181S Spring 2024

Where we were...

Something you are

fingerprint, retinal scan, hand silhouette, a pulse
Something you know

password, passphrase, PIN, answers to security questions

Something you have
physical key, ticket, {ATM, prox, credit} card, token

Password lifecycle

Create: user chooses password
Store: system stores password with user identifier
Use: user supplies password to authenticate

Change/recover/reset: user wants or needs to
change password

Who creates?

User

Exercise 1: Choosing Passwords

Guess the top five most common US passwords in 2023

Who creates?

User
System

Administrator

Strong passwords

How to characterize strength?

One Approach: Difficulty to brute force—"strength" or
"security level"

Recall: if 2"X guesses required, strength is X

Suppose passwords are L characters long from an
alphabet of N characters

Then NAL possible passwords

Solve for X in 2AX = NAL

Get X=Llog, N

This X is aka entropy of password

Assuming every password is equally likely, X is the Shannon entropy of
the probability distribution (cf. Information Theory)

Exercise 2. Entropy of passwords

Option A: 8 character passwords chosen uniformly at
random from 26 character alphabet

Option B: 1 word chosen at random from entire
vocabulary

Password Recipes

Problem: guide users into choosing strong passwords

Solution: password recipes are rules for composing
passwords

e.g., must have at least one number and one punctuation symbol
and one upper case letter

CREATE YOUR USERNAME *

CREATE YOUR PASSWORD *

Show

Your password must
O Be at least 9 characters
O Include an uppercase letter

O Include a lowercase letter

O Include a number

O Not start or end with a space

CREATE YOUR CALL-IN PIN *

Entropy estimation

Entropy estimates [NIST 2006 based on experiments by
Shannon]:

(assuming English and use of 94 characters from keyboard)

1st character: 4 bits

next 7 characters: 2 bits per character

characters 9..20: 1.5 bits per character

characters 21+: 1 bit per character

user forced to use lower & upper case and non-alphabetics: flat
bonus of 6 bits

prohibition of passwords found in a 50k word dictionary: 0 to 6 bits,
depending on password length

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

Entropy estimation

But:

"INIST's] notion of password entropy...does not provide a
valid metric for measuring the security provided by
password creation policies."

Underlying problem: Shannon entropy not a good
predictor of how quickly attackers can crack passwords

Password Cracking

Evaluate recipes based on
percentage of passwords cracked
number of guesses required to crack

Example recipes:
> 8 characters
> 8 characters, no blacklisted words ...with various blacklists

= 8 characters, no blacklisted words, one uppercase,
lowercase, symbol, and digit ("comprehensive", c8)

= 16 characters ("passphrase”, b16)
Results...

Recipe comparison

70%

o/

)}
o
[

o/

o)
o
o

Percentage of passwords cracked

p ~ o C ao—Fto—O O—(»_r ’/
L~ “w— —— e O— - o— \:\ = &

1EO 1E1 1E2 1E3 1E4 1E5

Number of guesses (log scale)

T A p— OO o S o6 @O0 W

1E6 1E7 1E8 1E9 1E10 1E11 1E12 1E13

basicBsurvey
basic8
blacklistEasy

= blacklistMedium

dictionary8

<+ DlacklistHard
'| comprehensive8

basic16

L?gu;'oﬁggﬁﬁ(ﬂuui - ~ 28 BITS OF ENTROPY WAS T TROMBONE? NO,
0 Qoooaonl N TROUBADOR. AND ONE OF
(NoN-GIBBER'SH) UNOKN'“JWBQN om0 B || ™E Os wis A ZERG?
BASE WORD ”’ﬂ H" \ W
2“ opy A AND THERE WAS
= 3 DAYS AT SOME SYMBOL...
Tr@u b4d or &3 1000 G s
T, craie A b
CAPS? COMHG\I HASH 15 FAsrgRu%T 5 NOT WHRT THE
= 5UBs‘ﬂTUTONS Nmfm || e S e
PUNCTUARTION DIFRCcOLTY To GUESS: | | DIFFICOLTY TO REMEMBER:
(\OU(ANPDDRV%)FWE@'_::TO nOoe EAS(HARD
@Wmﬁ“ wﬁsmqmo: r’;mws) .

correct horse ba’cterg s’cople

I
100af
Qo0Oot oooof C

00t ”JFT‘* 10
0

f

|
\ FOUR RANDOM
COMMON WORDS

‘ﬁﬁ,ﬁ 1 Ol ‘_r

100

aQf

10000

-

~ 44 BITS OF ENTROPY
O0aaOooaponoao

o Oo0ogooaaon

—— Imimls

auaaaopanac
Onoooooaoo

2‘1"'l =550 YEARS AT
1000 GUESSES/SEC

DIFAiICOLTY T0 GUESS:

HARD

DIFFICOLTY TO REMEMBER:
YOU'VE. ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED

EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Passwords

NIST (2017, updated 2020) recommends:
minimum of 8 characters
up to 64 characters should be accepted

all printable ASCII characters and Unicode should be
accepted

blacklist compromised values, dictionary words, repetitive
characters, and context-specific words

no other security requirements

Should provide guidance on picking a good password (e.g.,
password meter

Password Storage

Passwords typically stored in a file or database indexed
by username

Strawman idea: store passwords in plaintext
requires perfect authorization mechanisms
requires trusted system administrators

Threat Model: Offline Attack

Adversary can read files from disk

BRANDS WITH 100M+ LEAKED RECORDS

BRAND NAME RECORDS LEAKED

eeeee

AdultFriendFinder
Zynga
Luxottica
Evite
ALY
Adobe
MyFitnessPal
Canva
JD.com
Badoo
VK

Youku 100M

[T cybernews

Adversary can read process
memory

Note: users make this worse by reusing passwords across systems.

Password Storage

Want: a function f such that...
easy to compute and store f(p) for a password p
hard given disclosed f(p) for attacker to recover p

hard to trick system by finding password g s.t. g != p yet f(p) =
f(q)

Encryption would work, but then the key has to live
somewhere

Cryptographic hash functions work!
one-way property gives (1) and (2)
collision resistance gives (3)

Hashed passwords

Each user has:
username uid
password p

System stores: uid, H(p)

Exercise 3: Hashed Passwords

Consider an alternative authentication protocol where
user sends uid, H(p) and the service compares H(p) to the
stored hash. Would this be more or less secure than
sending the plaintext password? Why?

Hashed passwords are still vulnerable

Assume: attacker does learn password file (offline
guessing attack)
Hard to invert: i.e., given H(p) to compute p
But what if attacker didn't care about inverting hash on
arbitrary inputs?
i.e., only have to succeed on a small set of p's: p1, p2, ..., pn
Then attacker could build a dictionary...

m m (S

Dictionary attacks

=k
s
]
B
8
o
o

NevEnse!

Dictionary:
p1, H(p1)
p2, H(p2) —

pn, H(pn)
Dictionary attack: lookup H(p) in dictionary to find p

And it works because most passwords chosen by humans
are from a relatively small set

Typical passwords

[Schneier quoting AccessData in 2007]:

/-9 character root plus a 1-3 character appendage
Root typically pronounceable, though not necessarily a real word
Appendage is a suffix (90%) or prefix (10%)
Dictionary of 1000 roots plus 100 suffixes (= 100k
passwords) cracks about 24% of all passwords

More sophisticated dictionaries crack about 60% of
passwords within 2-4 weeks

Given biographical data (zip code, names, etc.) and other
passwords of a user...

success rate goes up a little

time goes down to days or hours

https://www.schneier.com/essay-148.html

Salted hashed passwords

Vulnerability: one dictionary suffices to attack every user
Vulnerability: passwords chosen from small space

Countermeasure: include a unique system-chosen
value as part of each user's password

Salted hashed passwords

Each user has:
username uid
unique salt s
password p

System stores: uid, s, H(s, p)

Authenticating to a remote server

Each user has:
username uid
unique salt s
password p

System stores: uid, s, H(s, p)

Hu->L: uid, p

L and S: establish secure channel

L->S: uid, p

S: let h = stored hashed password for uid;
let s = stored salt for uid;
if h = H(s, p)
then uid is authenticated

= W Nb R

Threat Model: Online Attack

Adversary can interact with the
server as a user

= . .
BankofAmerica %27 Higher Standards Online Banking
s s

Sign In

Enter Online ID: Not using Online Banking?

(5 - 25 numbers and/or letters) Enroll now
0 e Banking »
I save this online ID (How does this work? for Online Banking

Learn more
Enter Passcode: about Online Banking
(@ - 12 numbers and/or letters)
Service Agreement >

Go to Online Banking for
. a state other than California
Stop writing checks
and you could save $53
Learn more »

B Secure Area

Home . Locations » ContactUs - Help - Signin -
Personal Fina smnall Business - Corporate &1

About the Bank - In the Community + Finance Tools & Planning + Privacy & Security

Bank of America, N.A, Member FDIC, Equal Housing Lender (2
© 2010 Bank of America Corporation. All rights reserved.

\When authentication fails

Guiding principle: the system might be under attack, so
don't make the attacker's job any easier

Don't leak valid usernames:
Prompt for username and password in parallel
Don't reveal which was bad

Record failed attempts and review

Perhaps in automated way by administrators
Perhaps manually by user at next successful login

Lock account after too many attempts
Rate limit login

Rate limiting

Vulnerability: hashes are easy to compute

Countermeasure: hash functions that are slow to
compute
Slow hash wouldn't bother user: delay in logging hardly noticeable

But would bother attacker constructing dictionary: delay multiplied
by number of entries

|deally, enough to make constructing a large dictionary prohibitively
expensive

Examples: bcrypt, scrypt, Argon2,...

Slowing down fast hashes

Given a fast hash function...
Slow it down by iterating it many times:

zl = H(p);
z2 = H(p/ 21);

z1000 = H(p, z999);
output z1 XOR z2 XOR ... XOR z1000

Number of iterations is a parameter to control slowdown
originally thousands
current thinking is 10s of thousands

Aka key stretching

Salt and pepper

Each user has:
username uid
unique salt s1
unique pepper s2
password p

System stores: uid, s1, H(s1, s2, p)

Password-Based Encryption

PBKDF2: Password-based key derivation function [RFC
8018]

Output: derived key k
Input:

Password p
Salts

lteration count c
Key length len

Pseudorandom function (PRF): "looks random" to an adversary
that doesn't know an input called the seed (commony instantiated

with an HMAC)

https://tools.ietf.org/html/rfc8018
https://tools.ietf.org/html/rfc8018

Password change

Motivated by...
User forgets password (maybe just recover password)

System forces password expiration
Naively seems wise
Research suggests otherwise

Attacker learns password:

Social engineering: deceitful techniques to manipulate a person
into disclosing information

Online guessing: attacker uses authentication interface to guess
passwords

Offline guessing: attacker acquires password database for system
and attempts to crack it

Change mechanisms

Tend to be more vulnerable than the rest of the
authentication system
Not designed or tested as well

Have to solve the authentication problem without the benefit of a
password

Two common mechanisms:

Security questions
Emailed reset

Security questions

Something you know: attributes of identity established at
enroliment

Pro: you are unlikely to forget answers

Assumes: attacker is unlikely to be able to answer
guestions

Con: might not resist targeted attacks

Con: linking is a problem; same answers re-used in many
systems

Emailed reset

Might be your old password, a new temporary password,
or just a reset link

one-time password: valid for single use only, maybe limited
duration

Assumes: attacker is unlikely to have compromised your
email account

Assumes: email service correctly authenticates you

Password lifecycle

Create: user chooses password
Store: system stores password with user identifier
Use: user supplies password to authenticate

Change/recover/reset: user wants or needs to
change password

Beyond passwords?

Passwords are tolerated or hated by users
Passwords are plagued by security problems
Can we do better?

Criteria:

Security
Usability
Deployability

Schemes to replace passwords

Graphical
Cognitive
Visual cryptography

Schemes to improve passwords

Password managers
Single Sign-On
Two-factor authentication

Exercise 4: Authentication Examples

Choose an example website (e.g., email provider, social
network, or a payments app) and investigate how how
they handle authentication.

What are their restrictions on password selection? Do
they support SSO? How do they handle recovery? Do
they rely exclusively on passwords?

Something you know

-EMAIL ACCOUNT SETUP-
T0 VERIFY YOUR IDENTITY,
WE NEED TO ASK YOU A

QRUESTION NOBODY ELSE
COULD ANSWER.

O X

&

Q: WHERE ARE THE

RODIES BURIED?

Al l's;é% THE

&

|

[BEHIND THE)
...NICE TRY. |

5 o
it

