Lecture 10: Authentication Protocols

CS 181S

Spring 2024

Aspects of Security

- Authentication: mechanisms that bind principals to actions
- Authorization: mechanisms that govern whether actions are permitted
- Audit: mechanisms that record and review actions

Aspects of Security

- <u>Authentication</u>: mechanisms that bind principals to actions
- <u>Au</u>thorization: mechanisms that govern whether actions are permitted
- <u>Audit</u>: mechanisms that record and review actions

... Gold Standard [Lampson 2000]

Classes of Principals

Authentication: mechanisms that bind principals to actions

- Authenticating Machines
- Authenticating Programs
- Authenticating Humans

Authentication

- Threat: attacker who controls the network
 - Dolev-Yao model: attacker can read, modify, delete messages
- Vulnerability: communication channel between sender and receiver can be controlled by other principals
- Harm: attacker can pretend to have attributes they don't actually have (violating security goals)
- Countermeasure: authentication protocols

Authentication Protocols

 An authentication protocol allows a principal receiving a message to verify the identity of the principal that sent that message

Assumptions

- Assume Alice and Bob have a shared secret key k
- Assume that symmetric-key crypto works

Protocol 1

- 1. B -> A: B
- 2. A -> B: A, k

Defining Authentication

 A strong authentication protocol demonstrates knowledge of the secret without revealing the secret itself

Protocol 2

- 1. B -> A: B
- 2. $A \rightarrow B: A, H(k)$

Threat Model

- Dolev-Yao attacker
 - controls the network, can read, modify, create packets
- A replay attack occurs when an adversary repeats (fragments of) a previous protocol run
- 1. B -> A: B
- 2. $A \rightarrow B: A, H(k)$
 - 1) B -> T: B
 - 2) $T \rightarrow B: A, H(k)$

Exercise: Replay Attacks

- Consider the following authentication protocol. Either demonstrate a replay attack against it or make an informal argument as to why it is secure against replay attacks.
- 1. B -> A: B
- 2. A -> B: A, Enc(A^B ; k)

Protocol 3

Idea: require Alice to authenticate with a different message every time

- 1. $B \rightarrow A: B, r$
- 2. A \rightarrow B: A, Enc(r;k)

Threat Model

- Dolev-Yao attacker
 - controls the network, can read, modify, create packets
- A reflection attack occurs when an adversary sends messages from an ongoing protocol back to the originator

1) T -> B: A, r

- 2) $B \rightarrow T: B, Enc(r;k)$
- 2. T -> B: A, Enc(r;k)

Exercise: Reflection Attacks

 Consider the following authentication protocol. Is this protocol vulnerable to a reflection attack? In each case, exhibit an attack or explain why it is not possible

2. A \rightarrow B: A, Enc(A*B+r; k)

Exercise: Reflection Attacks

Replay Attacks

Reflection Attacks

Protocol 4: Multiple Keys

 Idea: have two different keys k_AB and k_BA for authenticating in the different directions

2. A \rightarrow B: A, Enc(r;k_AB)

Protocol 5: Included Identity

- Idea: include the identity of the sender in the encrypted ciphertext
- 1. B -> A: B, r
- 2. A \rightarrow B: A, Enc(A, r; k)

Foiling Reflection Attacks

Multiple Keys

- 1. B->T: B, r
 - 1) T->B: A, r
 - 2) $B \rightarrow T: B, Enc(r;k_BA)$
- 2. $T \rightarrow B$: A, Enc(r;k_BA) 2. $T \rightarrow B$: A, Enc(B, r; k)

Included Identity

1. B->T: B, r
1) T->B: A, r
2) B->T: B, Enc(B, r; k)

Exercise: Authentication Protocols

- Consider the following authentication protocols. For each: Is it vulnerable to a replay attack? Is this protocol vulnerable to a reflection attack? In each case, exhibit an attack or explain why it is not possible
- Protocol 1:
 - 1. B -> A: B, r
 - 2. A -> B: A, Enc(A \oplus B; k)
- Protocol 2:
 - 1. B -> A: B, r
 - 2. A -> B: A, Enc($A \oplus B$ + r; k)
- Protocol 3:
 - 1. B -> A: B, r
 - 2. A -> B: A, Enc(A^{B} + r; k)

Threat Model

- Dolev-Yao attacker
 - controls the network, can read, modify, create packets
- A man-in-the-middle attack occurs when an adversary secretly relays (and potentially changes) communications between two principals who believe they are communicating directly with eachother

- 1) T -> A: B, r
- 2) $A \rightarrow T: A, Enc(A, r; k)$
- 2. $T \rightarrow B: A, Enc(A, r;k)$

Authentication

- Threat: attacker who controls the network
 - Dolev-Yao model: attacker can read, modify, delete messages
- Vulnerability: communication channel between sender and receiver can be controlled by other principals
- Harm: attacker can pretend to have attributes they don't actually have (violating security goals)
- Countermeasure: authentication protocols

Solution: Encrypt Everything

Percentage of pages loaded over HTTPS in Chrome by platform

