
CS 181S Spring 2024

Crypto for Integrity

Protection of integrity
• Threat: attacker who controls the network
• Dolev-Yao model: attacker can read, modify, delete messages

• Vulnerability: communication channel between sender
and receiver can be controlled by other principals

• Harm: information contained in messages can be
changed by attacker (violating integrity)

• Countermeasure: more crypto

Encryption and integrity

Encryption and integrity

NO!
• Plaintext block might be random number, and recipient

has no way to detect change in random number
• Attacker might substitute ciphertext from another

execution of same protocol (replay)
• Adversary can modify encrypted plaintext in predictable

ways (malleability)get integrity solely from encryption

Malleable Ciphertexts
• AES-CBC
• Adversary can truncate blocks from end of message

• AES-CTR
• Flipping bits of plaintext flips bits of ciphertext

• RSA
• Adversary can multiply message

MAC algorithms
• Gen(1!): generate a key 𝑘 of length 𝑛
•MAC(𝑚; 𝑘): produce a tag 𝑡 for message 𝑚
• Verify 𝑚, 𝑡; 𝑘 : returns 1 if 𝑚 was the message
used to generate 𝑡 and 0 otherwise

• A MAC is correct if the tags produced by MAC
are valid, ie, Verify 𝑚,MAC(𝑚, 𝑡; 𝑘) evaluates to 1

• A MAC is secure if it is hard for a PPT algorithm
to forge a valid tag without the key

MAC MAC

Real-world MACs
• CBC-MAC
• Parameterized on a block cipher
• Core idea: encrypt message with block cipher in CBC mode, use

very last ciphertext block as the tag

• HMAC
• Parameterized on a hash function
• Core idea: hash message together with key
• Your everyday hash function isn't good enough...

Hash functions
• Input: arbitrary size bit string
• Output: fixed size bit string
• compression: size of the output is smaller than the input
• diffusion: minimize collisions (and clustering)

Cryptographic hash functions
• Stronger requirements than (plain old) hash

functions
• Goal: hash is compact representation of

original like a fingerprint
• Hard to find 2 people with same fingerprint
• Whether you get to pick pairs of people, or whether

you start with one person and find another
...collision-resistant

• Given person easy to get fingerprint
• Given fingerprint hard to find person

...one-way

Exercise: MACs
• Consider a hash function f that breaks a value into 4-byte

blocks and returns the xor of these blocks. Would this
function make a good HMAC? Why or why not?

1. compression
2. diffusion
3. collision-resistant
4. one-way

Historical hash functions
• MD5: Ron Rivest (1991)
• 128 bit output
• Collision resistance broken 2004-8
• Can now find collisions in seconds
• Don't use it

• SHA-1: NSA (1995)
• 160 bit output
• Theoretical attacks that reduce strength to less than 80 bits
• As of 2017, “practical attack” on PDFs: https://shattered.io/
• Don't use it

Real world hash functions
• SHA-2: NSA (2001)
• Family of algorithms with output sizes {224, 256, 385, 512}
• In principle, could one day be vulnerable to similar attacks as

SHA-1

• SHA-3: public competition (won in 2012, standardized by
NIST in 2015)
• Same output sizes as SHA-2
• Plus a variable-length output option called SHAKE

Encrypt and MAC
0. k_E = Gen_E(len)

k_M = Gen_M(len)
1. A: c = Enc(m; k_E)

t = MAC(m; k_M)
2. A -> B: c, t
3. B: m' = Dec(c; k_E)

t' = MAC(m'; k_M)
if t = t'
then output m'
else abort

m

c t

Encrypt and MAC
• Pro: can compute Enc and MAC in parallel
• Con: MAC must protect confidentiality

Encrypt then MAC
1. A: c = Enc(m; k_E)

t = MAC(c; k_M)
2. A -> B: c, t
3. B: t' = MAC(c; k_M)

if t = t'
then output Dec(c; k_E)
else abort

m

c t

Encrypt then MAC
• Pro: provably most secure of three options [Bellare &

Namprepre 2001]
• Pro: don't have to decrypt if MAC fails
• resist DoS

• Example, ssh (Secure Shell) protocol used this
• default encryption is chacha20
• default MAC is umac, recommends HMAC-SHA2-512 or 256

• Example: IPsec (Internet Protocol Security)
• recommends AES-CBC for encryption and HMAC-SHA2-384 for

MAC, among others
• or AES-GCM

MAC then encrypt
1. A: t = MAC(m; k_M)

c = Enc(m,t; k_E)
2. A -> B: c
3. B: m',t' = Dec(c; k_E)

if t' = MAC(m'; k_M)
then output m'
else abort

m

c

MAC then encrypt
• Pro: provably next most secure
• and just as secure as Encrypt-then-MAC for strong enough MAC

schemes
• HMAC and CBC-MAC are strong enough

• Example: SSL (Secure Sockets Layer)
• Many options for encryption, e.g. CHACHA20, AES-256
• For MAC, standard is HMAC with many options for hash, e.g. SHA-

256, SHA-384

Aside: Key reuse
• Never use same key for both encryption and MAC

schemes
• Principle: every key in system should have unique

purpose

Authenticated encryption
• Newer block cipher modes designed to provide

confidentiality and integrity
• OCB: Offset Codebook Mode
• CCM: Counter with CBC-MAC Mode
• GCM: Galois Counter Mode

Galois Counter Mode (GCM)

DIGITAL SIGNATURES

Recall: Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys
• public key: published for the world to see
• private key: kept secret and never shared

Key pair terminology

Encryption Digital Signatures

Public key Encryption key Verification key

Private key Decryption key Signing key

Digital Signatures
• Gen(1!): generate a keypair (𝑝𝑘, 𝑠𝑘) of length 𝑛
• Sign(𝑚; 𝑠𝑘): produce a signature 𝜎 for message 𝑚
• Verify 𝑚, 𝜎; 𝑝𝑘 : returns 1 if 𝑚 was the message
used to generate 𝜎 and 0 otherwise

• A digital signature scheme is correct if
Verify 𝑚, Sign(𝑚, 𝑡; 𝑠𝑘 ; pk) evaluates to 1

• A digital signature is secure if it is hard for a PPT
algorithm to forge a valid signature without 𝑠𝑘

MAC MAC

RSA
• Core ideas are the same as RSA encryption, but

backward
• Intuition: “RSA sign = encrypt with private key”
• Gen(len):
• Pick primes 𝑝, 𝑞, define 𝑛 = 𝑝 ⋅ 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1 mod (𝑝 − 1)(𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 𝑠𝑘 = (𝑝, 𝑞, 𝑑)

• Sign(m; sk)

• Verify(m, 𝜎; pk):
𝑚 == 𝜎3 	mod	𝑛

𝜎 = 𝑚4 	mod	𝑛

Exercise: Forging Signatures
• Assume that an adversary convinces Alice to sign two

messages 𝑚! and 𝑚" with the same key, producing
signatures 𝜎! and 𝜎". How could this adversary forge a
signed message with the value 𝑚!𝑚"?

Sign 𝑚!𝑚" = 𝑚!𝑚"
#	mod	𝑛

= 𝑚!
#𝑚"

#	mod	𝑛
= (𝑚!

#	mod	𝑛)(𝑚"
#	mod	𝑛)	mod	𝑛

= 𝜎!𝜎"	mod	𝑛

RSA
• Core ideas are the same as RSA encryption
• Intuition: “RSA sign = encrypt with private key”
• Truth (in real world, outside of textbooks):
• there's a core RSA function R that works with either pk or sk
• RSA encrypt = do some prep work on m then call R with pk
• RSA sign = do different prep work on m then call R with sk
• Prep work: recall “textbook RSA is insecure”
• (For encryption: OAEP)
• For signatures: PSS (probabilistic signature scheme)

• Also need to handle long messages…

Signatures with hashing
1. A: s = Sign(H(m); k_A)
2. A -> B: m, s
3. B: accept if Ver(H(m); s; K_A)

DSA
DSA: Digital Signature Algorithm [Kravitz 1991]
• Standardized by NIST and made available royalty-free in

1991/1993
• Used for decades without any serious attacks
• Closely related to Elgamal encryption
• Usual implemented with elliptic curve (ECDSA, Ed25519)

Blind signatures
[Chaum 1983]
• Purpose: signer doesn’t know what they are signing
• Two additional algorithms: Blind and Unblind
• Unblind(Sign(Blind(m); k)) = Sign(m; k)
• Uses: e-cash, e-voting

Group signatures
[Chaum and van Heyst 1991]
• Purpose: one member of group signs anonymously on

behalf of group
• Introduces a group manager who controls membership
• Two new protocols: Join and Revoke, to manage

membership
• One new algorithm: Open, which manager can run to

reveal who signed a message

