Lecture 7: Public-Key Cryptography

CS 181S

Spring 2024

Crypto Thus Far...

Key pairs

- Instead of sharing a key between pairs of principals...
- ...every principal has a pair of keys
 - public key: published for the world to see
 - private key: kept secret and never shared

(Public-Key) Encryption algorithms

- $Gen(1^n)$: generate a keypair (pk, sk) of length n
- Enc(m; pk): encrypt message under public key pk
- Dec(c; sk): decrypt ciphertext c with secret key sk

(Gen, Enc, Dec) is a public-key encryption scheme aka cryptosystem

RSA

[Rivest, Shamir, Adleman 1977]

Shared Turing Award in 2002: ingenious

contribution to making public-key crypto

- Gen(len):
 - Pick primes p, q, define $n = p \cdot q$
 - Choose e, d such that $ed = 1 \mod (p-1)(q-1)$
 - pk = (n, e), sk = (p, q, d)
- Enc(m, pk)

 $c = m^e \mod n$

• Dec(c, sk):

$$m = c^d \mod n$$

Exercise 1: RSA

- Let pk = (n, e) = (21, 5) and sk = (p, q, d) = (3, 7, 5)
- Observe that $ed = 5 \cdot 5 = 25 = 1 \mod{12}$
- 1. Compute c = Enc(17; pk)

2. Compute Dec(c; sk)

RSA

- Theorem: RSA is a correct public-key encryption scheme.
- Theorem: $(m^e \mod pq)^d \mod pq == m$

$$Dec(Enc(m; pk); sk) = (m^{e} \mod pq)^{d} \mod pq$$

$$= (m^{e})^{d} \mod pq$$

$$= m^{ed} \mod pq$$

$$= m \mod pq$$

$$m^{ed} \mod p = m^{1+k(p-1)(q-1)} \mod p$$

$$= m^{1} \cdot (m^{p-1})^{k(q-1)} \mod p$$

$$= m^{1} \cdot (m^{p-1})^{k(q-1)} \mod p$$

$$= m \cdot (m^{p-1} \mod p)^{k(q-1)} \mod p$$

$$= m \cdot (m^{q-1} \mod p)^{k(p-1)} \mod q$$

$$= m \cdot (1)^{k(q-1)} \mod p$$

$$= m \cdot (1)^{k(p-1)} \mod p$$

$$= m \mod q$$

RSA

Theorem: RSA is a secure public-key encryption scheme. Theorem: If factoring is hard, then RSA is a secure – public key encryption scheme.

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
 - pq is too small: n = pq can be factored make sure n is 2048 bits
 - small values of e: if you send the same message with multiple keys, plaintext message can be recovered
 - small values of e: if $m^e < n$ can compute log efficiently
 - small values of d: Boneh-Durfee attack for $d < n^{0.292}$ e = 65537
 - p or q is shared with other key: can compute gcd to factor use high-quality randomness
 - p similar to q: n = pq can be efficiently factored
 - *p* or *q* are bad primes: n = pq can be efficiently factored
 - gcd(e, lcm(p-1,q-1)) > 1: use a good library, don't implement RSA yourself!

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext

Solution 1: Padding

- PKCS#1 v1.5: 0x00 0x02 [non-zero bytes] 0x00 [message]
 - Vulnerable to a padding oracle attack!
- OAEP (Optimal Asymmetric Encryption Padding)
 - Security proof (with assumptions)

Exercise 2: OAEP

 Define an algorithm to compute m given values X and Y, constants k0 and k1, and hash functions G and H

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext
- *Big numbers*: if m > n, can't compute do math mod n

Solution 2: Hybrid encryption

- Assume:
 - Symmetric encryption scheme (Gen_SE, Enc_SE, Dec_SE)
 - Public-key encryption scheme (Gen_PKE, Enc_PKE, Dec_PKE)
- Use public-key encryption to establish a shared session key
 - Avoids quadratic problem, assuming existence of phonebook
 - Avoids problem of key distribution
- Use symmetric encryption to exchange long plaintext encrypted under session key
 - Gain efficiency of block cipher and mode

Protocol to exchange encrypted message

0. B: (pk_B, sk_B) = Gen_PKE(len_PKE)
 publish (B, pk_B)

1. A:
$$k_s = Gen_SE(len_SE)$$

 $c1 = Enc_PKE(k_s; pk_B)$
 $c2 = Enc_SE(m; k_s)$

2. A \rightarrow B: c1, c2

Session keys

- If key compromised, only those messages encrypted under it are disclosed
- Used for a brief period then discarded
 - cryptoperiod: length of time for which key is valid
 - in this case, for a single (long) message
 - not intended for reuse in future messages
- only intended for unidirectional usage:
 - A->B, not B->A

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext
- *Big numbers*: if m > n, can't compute do math mod n
- Side channel attacks: interfaces can leak information about secret key

Square-and-Multiply

```
int modular exp(x, n, p){
   res = 1;
  while (n > 0) {
      if (n % 2 == 1){
         res = res * x % p;
      }
      x = x^2 % p;
      n >> 1;
   }
   return res;
```

}

Exercise 3: Square-and Multiply

• Compute 3⁵ mod 21 using square and multiply

```
int modular_exp(x, n, p){
   res = 1;
   while (n > 0) {
       if (n % 2 == 1){
          res = res * x % p;
       }
       x = x^{2} % p;
       n >> 1;
   }
   return res;
}
```

Side Channels

- Power
- Timing
- EM Radiation
- Acoustics

Solution 3: Blinded RSA

[Rivest, Shamir, Adleman 1977]

Shared Turing Award in 2002: ingenious

contribution to making public-key crypto

- Gen(len):
 - Pick primes p, q
 - Choose e, d such that $ed = 1 \mod \operatorname{lcm}(p 1, q 1)$
 - pk = (n, e), sk = (p, q, d)
- Enc(m, pk)

$$c = m^e \mod n$$

Dec(c, sk):

$$m = ((cr)^d \bmod n) \cdot r^{-d}$$

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext
- *Big numbers*: if m > n, can't compute do math mod n
- Side channel attacks: interfaces can leak information about secret key
- Key Management: no secure place to store the secret key

Solution 4: Key Management

- Store keys offline
- Store keys in protected files
- Memorize the keys (sort of)

Password-Based Encryption

- PBKDF2: Password-based key derivation function [<u>RFC</u> <u>8018</u>]
- Output: derived key k
- Input:
 - Password p
 - Salt s
 - Iteration count c
 - Key length len
 - Pseudorandom function (PRF): "looks random" to an adversary that doesn't know an input called the *seed* (commony instantiated with an HMAC)

PBKDF2

Algorithm:

- F(p, s, i, c) = U(1) XOR ... XOR U(c)
 - U(1) = PRF(s, i; p)
 - U(j) = PRF(U(j-1); p)
 - F is in essence a salted iterated hash...
- k = F(p, s, 1, c) || F(p, s, 2, c) || ... || F(p, s, n, c)
 - enough copies to reach keylen
 - II denotes bit concatenation

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext
- *Big numbers*: if m > n, can't compute do math mod n
- Side channel attacks: interfaces can leak information about secret key
- Key Management: no secure place to store the secret key
- Quantum Computers: provably breakable with different hardware

Solution 5: Post-Quantum Cryptography

