
CS 181S Spring 2024

Lecture 7: Public-Key Cryptography

Crypto Thus Far…

Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys
• public key: published for the world to see
• private key: kept secret and never shared

(Public-Key) Encryption algorithms
• Gen(1!): generate a keypair (pk, sk) of length n
• Enc(𝑚; 𝑝𝑘): encrypt message under public key pk
• Dec 𝑐; 𝑠𝑘 : decrypt ciphertext c with secret key sk

Enc

Dec

Gen, Enc, Dec is a public-key encryption scheme aka
cryptosystem

RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

• Gen(len):
• Pick primes 𝑝, 𝑞, define 𝑛 = 𝑝 ⋅ 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1 mod (𝑝 − 1)(𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 𝑠𝑘 = (𝑝, 𝑞, 𝑑)

• Enc(m, pk)

• Dec(c, sk):
𝑐 = 𝑚2 	mod	𝑛

𝑚 = 𝑐3 	mod	𝑛

Exercise 1: RSA
• Let 𝑝𝑘 = 𝑛, 𝑒 = (21, 5) and 𝑠𝑘 = 𝑝, 𝑞, 𝑑 = (3, 7, 5)
• Observe that 𝑒𝑑 = 5 ⋅ 5 = 25 = 1 mod 12

1. Compute 𝑐 = Enc(17; 𝑝𝑘)

2. Compute Dec(𝑐; 𝑠𝑘)

𝑐 = 	Enc 17; 21, 5 = 17!	mod	21 = 1419857	mod	21 = 5

Dec 𝑐; 𝑠𝑘 = 	Dec 5; 3,7,5 = 5!	mod	21 = 3125	mod	21 = 	17	

RSA
• Theorem: RSA is a correct public-key encryption scheme.
• Theorem: 𝑚9 mod 𝑝𝑞 : mod 𝑝𝑞 == 𝑚

Dec Enc 𝑚; 𝑝𝑘 ; 𝑠𝑘 = 𝑚" 	mod	𝑝𝑞 # 	mod	𝑝𝑞

= 𝑚" # 	mod	𝑝𝑞

= 	𝑚"# 	mod	𝑝𝑞

𝑚"# 	mod	𝑝 = 𝑚$%&(()$)(+)$)	mod	𝑝

=	𝑚$ ⋅ (𝑚()$)	&(+)$)	 mod	𝑝

= 	𝑚 ⋅ (𝑚()$	mod	𝑝)	&(+)$)	 mod	𝑝

= 𝑚 ⋅ 1 	& +)$ 	 mod	𝑝
= 𝑚	mod	𝑝

𝑚"# 	mod	𝑞 = 𝑚$%&(()$)(+)$)	mod	𝑞

=	𝑚$ ⋅ (𝑚+)$)	&(()$)	 mod	𝑞

= 	𝑚 ⋅ (𝑚+)$	mod	𝑝)	&(()$)	 mod	𝑞

= 𝑚 ⋅ 1 	& ()$ 	 mod	𝑞
= 𝑚	mod	𝑞

= 𝑚	mod	𝑝𝑞

RSA
• Theorem: RSA is a secure public-key encryption scheme.
• Theorem: If factoring is hard, then RSA is a secure

public-key encryption scheme.

Problems with Textbook RSA
• Insecure keys: There are known efficient attacks for some

choices of e, d, p, q

• pq is too small: 𝑛 = 𝑝𝑞 can be factored

• small values of e: if you send the same message with
multiple keys, plaintext message can be recovered

• small values of e: if 𝑚! < 𝑛 can compute log efficiently
• small values of d: Boneh-Durfee attack for 𝑑 < 𝑛".$%$

• p or q is shared with other key: can compute gcd to factor

• p similar to q: 𝑛 = 𝑝𝑞 can be efficiently factored
• p or q are bad primes: 𝑛 = 𝑝𝑞 can be efficiently factored
• gcd(e, lcm(p-1,q-1)) > 1:

e = 65537

make sure n is 2048 bits

use a good library, don't implement RSA yourself!

use high-quality randomness

Problems with Textbook RSA
• Insecure keys: There are known efficient attacks for some

choices of e, d, p, q

• Deterministic: given same plaintext and key, always produces
the same ciphertext

Solution 1: Padding
• PKCS#1 v1.5: 0x00 0x02 [non-zero bytes] 0x00 [message]
• Vulnerable to a padding oracle attack!

• OAEP (Optimal Asymmetric Encryption Padding)
• Security proof (with assumptions)

Exercise 2: OAEP
• Define an algorithm to compute m given values X and Y,

constants k0 and k1, and hash functions G and H

extract_m(X, Y){
 r = H(X)^Y;
 m' = X^G(r);
 m = m' >> k1;

 return m;
}

Problems with Textbook RSA
• Insecure keys: There are known efficient attacks for some

choices of e, d, p, q

• Deterministic: given same plaintext and key, always produces
the same ciphertext

• Big numbers: if m > n, can't compute do math mod n

Solution 2: Hybrid encryption
• Assume:
• Symmetric encryption scheme (Gen_SE, Enc_SE, Dec_SE)
• Public-key encryption scheme (Gen_PKE, Enc_PKE, Dec_PKE)

• Use public-key encryption to establish a shared session key
• Avoids quadratic problem, assuming existence of phonebook
• Avoids problem of key distribution

• Use symmetric encryption to exchange long plaintext
encrypted under session key
• Gain efficiency of block cipher and mode

Protocol to exchange encrypted message

0. B: (pk_B, sk_B) = Gen_PKE(len_PKE)
publish (B, pk_B)

1. A: k_s = Gen_SE(len_SE)
c1 = Enc_PKE(k_s; pk_B)
c2 = Enc_SE(m; k_s)

2. A -> B: c1, c2
3. B: k_s = Dec_PKE(c1; sk_B)

m = Dec_SE(c2; k_s)

m

Session keys
• If key compromised, only those messages encrypted

under it are disclosed
• Used for a brief period then discarded
• cryptoperiod: length of time for which key is valid
• in this case, for a single (long) message
• not intended for reuse in future messages

• only intended for unidirectional usage:
• A->B, not B->A

Problems with Textbook RSA
• Insecure keys: There are known efficient attacks for some

choices of e, d, p, q

• Deterministic: given same plaintext and key, always produces
the same ciphertext

• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information about
secret key

Square-and-Multiply
int modular_exp(x, n, p){

res = 1;
while (n > 0) {

if (n % 2 == 1){
res = res * x % p;

}
x = x^2 % p;
n >> 1;

}
return res;

}

Exercise 3: Square-and Multiply
• Compute 3Amod 21 using square and multiply

res = 1 x = 3 n = 5

res = 3 x = 9 n = 2

res = 12 x = 9 n = 0

res = 3 x = 18 n = 1

int modular_exp(x, n, p){
 res = 1;
 while (n > 0) {
 if (n % 2 == 1){
 res = res * x % p;
 }
 x = x^2 % p;
 n >> 1;
 }
 return res;
}

Side Channels

• Power
• Timing
• EM Radiation
• Acoustics

Solution 3: Blinded RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

• Gen(len):
• Pick primes 𝑝, 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1 mod lcm(𝑝 − 1, 𝑞 − 1)
• 𝑝𝑘 = 𝑛, 𝑒 , 𝑠𝑘 = (𝑝, 𝑞, 𝑑)

• Enc(m, pk)

• Dec(c, sk):
𝑐 = 𝑚2 	mod	𝑛

𝑚 = ((𝑐𝑟)3 	mod	𝑛) ⋅ 𝑟63

Problems with Textbook RSA
• Insecure keys: There are known efficient attacks for some

choices of e, d, p, q

• Deterministic: given same plaintext and key, always produces
the same ciphertext

• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information about
secret key

• Key Management: no secure place to store the secret key

Solution 4: Key Management
• Store keys offline
• Store keys in protected files
• Memorize the keys (sort of)

Password-Based Encryption
• PBKDF2: Password-based key derivation function [RFC

8018]
• Output: derived key k
• Input:
• Password p
• Salt s
• Iteration count c
• Key length len
• Pseudorandom function (PRF): "looks random" to an adversary

that doesn't know an input called the seed (commony instantiated
with an HMAC)

https://tools.ietf.org/html/rfc8018
https://tools.ietf.org/html/rfc8018

PBKDF2
Algorithm:
• F(p, s, i, c) = U(1) XOR ... XOR U(c)
• U(1) = PRF(s, i; p)
• U(j) = PRF(U(j-1); p)
• F is in essence a salted iterated hash...

• k = F(p, s, 1, c) || F(p, s, 2, c) || ... || F(p, s, n, c)
• enough copies to reach keylen
• || denotes bit concatenation

Problems with Textbook RSA
• Insecure keys: There are known efficient attacks for some

choices of e, d, p, q

• Deterministic: given same plaintext and key, always produces
the same ciphertext

• Big numbers: if m > n, can't compute do math mod n

• Side channel attacks: interfaces can leak information about
secret key

• Key Management: no secure place to store the secret key

• Quantum Computers: provably breakable with different
hardware

Solution 5: Post-Quantum Cryptography

