Lecture 7: Public-Key Cryptography

CS 181S Spring 2024

Crypto Thus Far...

A|IB|C|D|E|F
AIB|C|D|E|F

voisuedx3 Aoy

Plaigext

T-N punoy

INPUNOY

a0,0 aO,l aO,Z aO, bU,O bO,l bO,Z 0,3
SubBytes
Qofy| A, 3y b1,o b1,1 bl,z 1.3
— > —
Dol &, az\,z 2 bz,o bz ‘bz,z P 3
aS,O a3 1| a32\33 bS,O y| bSZ’ 33,3
a[),O a0,1 a0,2 aD, al].() a0.1 a0,2 a0,3
ShiftRows
a1.0 a1,1 a1.2 /a“I, a'1.1 a1.2 a1,3 a1.0
0| 1| B2 8,
o I il 72
-
4,
i

Key pairs

Instead of sharing a key between pairs of principals...

...every principal has a pair of keys

public key: published for the world to see
private key: kept secret and never shared

(Public-Key) Encryption algorithms

Gen(1™): generate a keypair (pk, sk) of length n

Enc(m; pk): encrypt message under public key pk
Dec(c; sk): decrypt ciphertext ¢ with secret key sk

Enc ==

Dec ==

(Gen, Enc, Dec) is a public-key encryption scheme aka
cryptosystem

RSA

[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

Gen(len):

Pick primes p, q, definen =p - q

Choose e,d such that ed = 1 mod (p — 1)(q —1)

pk = (me), sk=(pqd) '
Enc(m, pk)

—_ e
c = m°® modn

Dec(c, sk):

m=c%*modn

Exercise 1: RSA

Let pk = (n,e) = (21,5) and sk = (p,q,d) = (3,7,5)
Observe thated =5-5 =25 = 1mod 12

Compute ¢ = Enc(17; pk)

Compute Dec(c; sk)

RSA

Theorem: RSA is a correct public-key encryption scheme.
Theorem: (m® mod pq)% mod pg == m

Dec(Enc(m; pk); sk) = (m® mod pq)? mod pq
= (m®)% mod pq

= m®° mod pq

= m mod pq
m®? mod p = m**®-D@-1) mod p m®? mod g = m**®-1D@-1D) mod g
=ml!. (mp—l) k(@-1 mod p =m!. (mq—l) k-1 mod q
= m-(mP * mod p) ¥~ modp = m- (Mm% mod p) @D mod q
=m- (1) *@=Y modp =m- (1) *®@=D mod q

=mmodp = mmod q

Problems with Textbook RSA

Insecure keys: There are known efficient attacks for some
choices of €, d, p, g

pq is too small: n = pg can be factored
make sure n is 2048 bits

small values of e: if you send the same message with
multiple keys, plaintext message can be recovered

small values of e: if m® < n can compute log efficiently
small values of d: Boneh-Durfee attack for d < n%2%2
e = 65537

p or q is shared with other key: can compute gcd to factor
use high-quality randomness
p similar to g: n = pq can be efficiently factored
p or q are bad primes: n = pq can be efficiently factored
gcd(e, Iem(p-1,9-1)) > 1:
use a good library, don't implement RSA yourself!

Problems with Textbook RSA

Insecure keys: There are known efficient attacks for some
choices of €, d, p, g

Deterministic. given same plaintext and key, always produces
the same ciphertext

Solution 1: Padding

PKCS#1 v1.5: 0x00 0x02 [non-zero bytes] 0x00 [message]

Vulnerable to a padding oracle attack!

OAEP (Optimal Asymmetric Encryption Padding)

Security proof (with assumptions)

000 r

m
n-ko-k1 ,\/ k1 L ko

(G
—)—o

i I
L 4

\

n-k@ A1

Exercise 2: OAEP

Define an algorithm to compute m given values X and Y,
constants kO and k1, and hash functions G and H

000 r

m
n-k0-k1 + k1 L ko

%
_,@ a

n-k0@ _\

Il
@

@

Problems with Textbook RSA

Insecure keys: There are known efficient attacks for some
choices of €, d, p, g

Deterministic. given same plaintext and key, always produces
the same ciphertext

Big numbers: if m > n, can't compute do math mod n

Solution 2: Hybrid encryption

Assume:

Symmetric encryption scheme (Gen_SE, Enc_SE, Dec_SE)
Public-key encryption scheme (Gen_PKE, Enc_PKE, Dec PKE)

Use public-key encryption to establish a shared session key
Avoids quadratic problem, assuming existence of phonebook
Avoids problem of key distribution

Use symmetric encryption to exchange long plaintext
encrypted under session key
Gain efficiency of block cipher and mode

Protocol to exchange encrypted message

m
0. B: (pk B, sk B) = Gen_ PKE(len PKE)
publish (B, pk_ B)
l. A: k s = Gen_SE(len SE)
cl = Enc_ PKE(k_s; pk B)
c2 = Enc_SE(m; k_s)
2. A -> B: cl, c2
3. B: k s = Dec PKE(cl; sk B)
m = Dec SE(c2; k s)

Session keys

If key compromised, only those messages encrypted
under it are disclosed
Used for a brief period then discarded

cryptoperiod: length of time for which key is valid

in this case, for a single (long) message

not intended for reuse in future messages

only intended for unidirectional usage:
A->B, not B->A

Problems with Textbook RSA

Insecure keys: There are known efficient attacks for some
choices of €, d, p, g

Deterministic. given same plaintext and key, always produces
the same ciphertext

Big numbers: if m > n, can't compute do math mod n

Side channel attacks: interfaces can leak information about
secret key

Square-and-Multiply

int modular exp(x, n, p){

res = 1;

while (n > 0) {

if (n % 2 == 1){
res = res * X 3

}

X = x"2 % p;

n >> 1;

}

return res;

P

Exercise 3: Square-and Multiply
Compute 3°> mod 21 using square and multiply

int modular exp(x, n, p){
res = 1;
while (n > 0) {
if (n % == 1){

res = res * X 3 pP;

X =x"2 % p;
n >> 1;

}

return res;

Side Channels

Hﬂwnh'wﬁ"Ll','imm|,\|.I..,’l|ﬂﬂ.g|'|hp!}-wm"wmuu

i |
b ““"‘ﬂn*rf*lw";wwumr,vﬁwnfvwh'.

Power
Timing

EM Radiation
Acoustics

J‘[ﬁ, ,'.lhr}%"'P"'”'lwﬂ‘*m 1""“'-"1-lh’!'*l‘l"[ﬂ" M‘J|\‘.hhﬂ.”d[’ll‘h]ﬂﬁhl]"hm.‘IﬂMPm‘rILM\"'W*W‘&]w.ﬁi'll'"m M" J’
' b

mm"wh“'ﬂ""“’

Solution 3: Blinded RSA

[Rivest, Shamir, Adleman 1977]

Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

Gen(len):
Pick primes p, q
Choose e,d such thated = 1 modIcm(p —1,qg — 1)
pk =(n,e), sk=(pqd)
Enc(m, pk)
c = m® modn
Dec(c, sk):

m = ((cr)® mod n) - r= ¢

Problems with Textbook RSA

Insecure keys: There are known efficient attacks for some
choices of €, d, p, g

Deterministic. given same plaintext and key, always produces
the same ciphertext

Big numbers: if m > n, can't compute do math mod n

Side channel attacks: interfaces can leak information about
secret key

Key Management: no secure place to store the secret key

Solution 4: Key Management

Store keys offline
Store keys in protected files
Memorize the keys (sort of)

Password-Based Encryption

PBKDF2: Password-based key derivation function [RFC
8018]

Output: derived key k
Input:

Password p
Salts

lteration count c
Key length len

Pseudorandom function (PRF): "looks random" to an adversary
that doesn't know an input called the seed (commony instantiated

with an HMAC)

https://tools.ietf.org/html/rfc8018
https://tools.ietf.org/html/rfc8018

PBKDF2

Algorithm:
F(p, s, i,c)=U(1) XOR ... XOR U(c)
U(1) = PRF(s, i; p)
U(j) = PRF(U(-1); p)
F is in essence a salted iterated hash...
k=F(p,s,1,c)|| F(p,s,2,c)]|...|| F(p, s, n, c)
enough copies to reach keylen e
|| denotes bit concatenation
Slatc) * r— - [pre |

P
l

wa

F PRF

==

~

-

P P P
| |
S intCien)
=d= - -+ e .

MK=T||...|T,,<0...r-1>

Problems with Textbook RSA

Insecure keys: There are known efficient attacks for some
choices of €, d, p, g

Deterministic. given same plaintext and key, always produces
the same ciphertext

Big numbers: if m > n, can't compute do math mod n

Side channel attacks: interfaces can leak information about
secret key

Key Management: no secure place to store the secret key

Quantum Computers: provably breakable with different
hardware

Solution 5: Post-Quantum Cryptography

/% ///

