Lecture 7: Public-Key Cryptography

CS 181S
Spring 2024

Crypto Thus Far...

Key pairs

- Instead of sharing a key between pairs of principals...
- ...every principal has a pair of keys
- public key: published for the world to see
- private key: kept secret and never shared

(Public-Key) Encryption algorithms

- Gen(1^{n}): generate a keypair (pk, sk) of length n
- Enc ($m ; p k$): encrypt message under public key pk
- Dec($c ; s k)$: decrypt ciphertext c with secret key sk

(Gen, Enc, Dec) is a public-key encryption scheme aka cryptosystem

RSA

[Rivest, Shamir, Adleman 1977]

Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

- Gen(len):
- Pick primes p, q, define $n=p \cdot q$
- Choose e, d such that $e d=1 \bmod (p-1)(q-1)$
- $p k=(n, e), s k=(p, q, d)$
- Enc(m, pk)

$$
c=m^{e} \bmod n
$$

- Dec(c, sk):

$$
m=c^{d} \bmod n
$$

Exercise 1: RSA

- Let $p k=(n, e)=(21,5)$ and $s k=(p, q, d)=(3,7,5)$
- Observe that $e d=5 \cdot 5=25=1 \bmod 12$

1. Compute $c=\operatorname{Enc}(17 ; p k)$
2. Compute $\operatorname{Dec}(c ; s k)$

RSA

- Theorem: RSA is a correct public-key encryption scheme.
- Theorem: $\left(m^{e} \bmod p q\right)^{d} \bmod p q==m$

$$
\begin{aligned}
\operatorname{Dec}(\operatorname{Enc}(m ; p k) ; s k) & =\left(m^{e} \bmod p q\right)^{d} \bmod p q \\
& =\left(m^{e}\right)^{d} \bmod p q \\
& =m^{e d} \bmod p q \\
& =m \bmod p q
\end{aligned}
$$

$$
\begin{aligned}
m^{e d} \bmod p & =m^{1+k(p-1)(q-1)} \bmod p & m^{e d} \bmod q & =m^{1+k(p-1)(q-1)} \bmod q \\
& =m^{1} \cdot\left(m^{p-1}\right)^{k(q-1)} \bmod p & & =m^{1} \cdot\left(m^{q-1}\right)^{k(p-1)} \bmod q \\
& =m \cdot\left(m^{p-1} \bmod p\right)^{k(q-1)} \bmod p & & =m \cdot\left(m^{q-1} \bmod p\right)^{k(p-1)} \bmod q \\
& =m \cdot(1)^{k(q-1)} \bmod p & & =m \cdot(1)^{k(p-1)} \bmod q \\
& =m \bmod p & & =m \bmod q
\end{aligned}
$$

RSA

Theorem: RSA is a seeure public-key eneryption-sebeme-
Theorem.If faetoring io harl, then REA io a seourepublickyeryptionemer

Problems with Textbook RSA

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- pq is too small: $n=p q$ can be factored
make sure n is 2048 bits
- small values of e: if you send the same message with multiple keys, plaintext message can be recovered
- small values of e: if $m^{e}<n$ can compute log efficiently
- small values of d : Boneh-Durfee attack for $d<n^{0.292}$
$e=65537$
- p or q is shared with other key: can compute gcd to factor use high-quality randomness
- p similar to $q: n=p q$ can be efficiently factored
- p or q are bad primes: $n=p q$ can be efficiently factored
- $\operatorname{gcd}(e, \operatorname{lcm}(p-1, q-1))>1$:
use a good library, don't implement RSA yourself!

Problems with Textbook RSA

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext

Solution 1: Padding

- PKCS\#1 v1.5: 0x00 0x02 [non-zero bytes] 0x00 [message]
- Vulnerable to a padding oracle attack!
- OAEP (Optimal Asymmetric Encryption Padding)
- Security proof (with assumptions)

Exercise 2: OAEP

- Define an algorithm to compute m given values X and Y, constants k 0 and k 1 , and hash functions G and H

Problems with Textbook RSA

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext
- Big numbers: if m > n, can't compute do math mod n

Solution 2: Hybrid encryption

- Assume:

- Symmetric encryption scheme (Gen_SE, Enc_SE, Dec_SE)
- Public-key encryption scheme (Gen_PKE, Enc_PKE, Dec_PKE)
- Use public-key encryption to establish a shared session key
- Avoids quadratic problem, assuming existence of phonebook
- Avoids problem of key distribution
- Use symmetric encryption to exchange long plaintext encrypted under session key
- Gain efficiency of block cipher and mode

Protocol to exchange encrypted message

0. B: (pk_B, sk_B) = Gen_PKE (len_PKE) publish (B, pk _)

1. A: k_s = Gen_SE (len_SE)
c1 = Enc_PKE (k_s; pk_B)
c2 = Enc_SE(m; k_s)
2. A -> B: C1, C2
3. B: k_s = Dec_PKE (c1; sk_B)
m = Dec_SE (c2; k_s)

Session keys

- If key compromised, only those messages encrypted under it are disclosed
- Used for a brief period then discarded
- cryptoperiod: length of time for which key is valid
- in this case, for a single (long) message
- not intended for reuse in future messages
- only intended for unidirectional usage:
- A->B, not B->A

Problems with Textbook RSA

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext
- Big numbers: if m > n, can't compute do math mod n
- Side channel attacks: interfaces can leak information about secret key

Square-and-Multiply

```
int modular_exp(x, n, p){
    res = 1;
    while (n > 0) {
    if (n % 2 == 1){
        res = res * x % p;
        }
    x = x^2 % p;
    n >> 1;
    }
    return res;
}
```


Exercise 3: Square-and Multiply

- Compute 3^{5} mod 21 using square and multiply

$$
\begin{aligned}
& \text { int modular_exp(x, } n, p)\{ \\
& \text { res = 1; } \\
& \text { while (} \mathrm{n}>0 \text {) \{ } \\
& \text { if (} n \% 2==1 \text {) }\{ \\
& \text { res }=\text { res * } x \text { \% p; } \\
& \text { \} } \\
& x=x^{\wedge} 2 \% p ; \\
& \text { n >> 1; } \\
& \text { \} } \\
& \text { return res; }
\end{aligned}
$$

Side Channels

- Power
- Timing
- EM Radiation
- Acoustics

Solution 3: Blinded RSA

[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

- Gen(len):
- Pick primes p, q
- Choose e, d such that $e d=1 \bmod \operatorname{lcm}(p-1, q-1)$
- $p k=(n, e), s k=(p, q, d)$
- Enc(m, pk)

$$
c=m^{e} \bmod n
$$

- Dec(c, sk):

$$
m=\left((c r)^{d} \bmod n\right) \cdot r^{-d}
$$

Problems with Textbook RSA

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext
- Big numbers: if m > n, can't compute do math mod n
- Side channel attacks: interfaces can leak information about secret key
- Key Management: no secure place to store the secret key

Solution 4: Key Management

- Store keys offline
- Store keys in protected files
- Memorize the keys (sort of)

Password-Based Encryption

- PBKDF2: Password-based key derivation function [RFC 8018]
- Output: derived key k
- Input:
- Password p
- Salt s
- Iteration count c
- Key length len
- Pseudorandom function (PRF): "looks random" to an adversary that doesn't know an input called the seed (commony instantiated with an HMAC)

PBKDF2

Algorithm:

- $F(p, s, i, c)=U(1)$ XOR \ldots XOR $U(c)$
- $U(1)=\operatorname{PRF}(s, i ; p)$
- $\mathrm{U}(\mathrm{j})=\operatorname{PRF}(\mathrm{U}(\mathrm{j}-1) ; \mathrm{p})$
- F is in essence a salted iterated hash...
- $k=F(p, s, 1, c)| | F(p, s, 2, c)\|\ldots\| F(p, s, n, c)$
- enough copies to reach keylen
- || denotes bit concatenation

Problems with Textbook RSA

- Insecure keys: There are known efficient attacks for some choices of e, d, p, q
- Deterministic: given same plaintext and key, always produces the same ciphertext
- Big numbers: if m > n, can't compute do math mod n
- Side channel attacks: interfaces can leak information about secret key
- Key Management: no secure place to store the secret key
- Quantum Computers: provably breakable with different hardware

Solution 5: Post-Quantum Cryptography

