
CS 181S Spring 2024

Lecture 6: Symmetric Cryptography

The Big Picture Thus Far…

Attacks
are perpetrated by

threats
that inflict

harm
by exploiting
vulnerabilities

which are controlled by
countermeasures.

Dolev-Yao Threat Model (1983)
• Assume an attacker with network access and the

following capabilities:
• Can read all messages on the network
• Can write messages to the network
• Can block any messages sent over the network (i.e., cause them to

be dropped)

Purpose of encryption
• Threat: Dolev-Yao attacker
• Vulnerability: communication channel between sender

and receiver can be read by other principals
• Harm: messages containing secret information disclosed

to attacker (violating confidentiality)
• Countermeasure: encryption

(Symmetric) Encryption algorithms
• Gen(1!): generate a key of length n
• Enc(𝑚; 𝑘): encrypt message under key k
• Dec 𝑚; 𝑘 : decrypt ciphertext c with key k

Enc

Dec

Gen, Enc, Dec is a symmetric-key encryption scheme aka
cryptosystem

Classical Crypto: Substitution Ciphers

THIS IS NOT SO SECURE
WKLV LV QRW VR VHFXUH

Classical Crypto: Vigenere Cipher
THIS IS NOT SO SECURE
KEYK EY KEY KE YKEYKE
EMHD NR YTS DT RPHTCJ

Defining Security
• A crypto system is secure if

∀PPT 𝐴, ∃𝛿 ∈ 𝑂(
1
2!
) 𝑠. 𝑡 ∀𝑛, ∀𝑚,𝑚"𝑠. 𝑡. 𝑚 = 𝑚" = 𝑛,

Pr 𝐴 𝐸𝑛𝑐 𝑚; 𝑘 = 𝑚 ≤ Pr 𝐴 𝐸𝑛𝑐 𝑚"; 𝑘 = 𝑚 + 𝛿(𝑛)

One-Time Pad
• Gen 1! ≔ generate a random bitstring of length n
• Enc 𝑚; 𝑘 ≔ 𝑚⊕ 𝑘
• Dec 𝑐; 𝑘 ≔ 𝑐 ⊕ 𝑘

• ∀𝑚,𝑚" s. t. 𝑚 = 𝑚" , Pr 𝑚 𝑐] = #
$

%&'())
= Pr 𝑚" = 𝑐]

THIS IS SECURE

01010100010010000100100101010011 …
01101010100101010100101000010110 …

00111110110111010000001101000101 …

plaintext
plaintext
key
ciphertext

Stream Ciphers: RC4
• Gen 1! ≔ generate a random bitstring of length n

use that to initialize permutation S of the 256
possible bytes

• Enc 𝑚; 𝑘 ≔ 𝑚⊕ 𝑟(𝑘)
• Dec 𝑐; 𝑘 ≔ 𝑐 ⊕ 𝑟(𝑘)

• Modern Alternative: ChaCha20

≈ 𝟏𝟐𝟖

i := 0
j := 0
while True:
 i := (i + 1) mod 256
 j := (j + S[i]) mod 256
 swap values of S[i] and S[j]
 r := S[(S[i] + S[j]) mod 256]
output r

Block Ciphers: AES
• Encryption schemes that operate on fixed-size messages

called blocks
• Advanced Encryption Standard (AES) result of 2001 NIST

competition
• Currently no known practical attacks, approved by NSA for top-

secret
• Gen 1! ≔ generate a random bitstring of length n

AES: Pre-processing
I have this thing where I get older but just never wiser

TODO: Generate ASCII encoding of each of these bytes

AES: Step 0 (Expand key)
• AES key: random 256-bits
• Expand key to 240 bytes (1920 bits)

a3d39ac91855c571b1ebe3894d5c4f47d7b8f762493f052d97f7ce8aeaf4c438

void expand_key(unsigned char *in) {
 unsigned char t[4];
 unsigned char c = 32;
 unsigned char i = 1;
 unsigned char a;
 while(c < 240) {
 for(a = 0; a < 4; a++) /* Copy the temporary variable over */
 t[a] = in[a + c - 4];
 if(c % 32 == 0) {/* Every eight sets, do a complex calculation */
 schedule_core(t,i);
 i++; }
 if(c % 32 == 16) {
 for(a = 0; a < 4; a++)
 t[a] = sbox(t[a]); }
 for(a = 0; a < 4; a++) {
 in[c] = in[c - 32] ^ t[a];
 c++;
 }
 }

AES: Step 0 (Add round key)
• XOR 128 bits of message with first 128 bits of expanded

key
a3 d3 9a c9 18 55 c5 71 b1 eb e3 89 4d 5c 4f 47
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AES: Step 1 (Substitute Bytes)

For example, 0x9a substitutes to 0xb8

AES: Step 2 (Shift rows)
• First row unchanged
• Second row shifts left by 1
• Third row shifts left by 2
• Fourth row shifts left by 3

AES: Step 3 (Mix Columns)
• Each 4-element column is mixed

void mix_columns(unsigned char *r) { /* input is array of 4 bytes = 1 column */
 unsigned char a[4];
 unsigned char b[4];
 for (unsigned char c = 0; c < 4; c++) {
 a[c] = r[c]; /* copy of input */
 b[c] = r[c] << 1;
 unsigned char h = r[c] >> 7; /* logical right shift, h is 0x01 or 0x00 */
 b[c] = b[c] ^ (h * 0x1B); /* Rijndael's Galois field */
 }
 r[0] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]; /* 2 * a0 + a3 + a2 + 3 * a1 */
 r[1] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]; /* 2 * a1 + a0 + a3 + 3 * a2 */
 r[2] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]; /* 2 * a2 + a1 + a0 + 3 * a3 */
 r[3] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]; /* 2 * a3 + a2 + a1 + 3 * a0 */
}

AES: Step 4 (Add round key)
• XOR 128 bits of message with next 128 bits of expanded

key
d7 b8 f7 62 49 3f 05 2d 97 f7 ce 8a ea f4 c4 38
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AES: Repeat Rounds
• Repeat Steps 1-4 14 total times
• Except skip Mix columns in last round

What if the message length isn't exactly a multiple of block
length? End up with final block that isn't full:

Non-solution: pad out final block with 0's (not reversible)

Solution: Let B be the number of bytes that need to be
added to final plaintext block to reach block length. Pad
with B copies of the byte representing B. Called PKCS #5
or #7 padding.

Padding

m

https://en.wikipedia.org/wiki/PKCS

The obvious idea...
• Divide long message into short chunks, each the size of a

block
• Encrypt each block with the block cipher

m

The obvious idea...
• Divide long message into short chunks, each the size of a

block
• Encrypt each block with the block cipher

• Called electronic code book (ECB) mode

m1 m2 m3 m4 m5

c1 c2 c3 c4 c5

Enc(. ; k)

...is a bad idea

Enc-ECB(Tux; k)

Better modes
• Cipher Block Chaining (CBC) mode

• idea: XOR previous ciphertext block into current plaintext block
• Counter (CTR) mode

• idea: derive one-time pad from increasing counter
• With both:

• every ciphertext block depends in some way upon previous
plaintext or ciphertext blocks

• so even if plaintext blocks repeat, ciphertext blocks don't
• so intra-message repetition doesn't disclose information

One more problem…
• Problem: block ciphers are deterministic: inter-message

repetition is visible to attacker
• Both CBC and CTR modes require an additional

parameter: a nonce
• Enc(m; nonce; k)
• Dec(c; nonce; k)
• CBC calls the nonce an initialization vector (IV)

• Different nonces make each encryption different than
others
• Hence inter-message repetition doesn't disclose information

Nonces
A nonce is a number used once

Must be
• unique: never used before in lifetime of system
and/or (depending on intended usage)
• unpredictable: attacker can't guess next nonce
given all previous nonces in lifetime of system

Nonce sources
• counter

• requires state
• easy to implement
• can overflow
• highly predictable

• clock: just a counter
• random number generator

• might not be unique, unless drawn from large
space

• might or might not be unpredictable
• generating randomness:
• standard library generators often are not

cryptographically strong, i.e., unpredictable by
attackers

• cryptographically strong randomness is a black art

How these modes work
• CBC

• CTR

