
CS 181S Spring 2024

Lecture 4: Principles of Security

Assurance
• Security = does what it should + nothing more
• This should be accompanied by an assurance argument,

which is some compelling basis to believe the system is
secure.

• The set of system components that you have to trust in
order for your security goals to be satisfied is called the
Trusted Computing Base (TCB)

Analytic Trust Synthetic TrustAxiomatic Trust

Principle: Economy of Mechanism
Prefer mechanisms that are simpler and smaller

• Easier to construct, understand, analyze
• Hence less likely to have unknown vulnerabilities

• TCB should be small

Assumptions
• Attacker cannot replace/modify mechanism
• Attacker cannot circumvent mechanism

Enforcement Mechanisms

• An enforcement mechanism must either
1) prevent the execution of those instructions or
2) eliminate or mitigate the effects of those instructions

• Possible approaches to enforcement:
1) Isolation
2) Monitoring

Attacker Vulnerability Execute
Instructions

Isolation
• Key idea: prevent or restrict the ability of one principal to

influence execution by another

Isolation: Physical Isolation
• A Faraday cage is an enclosure made of conductive

material or mesh

• The external electrical field
causes electric charges to be
distributed in a way that cancels
out the field's effect on the interior

• This effectively blocks any sort of
electromagnetic radiation

• US gov/military use rooms inside
Faraday cages, called SCIFs, to
hold classified meetings

Isolation: Virtual Machines
• A virtual machine
behaves as if it were an
isolated computer despite
other execution on the
underlying hardware

• A hypervisor implements
virtual machines that
have the same instruction
set as the underlying
hardware

Hardware

Hypervisor

OS OS OS OS OS

OS

Isolation: Processes
• The OS kernel
multiplexes the actual
processor and creates a
set of processes
• Each process executes
in its own isolated
address space

• Kernel-supported
instructions provide
access to system
services and shared
resources

Illusion

Reality

Isolation: Sandboxes
• A sandbox runs an
application in a restricted
environment
• Example: in Chrome, the
entire HTML rendering
and JavaScript
execution is sandboxed
(cannot access files or
windows outside the
current job, cannot
read/write to clipboard)

Partial Isolation: Firewalls
• Idea: just enough isolation to block communications used

for attacks
• A firewall interrupts the connection from some group of

computers to some network
• It is configured to pass only certain messages (e.g., those

to specific ports or from particular sources)

Partial Isolation: Code Signing
• Only code that is digitally signed by a trusted principal is

allowed to execute
• Example: Microsoft Authenticode protects against web

pages containing malicious executable content by only
allowing downloaded content to be executed if it was
produced by Microsoft or a Microsoft-approved software
provider

Monitoring
• Key idea: monitor a set of interfaces and halt malicious

execution before any damage is done

• a security policy that
describes acceptable
sequences of operations

• a reference monitor that
receives control whenever
operations are requested

• a means by which the
reference monitor can block
further execution that does
not comply with the policy

Code

Code

Monitoring: Control Flow Integrity

Monitoring: Control Flow Integrity

Code

Code

Monitoring: CFI Overhead

Monitoring: Control Flow Guard
• Approximate CFI
implementation
introduced in
Windows 8.1

• Jump is valid if it
beginning of function
• Granularity: 8 bytes

• Check implemented as
bitmap

Code

Code

Monitoring: Address Translation

vaddr
NULL page or

access not allowed

SegFault

Data

paddr =

Code
Data

Stack

Heap
MMU

page# offset

Frame[page#] offset
…

v Frame Access
1 47 R,W
0 NULL R,W
0 13 R,W
1 42 R,X

Invalid page

Page Fault

page table

Monitoring: File Access Control
• inode for each file
stores permission bits
(r, w, x)

• Operating system
enforces access
control when file is is
opened

• Error if principal is not
authorized

Principle: Complete Mediation
Every operation requested by a principal must be
intercepted and determined to be acceptable according to
the security policy

• Component that does the interception and determination
is the reference monitor

• Restricts caching of information, including previous
decisions

Exercise 1: Complete Mediation
• Consider the security mechanisms
deployed in your dorm.
These systems are designed to
prevent access by unauthorized
people.

• To what extent do those security features enforce Complete
Mediation?

Principle: Least Privilege
Principals should be given the minimum privileges
necessary to accomplish their task

• Limits the damage that can result from accident or malice
• Cf. "need to know"

Exercise 2: Least Privilege
• Consider the security mechanisms
deployed on campus.
These systems are designed to
prevent access by unauthorized
people.

• To what extent do those security features enforce Least Privilege?

Principle: Separation of Privilege
• Different operations should require different privileges
• Disseminate privileges for an operation amongst multiple

principals (Separation of Duty)

Principle: Failsafe Defaults
Base decisions on the presence of privilege, not the
absence of prohibition

• The default answer is "no"
• Say "yes" only when there is an explicit reason to do so
• Principals who discover they don't have access will

complain
• Attackers who discover they do have access won't

complain!

Principles of Prevention
[Saltzer and Schroeder, The Protection of Information in
Computer Systems, 1975]

• Accountability
• Complete Mediation
• Least Privilege
• Failsafe Defaults
• Separation of Privilege
• Defense in Depth
• Economy of Mechanism
• Open Design

Principle: Defense in Depth
Prefer a set of complementary mechanisms over a single
mechanism

Complementary:
• Independent: attack that compromises one mechanism is

unlikely to compromise others
• Overlapping: attacks must compromise multiple

mechanisms to succeed

Exercise 3: Defense in Depth
• Consider the security mechanisms
deployed on campus.
These systems are designed to
prevent access by unauthorized
people.

• To what extent do those security features satisfy the overlapping
requirement of Defense in Depth?

• How could the security features be modified to add defense in
depth if it does not already exist?

Principle: Open Design
Security shouldn't depend upon the secrecy of design or
implementation

/* efdtt.c Author: Charles M. Hannum <root@ihack.net> */
#define m(i)(x[i]^s[i+84])<<
unsigned char x[5],y,s[2048];main(n){for(read(0,x,5);read(0,s,n=2048);write(1,s
,n))if(s[y=s[13]%8+20]/16%4==1){int i=m(1)17^256+m(0)8,k=m(2)0,j=m(4)17^m(3)9^k
2-k%8^8,a=0,c=26;for(s[y]-=16;--c;j=2)a=a*2^i&1,i=i/2^j&1<<24;for(j=127;++j<n
;c=c>y)c+=y=i^i/8^i>>4^i>>12,i=i>>8^y<<17,a^=a>>14,y=a^a*8^a<<6,a=a>>8^y<<9,k=s
[j],k="7Wo~'G_\216"[k&7]+2^"cr3sfw6v;*k+>/n."[k>>4]*2^k*257/8,s[j]=k^(k&k*2&34)
*6^c+~y;}}

Principle: Open Design
Security shouldn't depend upon the secrecy of design or
implementation

Arguments for open design:
• Secrets eventually come out: reverse engineering is

possible, employees move around
• Making details public increases chance of identifying and

repairing vulnerabilities

Principle: Open Design
Security shouldn't depend upon the secrecy of design or
implementation

Arguments against open design:
• Secrecy supports Defense in Depth by making it harder to

find vulnerabilities
• Lack of hard evidence that Linus' Law really holds ("given

enough all eyeballs, all bugs are shallow")
• After identification, some vulnerabilities cannot quickly or

easily be repaired

Exercise 4: Defense in Depth
Consider the security mechanisms
deployed on campus.

To what extent do these defenses
implement open design?

Exercise 4: Open Design
• Briefly (1-2 sentences) argue why you believe a system

should or should not follow the principle of open design.

Countermeasures
A defense that protects against attacks by neutralizing
either the threat or vulnerability involved

Strategy:
• Prevent: block attack or close vulnerability
• Deter: make attack harder
• Deflect: make other targets more attractive
• Mitigate: make harm less severe
• Detect: as it happens or after the fact
• Recover: undo harm

Prevention

Risk
Management

Deterrence
through
Accountability

Priniciples of Security

