
CS 105 Spring 2024

Lecture 22: Synchronization

Review: Alternate View of a Process
• Process = thread + other state

Thread context:
 Data registers
 Stack pointer (rsp)
 Condition codes
 Program counter (rip)

Other data

rsp

Thread (main thread)

Kernel context:
 VM structures
 File table
 brk pointer

Stack

0

brk

Code
Data
Heap

Review: Multi-threading
• Multiple threads can be associated with a process
• Each thread has its own logical control flow
• Each thread has its own stack for local variables
• Each thread has its own thread id (TID)
• Each thread shares the same code, data, and kernel context

Thread 1 (main thread) Shared dataThread 2 (peer thread)

Thread 1 context:
 Data registers
 Stack pointer
 Condition codes
 Program counter

rsp
Stack 1

Thread 2 context:
 Data registers
 Stack pointer
 Condition codes
 Program counter

rsp
Stack 2

Kernel context:
 VM structures
 File table
 brk pointer

0

brk

Code
Data
Heap

Review: Locks
• A lock (aka a mutex) is a synchronization primitive that

provides mutual exclusion. When one thread holds a lock,
no other thread can hold it.
• a lock can be in one of two states: locked or unlocked
• a lock is initially unlocked

• function acquire(&lock) waits until the lock is unlocked, then
atomically sets it to locked

• function release(&lock) sets the lock to unlocked

Review: use a lock
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 6:

acquire(&lock)
if (milk == 0) { // no milk
 milk++; // buy milk
}
release(&lock)

Correct!

Exercise : Locks

• TODO: Modify this example
to guarantee correctness

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++){

cnt++;
}

return NULL;
}

Problems with Locks
1. Locks are slow
• threads that fail to acquire a lock on the first attempt must "spin",

which wastes CPU cycles
• threads get scheduled and de-scheduled while the lock is still

locked

2. Using locks correctly is hard
• hard to ensure all race conditions are eliminated
• easy to introduce synchronization bugs (deadlock, livelock)

Blocking Lock (aka mutex)
• Initial state of lock is 0 ("available")

• acquire(&lock)
• block (suspend thread) until value n > 0
• when n > 0, decrement n by one

• release(&lock)
• increment value n by 1
• resume a thread waiting on s (if any)

acquire(&lock){
 while(lock->s == 1){
 ;
 }
 lock->s == 0
}

release(&lock){
 lock->s == 0
}

Example: Bounded Buffers

finite capacity (e.g. 20 loaves)
implemented as a queue

Threads A: produce loaves of bread and put
them in the queue

Threads B: consume loaves by taking them off
the queue

Example: Bounded Buffers

Threads A: produce loaves of bread and put
them in the queue

Threads B: consume loaves by taking them off
the queue

Separation of concerns:
1. How do you implement a bounded buffer?
2. How do you synchronize concurrent access to a
bounded buffer?

finite capacity (e.g. 20 loaves)
implemented as a queue

3

typedef struct {
 int* b; // ptr to buffer containing the queue
 int n; // length of array (max # slots)
 int count; // number of elements in array
 int front; // index of first element, 0 <= front < n
 int rear; // (index of last elem)+1 % n, 0 <= rear < n
} bbuf_t

Example: Bounded Buffers
0 1 2 3 4 5 (n = 6)

2 4 1 Values wrap around!!b

frontrear

void init(bbuf_t* ptr, int n){
 ptr->b = malloc(n*sizeof(int));
 ptr->n = n;
 ptr->count = 0;
 ptr->front = 0;
 ptr->rear = 0;
}

void put(bbuf_t* ptr, int val){
 ptr->b[ptr->rear]= val;
 ptr->rear= ((ptr->rear)+1)%(ptr->n);
 ptr->count++;
}
int get(bbuf_t* ptr){
 int val= ptr->b[ptr->front];
 ptr->front= ((ptr->front)+1)%(ptr->n);
 ptr->count--;
 return val;
}

2

Exercise 1: What can go wrong?

typedef struct {
 int* b;
 int n;
 int count;
 int front;
 int rear;

} bbuf_t

Example: Bounded Buffers

void init(bbuf_t* ptr, int n){
 ptr->b = malloc(n*sizeof(int));
 ptr->n = n;
 ptr->count = 0;
 ptr->front = 0;
 ptr->rear = 0;

}

void put(bbuf_t* ptr, int val){

 ptr->b[ptr->rear]= val;
 ptr->rear= ((ptr->rear)+1)%(ptr->n);
 ptr->count++;

}
int get(bbuf_t* ptr){

 int val= ptr->b[ptr->front];
 ptr->front= ((ptr->front)+1)%(ptr->n);
 ptr->count--;

 return val;
}

3 4 1b

frontrear

2

pthread_mutex_t lock;

acquire(&(ptr->lock))

acquire(&(ptr->lock))

init(&(ptr->lock));

release(&(ptr->lock))

release(&(ptr->lock))

0 1 2 3 4 5 (n = 6)

while(ptr->count==ptr->n){
 release(&lock)
 acquire(&lock)
 }

while(ptr->count==0){
 release(&lock)
 acquire(&lock)
 }

Condition Variables
• A condition variable cv is a stateless synchronization

primitive that is used in combination with locks (mutexes)
• condition variables allow threads to efficiently wait for a change to

the shared state protected by the lock
• a condition variable is comprised of a waitlist

• Interface:
• wait(CV* cv, Lock* lock): Atomically releases the lock, suspends

execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before
wait returns

• signal(CV* cv): takes one thread off of cv's waitlist and marks it as
eligible to run. (No-op if waitlist is empty.)

typedef struct {
 int* b;
 int n;
 int count;
 int front;
 int rear;

} bbuf_t

Example: Bounded Buffers

void init(bbuf_t* ptr, int n){
 ptr->b = malloc(n*sizeof(int));
 ptr->n = n;
 ptr->count = 0;
 ptr->front = 0;
 ptr->rear = 0;

}

void put(bbuf_t* ptr, int val){

 ptr->b[ptr->rear]= val;
 ptr->rear= ((ptr->rear)+1)%(ptr->n);
 ptr->count++;

}

int get(bbuf_t* ptr){

 int val= ptr->b[ptr->front];
 ptr->front= ((ptr->front)+1)%(ptr->n);
 ptr->count--;

 return val;
}

3 4 1b

frontrear

2

pthread_mutex_t lock;

init(&(ptr->lock));

release(&(ptr->lock))

release(&(ptr->lock))

0 1 2 3 4 5 (n = 6)

if(ptr->count == 0)
 wait(&bread_added)

signal(&(ptr->bread_bought))

if(ptr->count == ptr->n)
 wait(&bread_bought)

signal(&(ptr->bread_added))

CV bread_bought;

init(&(ptr->bread_bought));

while(ptr->count == ptr->n)
 wait(&(ptr->bread_bought))

while(ptr->count == 0)
 wait(&(ptr->bread_added))

CV bread_added;

init(&(ptr->bread_added));

acquire(&(ptr->lock))

acquire(&(ptr->lock))

Using Condition Variables
1. Declare a lock. Each shared value needs a lock to

enforce mutually exclusive access to the shared value.
2. Add code to acquire and release the lock. All code

access the shared value must hold the objects lock.
3. Identify each place something could go wrong if the

next line is executed and declare a condition variable
that corresponds to when it is safe to proceed with the
function. Add a wait for that condition to ensure the
critical line is only executed under the right conditions.

4. Add a signal when the condition becomes true.
5. Add loops are your waits. Threads might not be

scheduled immediately after they are eligible to run.
Even if a condition was true when signal was called, it
might not be true when a thread resumes execution.

Exercise: Synchronization Barrier
• With data parallel programming,

a computation proceeds in
parallel, with each thread
operating on a different section
of the data. Once all threads
have completed, they can
safely use each others results.

/* Thread routine */
void *thread(void *args)
{
 parallel_computation(args)

 done_count++;

 use_results();

}

int done_count = 0;
 Lock lock;

acquire(&lock);

release(&lock);

CV all_done;

if(done_count < n){
 wait(&all_done, &lock);
}else {
 for(int i=0;i<n;i++)
 signal(&all_done);
}

/* Thread routine */
void *thread(void *args)
{
 parallel_computation(args)

 done_count++;

 use_results();

}

What can go wrong?

Condition Variables
• A condition variable cv is a stateless synchronization

primitive that is used in combination with locks (mutexes)
• condition variables allow threads to efficiently wait for a change to

the shared state protected by the lock
• a condition variable is comprised of a waitlist

• Interface:
• wait(CV * cv, Lock * lock): Atomically releases the lock, suspends

execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before
wait returns

• signal(CV * cv): takes one thread off of cv's waitlist and marks it as
eligible to run. (No-op if waitlist is empty.)

• broadcast(CV * cv): takes all threads off cv's waitlist and marks
them as eligible to run. (No-op if waitlist is empty.)

Exercise: Readers/Writers
• Consider a collection of concurrent threads that have access to a shared

object
• Some threads are readers, some threads are writers

• a unlimited number of readers can access the object at same time
• a writer must have exclusive access to the object

int num_readers = 0;
int num_writers = 0;
Lock lock;
CV readable;
CV writeable;

int num_readers = 0;
int num_writers = 0;

int reader(void *shared){

 num_readers++;

 int x = read(shared);

 num_readers--;

 return x
}

void writer(void *shared, int val){

 num_writers=1;

 write(shared, val);

 num_writers=0;

}

acquire(&lock);

release(&lock);

acquire(&lock);

release(&lock);

while(num_writers > 0)
 wait(readable, &lock);

if(num_readers == 0)
 signal(writeable);

acquire(&lock);

release(&lock);

while(num_readers > 0)
 wait(writeable, &lock);

signal(writeable);
broadcast(readable);

void writer(void *shared, int val){

 num_writers=1;

 write(shared, val);

 num_writers=0;

}

int reader(void *shared){

 num_readers++;

 int x = read(shared);

 num_readers--;

 return x
}

Programming with CVs
C

• Initialization:
pthread_mutex_t lock =
 PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv =
 PTHREAD_COND_INITIALIZER;

• Lock acquire/release:
 pthread_mutex_lock(&lock);
 pthread_mutex_unlock(&lock);

• CV operations:
pthread_cond_wait(&cv, &lock);
pthread_cond_signal(&cv);
pthread_cond_broadcast(&cv);

Python

• Initialization:
lock = Lock()

 cv = Condition(lock)

• Lock acquire/release:
lock.acquire()
lock.release()

• V
cv.wait()
cv.notify()
cv.notify_all()

