
CS 105 Spring 2024

Lecture 21: Threads and Concurrency

Why Concurrent Programs?

1.06

0.540.28 0.29 0.3

0
0.2
0.4
0.6
0.8

1
1.2

1 2 4 8 16

El
ap

se
d

tim
e

(s
)

Threads

Program Structure: expressing logically
concurrent programs

Responsiveness: shifting work to run
in the background

Performance: exploiting multiprocessorsResponsiveness: managing I/O devices

Traditional View of a Process
• Process = process context + (virtual) memory state

0

Program context:
 Data registers
 Stack pointer (rsp)
 Condition codes
 Program counter (rip)

Virtual Memory

rsp

rip

brk

Process Control Block

Kernel context:
 VM structures
 File table
 brk pointer

Code
Data

Stack

Heap

Alternate View of a Process
• Process = thread + other state

Thread context:
 Data registers
 Stack pointer (rsp)
 Condition codes
 Program counter (rip)

Other data

rsp

Thread (main thread)

Kernel context:
 VM structures
 File table
 brk pointer

Stack

0

brk

Code
Data
Heap

A Process With Multiple Threads
• Multiple threads can be associated with a process
• Each thread has its own logical control flow
• Each thread has its own stack for local variables
• Each thread has its own thread id (TID)
• Each thread shares the same code, data, and kernel context

Thread 1 (main thread) Shared dataThread 2 (peer thread)

Thread 1 context:
 Data registers
 Stack pointer
 Condition codes
 Program counter

rsp
Stack 1

Thread 2 context:
 Data registers
 Stack pointer
 Condition codes
 Program counter

rsp
Stack 2

Kernel context:
 VM structures
 File table
 brk pointer

0

brk

Code
Data
Heap

Threads vs. Processes
• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different

cores)
• Each is scheduled and context switched

• How threads and processes are different
• Threads share all code and data (except local stacks)

• Processes (typically) do not
• Threads are somewhat less expensive than processes

• Thread control (creating and reaping) is half as expensive as process
control
• ~20K cycles to create and reap a process
• ~10K cycles (or less) to create and reap a thread

• Thread context switches are less expensive (e.g., don't flush TLB)

Logical View of Threads
• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

Process hierarchy

T1

Threads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

Posix Threads Interface
C (Pthreads)

• Creating and reaping threads
• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()

• pthread_exit()
• exit() [terminates all threads]
• RET [terminates current thread]

Python (threading)

• Creating and reaping threads
• Thread()
• thread.join()

• Determining your thread ID
• thread.get_ident()

• Terminating threads

• thread.exit()

• RET [terminates current thread]

void *thread(void *vargp){ /* thread routine */

 printf("Hello, world!\n");
return NULL;

}

The Pthreads "hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main(){

 pthread_t tid;
 pthread_create(&tid, NULL, thread, NULL);
 pthread_join(tid, NULL);

exit(0);
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Example: Sharing with Threads
char** ptr; /* global var */

int main(){

 pthread_t tid;

char* msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

ptr = msgs;
for (int i = 0; i < 2; i++){

pthread_create(&tid, NULL,
f1, (void*) i);

}
pthread_exit(NULL);

}

void* f1(void* vargp){

 long myid = (long) vargp;
 static int cnt = 0;

 printf("[%d]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

Mapping Variable Instances to Memory
• Global variables
• Def: Variable declared outside of a function
• Virtual memory contains exactly one instance of any global

variable

• Local variables
• Def: Variable declared inside function
• Each thread stack contains one instance of each local variable

• Local static variables
• Def: Variable declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local

static variable.

without static attribute

char** ptr; /* global var */

int main(){

 pthread_t tid;

char* msgs[2] = {"Hello from foo",
 "Hello from bar"};

ptr = msgs;
for (int i = 0; i < 2; i++)

pthread_create(&tid, NULL,
thread, (void *)i);

pthread_exit(NULL);
}

void *thread(void *vargp){
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%d]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

Local vars: 1 instance (i.m, msgs.m)

char **ptr; /* global var */

int main(){

 pthread_t tid;
char *msgs[2] = {"Hello from foo",

 "Hello from bar"};
ptr = msgs;
for (int i = 0; i < 2; i++)

Pthread_create(&tid, NULL,
thread, (void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp){
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%d]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Exercise 1: Shared Variables
Which variables are
shared?

• ptr

• cnt
• i

• msgs

• myid

Exercise 1: Shared Variables
• Which variables are shared?
• A variable x is shared iff multiple threads reference at least one

instance of x.

• ptr, cnt, and msgs are shared
• i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.main
msgs.main
myid.thread0
myid.thread1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char** argv){
 long niters;
 pthread_t tid1, tid2;

niters = atoi(argv[1]);
pthread_create(&tid1, NULL,

count_func, &niters);
pthread_create(&tid2, NULL,

count_func, &niters);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

/* Check result */
 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void* count_func(void* vargp){
 long i, niters;
 niters = *((long*) vargp);

 for (i = 0; i < niters; i++){

cnt++;
}

return NULL;
}

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

Why not Concurrent Programs?

Assembly Code for Counter Loop

for (i = 0; i < niters; i++){
cnt++;

}

C code for counter loop in thread i

movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2

movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax

jne .L3
.L2:

Hi : Head

Asm code for thread i

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Ti : Tail

Race conditions
• A race condition is a timing-dependent error involving

shared state
• whether the error occurs depends on thread schedule

• program execution/schedule can be non-deterministic
• compilers and processors can re-order instructions

A concrete example…
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

• Liveness: if you are out of milk, someone buys milk
• Safety: you never have more than one quart of milk

Algorithm 1:

Look in fridge.
If out of milk:
 go to store,
 buy milk,
 go home
 put milk in fridge

Algorithm 1:

if (milk == 0) { // no milk
 milk++; // buy milk
}

A problematic schedule
You

3:00 Look in fridge; out of milk
3:05 Leave for store
3:10 Arrive at store
3:15 Buy milk
3:20 Arrive home; put milk in
fridge

Your Roommate

3:10 Look in fridge; out of milk
3:15 Leave for store
3:20 Arrive at store
3:25 Buy milk
3:30 Arrive home; put milk in
fridge

Safety violation:
You have too much milk and it spoils

Solution 1: Leave a note
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 2:

if (milk == 0) { // no milk
 if (note == 0) { // no note
 note = 1; // leave note
 milk++; // buy milk
 note = 0; // remove note
 }
}

Safety violation: you've introduced a Heisenbug!

Solution 2: Leave note before check note
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 3:

note1 = 1
if (note2 == 0) { // no note from
 roommate
 if (milk == 0) {// no milk
 milk++; // buy milk
 }
}
note1 = 0

Liveness violation: No one buys milk

Solution 3: Keep checking for note
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 4:

note1 = 1
while (note2 == 1) { // wait until
 ; // no note
}
if (milk == 0) { // no milk
 milk++; // buy milk
}
note1 = 0

Liveness violation: You've introduced deadlock

Solution 4: Take turns
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 5:

note1 = 1
turn = 2
while (note2 == 1 and turn == 2){
 ;
}
if (milk == 0) { // no milk
 milk++; // buy milk
}
note1 = 0

(probably) correct, but complicated and inefficient

Locks
• A lock (aka a mutex) is a synchronization primitive that

provides mutual exclusion. When one thread holds a lock,
no other thread can hold it.
• a lock can be in one of two states: locked or unlocked
• a lock is initially unlocked

• function acquire(&lock) waits until the lock is unlocked, then
atomically sets it to locked

• function release(&lock) sets the lock to unlocked

Solution 5: use a lock
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 6:

acquire(&lock)
if (milk == 0) { // no milk
 milk++; // buy milk
}
release(&lock)

Correct!

Atomic Operations
• Solution: hardware primitives to support synchronization
• A machine instruction that (atomically!) reads and updates

a memory location

• Example: xchg src, dest
• one instruction
• semantics: TEMP ← DEST; DEST ← SRC; SRC ← TEMP;

Spinlocks

acquire:
 mov $1, eax ; Set EAX to 1
 xchg eax, (rdi) ; Atomically swap EAX w/ lock val
 test eax, eax ; check if EAX is 0 (lock unlocked)
 jnz acquire ; if was locked, loop
 ret ; lock has been acquired, return

release:
 mov $0, eax ; Set EAX to 0
 xchg eax, (rdi) ; Atomically swap EAX w/ lock val
 ret ; lock has been released, return

Programming with Locks
C (pthreads)

• Defines lock type pthread_mutex_t

• functions to create/destroy
locks:
• int pthread_mutex_init(&lock, attr);
• int pthread_mutex_destroy(&lock);

• functions to acquire/release
lock:
• int pthread_mutex_lock(&lock);
• int pthread_mutex_unlock(&lock);

Python (threading)

• Defines class Lock

• constructor to create locks:

• Lock()
• destroyed by garbage collector

• functions to aquire/release
lock:
• lock.acquire()
• lock.release()

Exercise 2: Locks

• TODO: Modify this example
to guarantee correctness

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++){

cnt++;
}

return NULL;
}

Problems with Locks
1. Locks are slow
• threads that fail to acquire a lock on the first attempt must "spin",

which wastes CPU cycles
• threads get scheduled and de-scheduled while the lock is still

locked

2. Using locks correctly is hard
• hard to ensure all race conditions are eliminated
• easy to introduce synchronization bugs (deadlock, livelock)

Better Synchronization Primitives
• Semaphores
• stateful synchronization primitive

• Condition variables
• event-based synchronization primitive

