
CS 105                  Spring 2024

Lecture 21: Threads and Concurrency



Why Concurrent Programs?
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Threads

Program Structure: expressing logically 
concurrent programs

Responsiveness: shifting work to run
in the background

Performance: exploiting multiprocessorsResponsiveness: managing I/O devices



Traditional View of a Process
• Process = process context + (virtual) memory state

0

Program context:
    Data registers
    Stack pointer (rsp)
    Condition codes
    Program counter (rip)

Virtual Memory

rsp

rip

brk

Process Control Block

Kernel context:
    VM structures
    File table
    brk pointer

Code
Data

Stack

Heap



Alternate View of a Process
• Process = thread + other state

Thread context:
    Data registers
    Stack pointer (rsp)
    Condition codes       
    Program counter (rip)

Other data

rsp

Thread (main thread)

Kernel context:
    VM structures
    File table
    brk pointer

Stack

0

brk

Code
Data
Heap



A Process With Multiple Threads
• Multiple threads can be associated with a process
• Each thread has its own logical control flow 
• Each thread has its own stack for local variables
• Each thread has its own thread id (TID)
• Each thread shares the same code, data, and kernel context

Thread 1 (main thread) Shared dataThread 2 (peer thread)

Thread 1 context:
    Data registers
    Stack pointer
    Condition codes       
    Program counter

rsp
Stack 1

Thread 2 context:
    Data registers
    Stack pointer
    Condition codes       
    Program counter

rsp
Stack 2

Kernel context:
    VM structures
    File table
    brk pointer

0

brk

Code
Data
Heap



Threads vs. Processes
• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different 

cores)
• Each is scheduled and context switched

• How threads and processes are different
• Threads share all code and data (except local stacks)

• Processes (typically) do not
• Threads are somewhat less expensive than processes

• Thread control (creating and reaping) is half as expensive as process 
control
• ~20K cycles to create and reap a process
• ~10K cycles (or less) to create and reap a thread

• Thread context switches are less expensive (e.g., don't flush TLB)



Logical View of Threads
• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

Process hierarchy

T1

Threads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context



Posix Threads Interface
C (Pthreads)

• Creating and reaping threads
• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()

• pthread_exit()
• exit() [terminates all threads] 
• RET [terminates current thread]

Python (threading)

• Creating and reaping threads
• Thread()
• thread.join()

• Determining your thread ID
• thread.get_ident()

• Terminating threads

• thread.exit()

• RET [terminates current thread]



void *thread(void *vargp){ /* thread routine */

    printf("Hello, world!\n");
return NULL;                 

} 

The Pthreads "hello, world" Program
/*                                                                                                               
 * hello.c - Pthreads "hello, world" program                                                                     
 */
#include "csapp.h"
void *thread(void *vargp);                    

int main(){

    pthread_t tid;                            
    pthread_create(&tid, NULL, thread, NULL); 
    pthread_join(tid, NULL);                  

exit(0);                                  
}

Thread attributes 
(usually NULL)

Thread arguments
(void *p) 

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c



Example: Sharing with Threads
char** ptr;  /* global var */

int main(){

    
    pthread_t tid;

char* msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };

ptr = msgs;
for (int i = 0; i < 2; i++){

pthread_create(&tid, NULL, 
f1, (void*) i);

}
pthread_exit(NULL);

}

void* f1(void* vargp){

    long myid = (long) vargp;
    static int cnt = 0;

    printf("[%d]:  %s (cnt=%d)\n",
         myid, ptr[myid], ++cnt);
    return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c



Mapping Variable Instances to Memory
• Global variables
• Def:  Variable declared outside of a function
• Virtual memory contains exactly one instance of any global 

variable

• Local variables
• Def: Variable declared inside function
• Each thread stack contains one instance of each local variable

• Local static variables
• Def: Variable declared inside  function with the static attribute
• Virtual memory contains exactly one instance of any local 

static variable. 

without  static attribute



char** ptr;  /* global var */

int main(){
  
  pthread_t tid;

char* msgs[2] = {"Hello from foo",
                   "Hello from bar"};

ptr = msgs;
for (int i = 0; i < 2; i++)

pthread_create(&tid, NULL,   
thread, (void *)i);

pthread_exit(NULL);
}

void *thread(void *vargp){
  long myid = (long)vargp;
  static int cnt = 0;

  printf("[%d]: %s (cnt=%d)\n", 
         myid, ptr[myid], ++cnt);
  return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local var:  2 instances (
     myid.p0 [peer thread 0’s stack], 
  myid.p1 [peer thread 1’s stack]
)

Local vars: 1 instance (i.m, msgs.m)



char **ptr;  /* global var */

int main(){

  pthread_t tid;
char *msgs[2] = {"Hello from foo",

                   "Hello from bar"};
ptr = msgs;
for (int i = 0; i < 2; i++)

Pthread_create(&tid, NULL,   
thread, (void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp){
  long myid = (long)vargp;
  static int cnt = 0;

  printf("[%d]: %s (cnt=%d)\n", 
         myid, ptr[myid], ++cnt);
  return NULL;
}

Exercise 1: Shared Variables
Which variables are 
shared?

• ptr  

• cnt  
• i 

• msgs 

• myid



Exercise 1: Shared Variables
• Which variables are shared?
• A variable x is shared iff multiple threads reference at least one 

instance of x.

• ptr,  cnt, and msgs are shared
• i and myid are not shared

Variable   Referenced by Referenced by Referenced by
instance    main thread? peer thread 0? peer thread 1?

ptr  
cnt  
i.main  
msgs.main  
myid.thread0  
myid.thread1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes



/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char** argv){
    long niters;
    pthread_t tid1, tid2;

niters = atoi(argv[1]);
pthread_create(&tid1, NULL,

count_func, &niters);
pthread_create(&tid2, NULL,

count_func, &niters);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

/* Check result */
    if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */                                                                                             
void* count_func(void* vargp){                                                                                                                
  long i, niters;
  niters =  *((long*) vargp);                                                                           
                                                                                                                 
  for (i = 0; i < niters; i++){

cnt++;                   
}          

return NULL;                                                                                                 
} 

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

Why not Concurrent Programs?



Assembly Code for Counter Loop

for (i = 0; i < niters; i++){
cnt++; 

}

C code for counter loop in thread i

movq  (%rdi), %rcx
    testq %rcx,%rcx
    jle   .L2

movl $0, %eax
.L3:
    movq  cnt(%rip),%rdx
    addq  $1, %rdx
    movq  %rdx, cnt(%rip)
    addq  $1, %rax
    cmpq  %rcx, %rax

jne .L3
.L2:

Hi : Head

Asm code for thread i

Li  : Load cnt
Ui : Update cnt
Si : Store cnt

Ti : Tail



Race conditions
• A race condition is a timing-dependent error involving 

shared state
• whether the error occurs depends on thread schedule

• program execution/schedule can be non-deterministic
• compilers and processors can re-order instructions



A concrete example…
• You and your roommate share a refrigerator. Being good 

roommates, you both try to make sure that the refrigerator 
is always stocked with milk. 

• Liveness: if you are out of milk, someone buys milk
• Safety: you never have more than one quart of milk

Algorithm 1: 

Look in fridge. 
If out of milk:
      go to store, 
      buy milk, 
      go home
      put milk in fridge

Algorithm 1: 

if (milk == 0) { // no milk
  milk++;  // buy milk
}



A problematic schedule
You

3:00 Look in fridge; out of milk
3:05 Leave for store
3:10 Arrive at store
3:15 Buy milk
3:20 Arrive home; put milk in 
fridge

Your Roommate

3:10 Look in fridge; out of milk
3:15 Leave for store
3:20 Arrive at store
3:25 Buy milk
3:30 Arrive home; put milk in 
fridge

Safety violation: 
You have too much milk and it spoils



Solution 1: Leave a note
• You and your roommate share a refrigerator. Being good 

roommates, you both try to make sure that the refrigerator 
is always stocked with milk. 

Algorithm 2: 

if (milk == 0) { // no milk
  if (note == 0) { // no note
    note = 1;  // leave note
    milk++;  // buy milk
    note = 0;  // remove note
  }
}

Safety violation: you've introduced a Heisenbug!



Solution 2: Leave note before check note
• You and your roommate share a refrigerator. Being good 

roommates, you both try to make sure that the refrigerator 
is always stocked with milk. 

Algorithm 3: 

note1 = 1
if (note2 == 0) { // no note from
    roommate
  if (milk == 0) {// no milk
    milk++;      // buy milk
  }
}
note1 = 0

Liveness violation: No one buys milk



Solution 3: Keep checking for note
• You and your roommate share a refrigerator. Being good 

roommates, you both try to make sure that the refrigerator 
is always stocked with milk. 

Algorithm 4: 

note1 = 1
while (note2 == 1) { // wait until
  ;   //   no note
}  
if (milk == 0) { // no milk
  milk++;  // buy milk
}
note1 = 0

Liveness violation: You've introduced deadlock



Solution 4: Take turns
• You and your roommate share a refrigerator. Being good 

roommates, you both try to make sure that the refrigerator 
is always stocked with milk. 

Algorithm 5: 

note1 = 1
turn = 2
while (note2 == 1 and turn == 2){
  ;
}  
if (milk == 0) { // no milk
  milk++;  // buy milk
}
note1 = 0

(probably) correct, but complicated and inefficient



Locks 
• A lock (aka a mutex) is a synchronization primitive that 

provides mutual exclusion. When one thread holds a lock, 
no other thread can hold it.
• a lock can be in one of two states: locked or unlocked
• a lock is initially unlocked

• function acquire(&lock) waits until the lock is unlocked, then 
atomically sets it to locked

• function release(&lock) sets the lock to unlocked



Solution 5: use a lock
• You and your roommate share a refrigerator. Being good 

roommates, you both try to make sure that the refrigerator 
is always stocked with milk. 

Algorithm 6: 

acquire(&lock)  
if (milk == 0) { // no milk
  milk++;  // buy milk
}
release(&lock)

Correct!



Atomic Operations
• Solution: hardware primitives to support synchronization
• A machine instruction that (atomically!) reads and updates 

a memory location

• Example: xchg src, dest
• one instruction
• semantics: TEMP ← DEST; DEST ← SRC; SRC ← TEMP;



Spinlocks

acquire: 
    mov  $1,  eax  ; Set EAX to 1     
    xchg eax, (rdi)  ; Atomically swap EAX w/ lock val 
    test eax, eax  ; check if EAX is 0 (lock unlocked)
    jnz  acquire  ; if was locked, loop
    ret   ; lock has been acquired, return

release: 
    mov  $0, eax  ; Set EAX to 0 
    xchg eax, (rdi)  ; Atomically swap EAX w/ lock val 
    ret   ; lock has been released, return



Programming with Locks
C (pthreads)

• Defines lock type pthread_mutex_t

• functions to create/destroy 
locks:
• int pthread_mutex_init(&lock, attr); 
• int pthread_mutex_destroy(&lock); 

• functions to acquire/release 
lock:
• int pthread_mutex_lock(&lock);
• int pthread_mutex_unlock(&lock);

Python (threading)

• Defines class Lock

• constructor to create locks:

• Lock()
• destroyed by garbage collector

• functions to aquire/release 
lock:
• lock.acquire()
• lock.release()



Exercise 2: Locks

• TODO: Modify this example 
to guarantee correctness

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
    long niters;
    pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
    if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */                                                                                             
void *thread(void *vargp)                                                                                        
{                                                                                                                
    long i, niters = 
               *((long *)vargp);                                                                           
                                                                                                                 
    for (i = 0; i < niters; i++){

cnt++;    
}               

return NULL;                                                                                                 
} 



Problems with Locks
1. Locks are slow
• threads that fail to acquire a lock on the first attempt must "spin", 

which wastes CPU cycles
• threads get scheduled and de-scheduled while the lock is still 

locked

2. Using locks correctly is hard
• hard to ensure all race conditions are eliminated
• easy to introduce synchronization bugs (deadlock, livelock)



Better Synchronization Primitives
• Semaphores
• stateful synchronization primitive

• Condition variables
• event-based synchronization primitive


