Lecture 19: Virtual Memory (cont'd)

CS 105 Spring 2024

Review: Address Translation

Stack

Virtual Address

Data

MMU

-
-

<
28
O
QL
>
Q
Q
)
)
o
7

Review: Paging

Page 7
Page 6
Page 5
Page 4
Page 3
Page 2
Page 1
Page 0

Virtual Memory
Stack |"
Heap e
Data
Code

Physical Memory

Frame 17

Frame 16
Frame 15

Frame 14

Frame 13

Frame 12
Frame 11

Frame 10

Frame 9
Frame 8
Frame 7

Frame 6
Frame 5

Frame 4
Frame 3

Frame 2
Frame 1

Frame O

Review: Virtual Pages

Stack

' page# offset
\ ivaddr
iaﬁe table
1 47 R,W

NULL
13
42

MMU

R,W
R,W
R,X

paddr =

%%
@ <
@2
2%
()
/62
Ine4bag

S
Q)V
(s\,
/
(7))
JIne abed

Frame[page#]

offset

Review: Paging

Assume that you are currently executing a process P with
the foIIowmg page table on a system with 16 byte pages:

lm Access

OXEA8B 1 0x47

OXEA8A 0 NULL R,W
OxEA89 0 O0x13 R,W
OxEA88 1 0x23 R,X

. What is the physical address that corresponds to the

virtual address OXEA8B2?

- What is the physical address that corresponds to the
virtual address OXEA8AT7? '

- What is the physical address that corresponds to the
virtual address OXEA89A?

Review: Evaluating Paging

- Isolation: don’t want different
process states collided in
physical memory

- Efficiency: want fast
reads/writes to memory

..~ Sharing: want option to
overlap for communication

- Utilization: want best use of
limited resource

o _Virtpalization: want to create
illusion of more resources

QAR

Traditional Paging

- page table is stored in
physical memory

- implemented as array of
page table entries

- Page Table Base Register
(PTBR) stores physical
address of beginning of
page table

- Page table entries are
accessed by using the
page number as the index
into the page table

NULL
NULL

R,W
R,W

NULL
59

R,W
R,X

47
NULL

R,W
R,W

- O|© ~|=~ O|O O

13
42

R,W
R,X

PTBR

Problems with Paging

- Memory Consumption: page table is really big

- Example: consider 48-bit address space, 4KB (2*12) page size,
assume each page table entry is 8 bytes.

- Larger pages increase internal fragmentation

- Performance: every data/instruction access requires two
memory accesses:

- One for the page table
- One for the data/instruction

Two-level Page Tables

- page table is stored in
virtual memory pages

- page directory is stored Iin
physical memory (page
table for the page table)

- Implemented as array of
page directory entries

- Page Table Base Register
(PTBR) stores physical
address of beginning of
page directory

NULL
NULL

R,W
R,W

NULL
62

NULL
59

R,W
R,X

- O |-~ O

17
77

47
NULL

R,W
R,W

- O|O ~| =~ O|O O

13
42

R,W
R,X

PTBR

Two-level Page Tables

MMU
 Torerme page table page
v | PTFrame .m
Vv
_ 1 47 RW
— 1 62 » Frame[idx1] | Y
0 17 I W Frame[idx2] | offset
0 13 R,W
L > 1 42 R.X

+ only store in-use page table entries in physical memory
+ easier to allocate page table
- more memory accesses

Example: Two-level Page Tables

Assume you are working on an architecture with a 32-bit
virtual address space in which idx1 is 4 bits, idx2 is 12 bits,
and offset is 16 bits. |4 bitidx1 [12 bit idx2 | 16 bit offset

- How big is a page in this architecture? 216 bytes = 64 KB
- How big is a page table entry in this architecture? 16 bytes

Exercise: Two-level Page Tables

Assume you are still

working on that architecture.

4 bit idx1 | 12 bit idx2 | 16 bit offset

Compute the physical
address corresponding to
each of the virtual address
(or answer "invalid"):

a) 0x00000013

b) 0x20022002

c) 0x10015555

page directory

-
ox0 1
Ox1 1 0x2
0x2 0 NULL
0x3 0 NULL
OxF O NULL

page table

For=0 (IR

0x0 0x0047

0x1 0 NULL R,W
0x2 0x0013 R,W
0x3 1 0x0042 RJX

o

Frame 1

Frame 2
0ox0 O Ox002A R

ox1 1 OxCAFE RW
0x2 0 NULL R,W
0x3 0 13 R,W

Multi-level Page Tables

- Problem: How big does the page directory get? 1 GB
- Assume you have a 48-bit address space
- Assume you have 4KiB pages
- Assume you have 8 byte page table entries/page directory entries

27 bit idx1 9 bit idx2 | 12 bit offset

|
48 bits

- Goal: Page Table Directory should fit in one frame
- Multi-level page tables: add additional level(s) to tree

9 bit idx1 | 9 bit idx2 | 9 bit idx3 | 9 bit idx4 | 12 bit offset

|
48 bits

Review: Problems with Paging

- Memory Consumption: page table is really big

- Example: consider 64-bit address space, 4KB (2*12) page size,
assume each page table entry is 8 bytes.

- Larger pages increase internal fragmentation
. . . five
- Performance: every data/instruction access requireswe-

memory acCesses.

- One for tire"pagetabtte each of the four levels of page table
- One for the data/instruction

Translation-Lookaside Buffer (TLB)

- General idea: if address translation is slow, cache some

of the answers

- Translation-lookaside buffer is an address translation

cache that is built into the MMU

Virtual
Address

| Page# Offset

Translation Lookaside Buffer (TLB)

Virtual Page
Page Frame Access

@
Matching Entry ,@ .

o=

Page Table
)@ 7 Lookup

Physical
Address ..

Frame I Offset |-

Exercise: TLB

idx
0

| v_| tag |PPN| v | tag [PPN| v | tag PPN
1 03 B 0 07 6 1 28 3 0 01 F
1 31 0 0 12 3 1 3E 4 1 0B 1
0 2A A 0 11 1 1 I 8 1 07 5
1 07 3 0 2A A 0 1E 2 0 21 B

Assume you are running on an architecture with a one-level
page table with 4096 byte pages. For each of the following
virtual addresses, determine whether the address translation
is stored in the TLB. If so, give the corresponding physical
address

- OX7E37C

- Ox16A48

Example: The Linux x86 Address Space

- Use "only" 48-bit addresses (top
16 bits not used)

- 4KiB pages by default

- supports larger "superpages”

- Four-level page table

- Physical memory stores
memory pages, memory-
mapped files, cached file pages
- Updates are periodically written

to disk by background
processes

- Page eviction algorithm uses
variant of LRU called 2Q

- approximates LRU with clock

- maintains two lists (active/inactive)
- Stack is marked non-executable

- Virtual address of stack/heap
start are randomized each time
process is initialized

Kernel (virtual)

Kernel (logical)

Stack

Heap

Data

Code

OXFFFFFFFFFFFF

0x800000000000

0x000000000000

CR3

CPU

&

32/64

36 \ 4

uPN

VPO

Virtual address (vaddr)
12

.]

4

TLBT

TLBI

A 4 A 4

VVY

TLB
hit

—

L1 TLB (16 sets, 4 entries/set)

9 9

VPN3 VPN

I
=

PTH

PTE

40 vy

Example: Core i7 Memory Accessing

L2, L3, and
main memory

Result DEE—
L1
hit
L1 d-cache
(64 sets, 8 lines/set)
[I I |«

y 12

A A A A A

4

Y

L1
miss

PPN

PPO

A

Page tables

40 6o
CT Cl

Physical
address
(paddr)

